MiMM Day 2025: Challenges with interloping models for adhesive development – Uncertainty quantification and error propagation Adhesive tapes are used in everyday life as well as in many technical applications. Often, and especially in industrial applications, the virtual design of components and complex systems has become a routine task for product developers. Virtual development is supported by prediction of various methods. The mathematical foundation for this is manifold. Using those methods we are faced with problems: - I. We need to derive reliable principal prediction models to map data set y_i to y_{i+1} using a mapping function f_i parameterized by the parameter set p_i . - II. Once found, we need to calibrate f_i via p_i by solving an optimization problem: Find p_i such that for data sets and y_i , y_{i+1} and a given error functional r, $$r(y_i, y_{i+1}) = ||f_i(y_i, p_i) - y_{i+1}||_2$$ is minimal. III. The optimization problem is disturbed due the experimental data is prone to scatter in the data instead of "perfect" data sets y_i and y_{i+1} , we receive data from experiments such that $$y_i^{exp} = y_i + \varepsilon_i$$ and $y_{i+1}^{exp} = y_{i+1} + \varepsilon_{i+1}$ Whereas ε_i resp. ε_{i+1} reflect the scatter in the data. This raises the question, depending on the calibration data which parameters p_i do we have to expect? Can we quantify the scatter on p_i based on known scatter on the input data? IV. In virtual product developments we try to reduce the number of experiments drastically, so we like to model dependency over many levels, meaning, we like to predict the following: $$y_{i+1+n} = f_{i+n}(f_{i+n-1}(f_{i+n-2}(...f_0(y_0, p_0)..., p_{i+n-2}), p_{i+n-1}), p_{i+n})$$ Can we quantify the error quantification over several levels? V. The ultimate goal is to find the optimal y_i^{opt} to fulfil a wanted y_{i+1}^{opt} . Find y_i^{opt} such that for given f_i , p_i , y_{i+1}^{opt} and a given error functional r, $$r(y_i, y_{i+1}) = \left\| f_i\left(y_i^{opt}, p_i\right) - y_{i+1}^{opt} \right\|_2$$ is minimal. The interloped relation of (IV.) applies instead, too. Note here, p_i is found based on scatter data in the calibration. How reliable is p_i ? Can we quantify a scatter for y_i^{opt} ? Starting, we could look at linear functions $y_{i+1} = f_i(y_i) = a_i \cdot y_i + b_i$, and artificially scattered data. The tesa SE team will be happy to discuss this challenging modelling task with you! ## Contact at tesa: Dr. Oliver Gehrmann, Oliver.Gehrmann@tesa.com Dr. Nils Hendrik Kröger, Nils-Hendrik.Kroeger@tesa.com