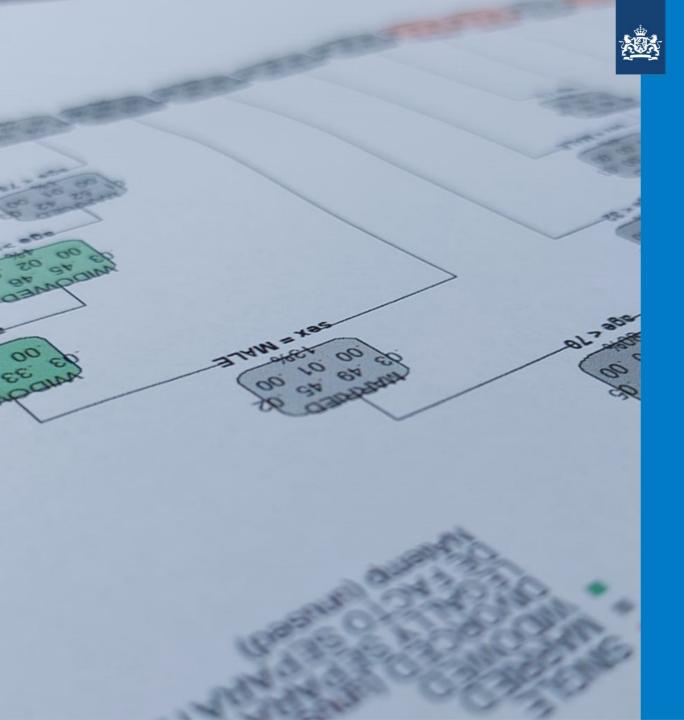
Generation

Lotte Pater, Ministry of Education / University of Groningen 25/03/2025

lotte.pater@duo.nl



Practical synthetic data generation

This talk has two points:

- 1. CART is a good method to generate synthetic data tables
- 2. Using synthetic data in practice is super multidisciplinary (and interesting!)

I'll spend the next 30-40 minutes motivating these points ◀

Why synthetic data?

1. Idea:

- Privacy: individual level
- Research: structural level
- 2. Synthetic data:
 - Fake on the individual level
 - GDPR doesn't apply
 - Same(~ish) conclusions on the structural level

Synthetic data

Synthetic vs anonimized data

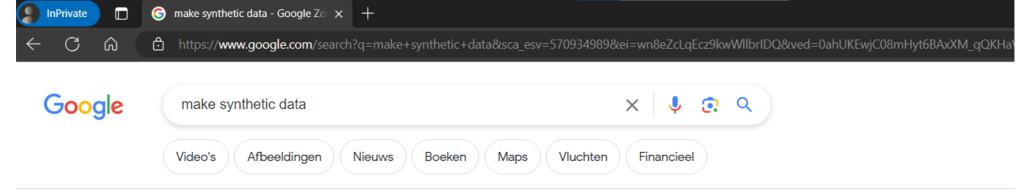
Synthesis process: from original to synthetic data

	ermtr	atin *	e brin	* regio_school	structuur school	erom school	aartai school	¢ cumi	1000		1078	-	thrp =	exprof	en/eerw 2	evak *	тко [÷]	mce	mdo	• utsiag • ¢
	Scherpenzeel				Breed															
143906																				
148987																				
143909																				
143991																				
148992																				
148993																				
148994																				
143995																				
148996						Prote Sal	2021	nooti tus	WOUW	7.5										
148997						Op aar en mi		Ina		6.4										
143993						Prof. dal		out no		5.3										
148999								autochtoon												
149000						Rooms-Kathliek	3906													
149001						Roc liel		tochtoon												
149002								tochtoon												
149003						Openbaar en overig	1132	autochtoon												
149004																				
149005																				
149006																				
149007																				
149008																				
149009																				
149010																				

Synthesizing technique

	Breed	Protestants totaal	221	autochtoon	rouw	7.5					
	Breed		í.			6.4					
	Breed	Pro nts te al	283		-	5.3					
		Picatarits totaal									
	Breed	Rooms-Katholink									
	Breed										
	Breed										
		Openbaar en overig									

Synthesis method 1: GANs



Gesponsord

Gretel.ai https://www.gretel.ai

Synthetic Data Generation - Create Synthetic Training Data

Train models & produce better results at a fraction of the cost with smarter, safer **data**. Collaborate With Team. Run In The Cloud. Scale Workloads.

Synthetic Tabular Data

Request Early Access to Tabular LLM Generate Data From Scratch

Videos, podcasts

Read About Gretel In The News, Listen To Podcasts, Or Watch

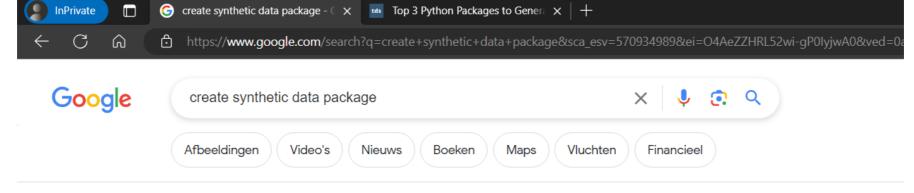
Gesponsord

K2View https://www.k2view.com > generate > synthetic-data

Gartner Synthetic Data Guide - Synthetic Data Generation

Read the Gartner© report: Pros and cons of **data** masking vs. **synthetic data** for TDM and ML.

Gesponsord



Ongeveer 419.000.000 resultaten (0,22 seconden)

Towards Data Science

https://towardsdatascience.com > to ... - Vertaal deze pagina

Top 3 Python Packages to Generate Synthetic Data

31 jan 2022 — 1. Faker ... Faker is a Python **package** developed to simplify **generating synthetic data**. Many subsequent data synthetic generator python **packages** ...

Vragen die zijn gerelateerd aan je zoekopdracht 🕴

How do I create synthetic data?	~
How do you create synthetic data in Python?	~
How do you create synthetic time series data?	~
What are the models to create synthetic data?	~
	Feedback

ActiveState

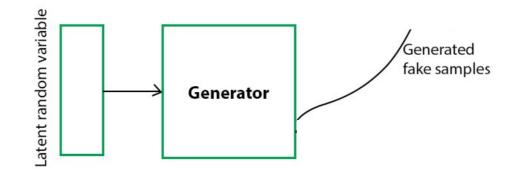
https://www.activestate.com > blog · Vertaal deze pagina

Top 10 Python Packages for Creating Synthetic Data

12 nov 2021 — Before You Start: Install The Synthetic Data Environment \cdot 1–DataSynthesizer \cdot

2-Pydbgen · 3-Mimesis · 4-Synthetic Data Vault · 5-Plaitpy · 6- ...

GANs - Generative Adversarial Networks



GANs - Generative Adversarial Networks **Real Data Samples** Discriminator Latent random variable Generated fake samples Generator

GANs - Generative Adversarial Networks **Real Data Samples** Condition Discriminator Is it correct? Latent random variable Generated

fake samples

Generator

GANs - Generative Adversarial Networks **Real Data Samples** Condition Discriminator Is it correct? Latent random variable Generated fake samples Generator

Fine tune training

GANs work great for images...

...but not so much for tables.

The paper concludes that the CART model generates data with the highest utility for all the considered types of tabular datasets. In contrast, the Bayesian network model generates data with the lowest quality for all tabular datasets. Contrary to popular belief, the performance of GANs is unexceptional.

Source: 'Comparison of Tabular Synthetic Data Generation Techniques Using Propensity and Cluster Log Metric | Elsevier Enhanced Reader'. <u>https://doi.org/10.1016/j.jjimei.2023.100177</u>.

Why?

- GANs optimize for individuals that are similar to the synthetic dataset
- > BUT: You want the distribution to be similar
- > What happens?
 - Mode collapse
 - One-dimensional distributions that are very dissimilar

Synthesis method 2: CART

Sex	Age	Education	Marital status	Income	Life satisfaction
FEMALE	57	VOCATIONAL/GRAMMAR	MARRIED	800	PLEASED
MALE	41	SECONDARY	UNMARRIED	1500	MIXED
FEMALE	18	VOCATIONAL/GRAMMAR	UNMARRIED	NA	PLEASED
FEMALE	78	PRIMARY/NO EDUCATION	WIDOWED	900	MIXED
FEMALE	54	VOCATIONAL/GRAMMAR	MARRIED	1500	MOSTLY SATISFIED
MALE	20	SECONDARY	UNMARRIED	-8	PLEASED
FEMALE	39	SECONDARY	MARRIED	2000	MOSTLY SATISFIED
MALE	39	SECONDARY	MARRIED	1197	MIXED
FEMALE	38	VOCATIONAL/GRAMMAR	MARRIED	NA	MOSTLY DISSATISFIED
FEMALE	73	VOCATIONAL/GRAMMAR	WIDOWED	1700	PLEASED
FEMALE	54	SECONDARY	WIDOWED	2000	MOSTLY SATISFIED
MALE	30	VOCATIONAL/GRAMMAR	UNMARRIED	900	MOSTLY SATISFIED
MALE	68	SECONDARY	MARRIED	-8	DELIGHTED
MALE	61	PRIMARY/NO EDUCATION	MARRIED	-8	MIXED

	Sex
	MALE
	MALE
	FEMALE
	FEMALE
	FEMALE
	FEMALE
	MALE
Sex distribution	FEMALE
	MALE
Generate Sex	FEMALE
	MALE
	MALE
	MALE
	FEMALE

Sex	Age	Education	Marital status	Income	Life satisfaction
FEMALE	57	VOCATIONAL/GRAMMAR	MARRIED	800	PLEASED
MALE	41	SECONDARY	UNMARRIED	1500	MIXED
FEMALE	18	VOCATIONAL/GRAMMAR	UNMARRIED	NA	PLEASED
FEMALE	78	PRIMARY/NO EDUCATION	WIDOWED	900	MIXED
FEMALE	54	VOCATIONAL/GRAMMAR	MARRIED	1500	MOSTLY SATISFIED
MALE	20	SECONDARY	UNMARRIED	-8	PLEASED
FEMALE	39	SECONDARY	MARRIED	2000	MOSTLY SATISFIED
MALE	39	SECONDARY	MARRIED	1197	MIXED
FEMALE	38	VOCATIONAL/GRAMMAR	MARRIED	NA	MOSTLY DISSATISFIED
FEMALE	73	VOCATIONAL/GRAMMAR	WIDOWED	1700	PLEASED
FEMALE	54	SECONDARY	WIDOWED	2000	MOSTLY SATISFIED
MALE	30	VOCATIONAL/GRAMMAR	UNMARRIED	900	MOSTLY SATISFIED
MALE	68	SECONDARY	MARRIED	-8	DELIGHTED
MALE	61	PRIMARY/NO EDUCATION	MARRIED	-8	MIXED

	Sex		Age
	MALE		81
	MALE		54
	FEMALE		32
	FEMALE		98
	FEMALE		50
	FEMALE		37
Age predicted	MALE		28
from Sex	FEMALE	e Age	62
	MALE		78
	FEMALE		29
			59
	MALE		41
	MALE		18
	FEMALE		73

Sex	Age	Education	Marital status	Income	Life satisfaction
FEMALE	57	VOCATIONAL/GRAMMAR	MARRIED	800	PLEASED
MALE	41	SECONDARY	UNMARRIED	1500	MIXED
FEMALE	18	VOCATIONAL/GRAMMAR	UNMARRIED	NA	PLEASED
FEMALE	78	PRIMARY/NO EDUCATION	WIDOWED	900	MIXED
FEMALE	54	VOCATIONAL/GRAMMAR	MARRIED	1500	MOSTLY SATISFIED
MALE	20	SECONDARY	UNMARRIED	-8	PLEASED
FEMALE	39	SECONDARY	MARRIED	2000	MOSTLY SATISFIED
MALE	39	SECONDARY	MARRIED	1197	MIXED
FEMALE	38	VOCATIONAL/GRAMMAR	MARRIED	NA	MOSTLY DISSATISFIED
FEMALE	73	VOCATIONAL/GRAMMAR	WIDOWED	1700	PLEASED
FEMALE	54	SECONDARY	WIDOWED	2000	MOSTLY SATISFIED
MALE	30	VOCATIONAL/GRAMMAR	UNMARRIED	900	MOSTLY SATISFIED
MALE	68	SECONDARY	MARRIED	-8	DELIGHTED
MALE	61	PRIMARY/NO EDUCATION	MARRIED	-8	MIXED

Education
predicted from
Sex and Age

	Age	Sex
	81	MALE
	54	MALE
	32	EMALE
	98	EMALE
	50	EMALE
Conorata	37	EMALE
Generate	28	MALE
Education	62	EMALE
	78	MALE
	29	EMALE
	59	MALE
	41	MALE
	18	MALE
	73	EMALE

F

	Education
	PRIMARY/NO EDUCATION
	VOCATIONAL/GRAMMAR
	VOCATIONAL/GRAMMAR
	PRIMARY/NO EDUCATION
	PRIMARY/NO EDUCATION
	VOCATIONAL/GRAMMAR
	VOCATIONAL/GRAMMAR
1	PRIMARY/NO EDUCATION
	PRIMARY/NO EDUCATION
	SECONDARY
	PRIMARY/NO EDUCATION
	SECONDARY
	SECONDARY
	PRIMARY/NO EDUCATION

Sex	Age	Education	Marital status	Income	Life satisfaction
FEMALE	57	VOCATIONAL/GRAMMAR	MARRIED	800	PLEASED
MALE	41	SECONDARY	UNMARRIED	1500	MIXED
FEMALE	18	VOCATIONAL/GRAMMAR	UNMARRIED	NA	PLEASED
FEMALE	78	PRIMARY/NO EDUCATION	WIDOWED	900	MIXED
FEMALE	54	VOCATIONAL/GRAMMAR	MARRIED	1500	MOSTLY SATISFIED
MALE	20	SECONDARY	UNMARRIED	-8	PLEASED
FEMALE	39	SECONDARY	MARRIED	2000	MOSTLY SATISFIED
MALE	39	SECONDARY	MARRIED	1197	MIXED
FEMALE	38	VOCATIONAL/GRAMMAR	MARRIED	NA	MOSTLY DISSATISFIED
FEMALE	73	VOCATIONAL/GRAMMAR	WIDOWED	1700	PLEASED
FEMALE	54	SECONDARY	WIDOWED	2000	MOSTLY SATISFIED
MALE	30	VOCATIONAL/GRAMMAR	UNMARRIED	900	MOSTLY SATISFIED
MALE	68	SECONDARY	MARRIED	-8	DELIGHTED
MALE	61	PRIMARY/NO EDUCATION	MARRIED	-8	MIXED

		Sex	Age	Education	Marital status	Income		Life satisfaction
		MALE	81	PRIMARY/NO EDUCATION	MARRIED	2100	0	PLEASED
Lif	e	MALE	54	VOCATIONAL/GRAMMAR	MARRIED	1700		PLEASED
sat	tisfaction	FEMALE	32	VOCATIONAL/GRAMMAR	DIVORCED	870	—	MIXED
pre	edicted	FEMALE	98	PRIMARY/NO EDUCATION	MARRIED	800	ra 1	MOSTLY DISSATISFIED
•	m all other	FEMALE	50	PRIMARY/NO EDUCATION	MARRIED	NA	tis tis	MOSTLY SATISFIED
		FEMALE	37	VOCATIONAL/GRAMMAR	MARRIED	158	0 🗮 🕡	PLEASED
var	riables	MALE	28	VOCATIONAL/GRAMMAR	NA	1500		MOSTLY SATISFIED
l		FEMALE	62	PRIMARY/NO EDUCATION	MARRIED	830		MOSTLY SATISFIED
		MALE	78	PRIMARY/NO EDUCATION	MARRIED	NA		PLEASED
		FEMALE	29	SECONDARY	MARRIED	580		MOSTLY SATISFIED
		MALE	59	PRIMARY/NO EDUCATION	MARRIED	1300		MOSTLY SATISFIED
		MALE	41	SECONDARY	UNMARRIED	1500		MIXED
		MALE	18	SECONDARY	UNMARRIED	-8		PLEASED
		FEMALE	73	PRIMARY/NO EDUCATION	WIDOWED	1350		MOSTLY SATISFIED

41

20

39

39

54

68

Sex Age

FEMALE

FEMALE

FEMALE FEMALE

MALE

MALE

FEMALE

FEMALE

FEMALE

FEMALE

MALE

MALE

MALE

MALE

Education

57 VOCATIONAL/GRAMMAR

78 PRIMARY/NO EDUCATION

54 VOCATIONAL/GRAMMAR

38 VOCATIONAL/GRAMMAR

73 VOCATIONAL/GRAMMAR

61 PRIMARY/NO EDUCATION

SECONDARY

SECONDARY

SECONDARY

SECONDARY

30 VOCATIONAL/GRAMMAR UNMARRIED

Marital

MARRIED

MARRIED

900

-8

-8

MOSTLY SATISFIED

DELIGHTED

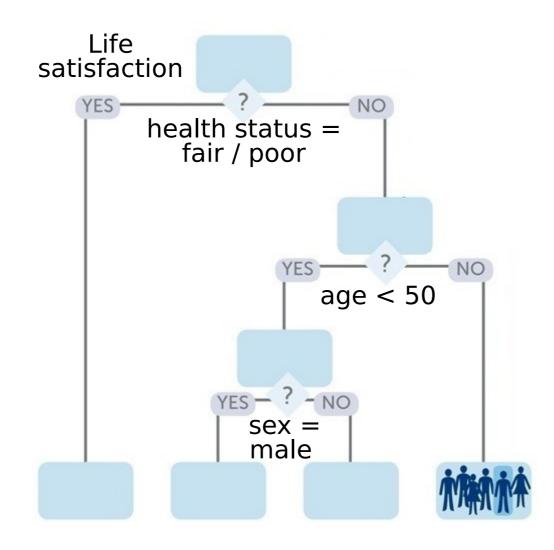
MIXED

Income Life satisfaction status MARRIED 800 PLEASED MIXED SECONDARY UNMARRIED 1500 18 VOCATIONAL/GRAMMAR UNMARRIED NA PLEASED Joint distribution is MIXED WIDOWED 900 MARRIED 1500 MOSTLY SATISFIED approximated by a set of PLEASED SECONDARY UNMARRIED -8 MARRIED MOSTLY SATISFIED 2000 MARRIED 1197 MIXED conditional distributions NA MOSTLY DISSATISFIED MARRIED 1700 WIDOWED PLEASED WIDOWED 2000 MOSTLY SATISFIED

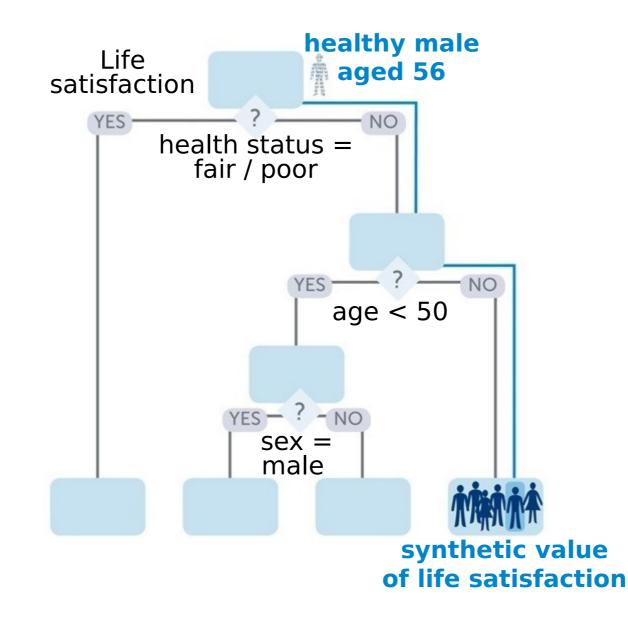
Synthetic

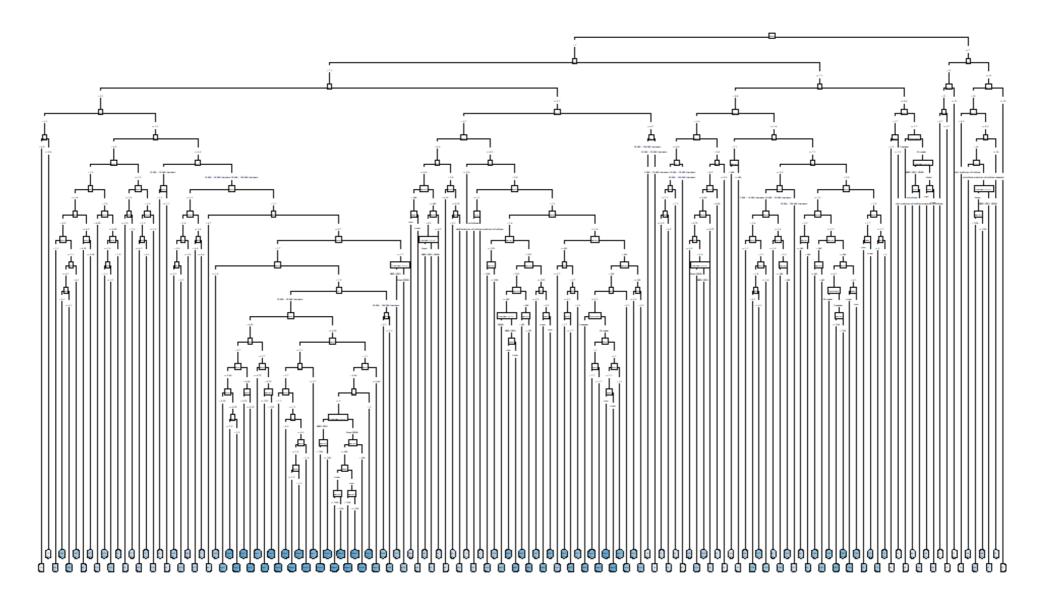
Sex	Age	Education	Marital status	Income	Life satisfaction
MALE	81	PRIMARY/NO EDUCATION	MARRIED	2100	PLEASED
MALE	54	VOCATIONAL/GRAMMAR	MARRIED	1700	PLEASED
FEMALE	32	VOCATIONAL/GRAMMAR	DIVORCED	870	MIXED
FEMALE	98	PRIMARY/NO EDUCATION	MARRIED	800	MOSTLY DISSATISFIED
FEMALE	50	PRIMARY/NO EDUCATION	MARRIED	NA	MOSTLY SATISFIED
FEMALE	37	VOCATIONAL/GRAMMAR	MARRIED	158	PLEASED
MALE	28	VOCATIONAL/GRAMMAR	NA	1500	MOSTLY SATISFIED
FEMALE	62	PRIMARY/NO EDUCATION	MARRIED	830	MOSTLY SATISFIED
MALE	78	PRIMARY/NO EDUCATION	MARRIED	NA	PLEASED
FEMALE	29	SECONDARY	MARRIED	580	MOSTLY SATISFIED
MALE	59	PRIMARY/NO EDUCATION	MARRIED	1300	MOSTLY SATISFIED
MALE	41	SECONDARY	UNMARRIED	1500	MIXED
MALE	18	SECONDARY	UNMARRIED	-8	PLEASED
FEMALE	73	PRIMARY/NO EDUCATION	WIDOWED	1350	MOSTLY SATISFIED

Classification and regression trees (CART)



Classification and regression trees (CART)





CART is the best method, but...

PROS

- One-dimensional distributions pretty much always as desired
- Two-dimensional distributions usually as well
 - Although it sometimes takes a bunch of work
- Probabilistic character works well for tables
- GDPR compliant by design

CONS

- Does badly for variables with many categories
 - Partly runs in exponential time
- Only R implementation: synthpop
- You need to know your data for the best result

Synthesis method 3:

Preserving correlations: A statistical method for generating synthetic data

Nicklas Jävergård, Rainey Lyons, Adrian Muntean¹ and Jonas Forsman²

¹Department of Mathematics and Computer Science, Karlstad University, Sweden ²CGI, Data Advantage, Karlstad, Sweden

Abstract

We propose a method to generate statistically representative synthetic data. The main goal is to be able to maintain in the synthetic dataset the correlations of the features present in the original one, while offering a comfortable privacy level that can be eventually tailored on specific customer demands.

Sex	Age	Education	Marital status	Income	Life satisfaction
FEMALE	57	VOCATIONAL/GRAMMAR	MARRIED	800	PLEASED
MALE	41	SECONDARY	UNMARRIED	1500	MIXED
FEMALE	18	VOCATIONAL/GRAMMAR	UNMARRIED	NA	PLEASED
FEMALE	78	PRIMARY/NO EDUCATION	WIDOWED	900	MIXED
FEMALE	54	VOCATIONAL/GRAMMAR	MARRIED	1500	MOSTLY SATISFIED
MALE	20	SECONDARY	UNMARRIED	-8	PLEASED
FEMALE	39	SECONDARY	MARRIED	2000	MOSTLY SATISFIED
MALE	39	SECONDARY	MARRIED	1197	MIXED
FEMALE	38	VOCATIONAL/GRAMMAR	MARRIED	NA	MOSTLY DISSATISFIED
FEMALE	73	VOCATIONAL/GRAMMAR	WIDOWED	1700	PLEASED
FEMALE	54	SECONDARY	WIDOWED	2000	MOSTLY SATISFIED
MALE	30	VOCATIONAL/GRAMMAR	UNMARRIED	900	MOSTLY SATISFIED
MALE	68	SECONDARY	MARRIED	-8	DELIGHTED
MALE	61	PRIMARY/NO EDUCATION	MARRIED	-8	MIXED

	Life satisfaction
	PLEASED
Life	PLEASED
satisfaction	MIXED
sampled	MOSTLY DISSATISFIED
•	MOSTLY SATISFIED
from	PLEASED
observed	MOSTLY SATISFIED
data	MOSTLY SATISFIED
	PLEASED
	MOSTLY SATISFIED
	MOSTLY SATISFIED
	MIXED
	PLEASED
	MOSTLY SATISFIED

Sex	Age	Education	Marital status	Income	Life satisfaction
FEMALE	57	VOCATIONAL/GRAMMAR	MARRIED	800	PLEASED
MALE	41	SECONDARY	UNMARRIED	1500	MIXED
FEMALE	18	VOCATIONAL/GRAMMAR	UNMARRIED	NA	PLEASED
FEMALE	78	PRIMARY/NO EDUCATION	WIDOWED	900	MIXED
FEMALE	54	VOCATIONAL/GRAMMAR	MARRIED	1500	MOSTLY SATISFIED
MALE	20	SECONDARY	UNMARRIED	-8	PLEASED
FEMALE	39	SECONDARY	MARRIED	2000	MOSTLY SATISFIED
MALE	39	SECONDARY	MARRIED	1197	MIXED
FEMALE	38	VOCATIONAL/GRAMMAR	MARRIED	NA	MOSTLY DISSATISFIED
FEMALE	73	VOCATIONAL/GRAMMAR	WIDOWED	1700	PLEASED
FEMALE	54	SECONDARY	WIDOWED	2000	MOSTLY SATISFIED
MALE	30	VOCATIONAL/GRAMMAR	UNMARRIED	900	MOSTLY SATISFIED
MALE	68	SECONDARY	MARRIED	-8	DELIGHTED
MALE	61	PRIMARY/NO EDUCATION	MARRIED	-8	MIXED

	Life satisfaction
	PLEASED
Life	PLEASED
satisfaction	MIXED
sampled	MOSTLY DISSATISFIED
_	MOSTLY SATISFIED
from	PLEASED
observed	MOSTLY SATISFIED
data	MOSTLY SATISFIED -
	PLEASED
	MOSTLY SATISFIED
	MOSTLY SATISFIED
	MIXED
	PLEASED
	MOSTLY SATISFIED

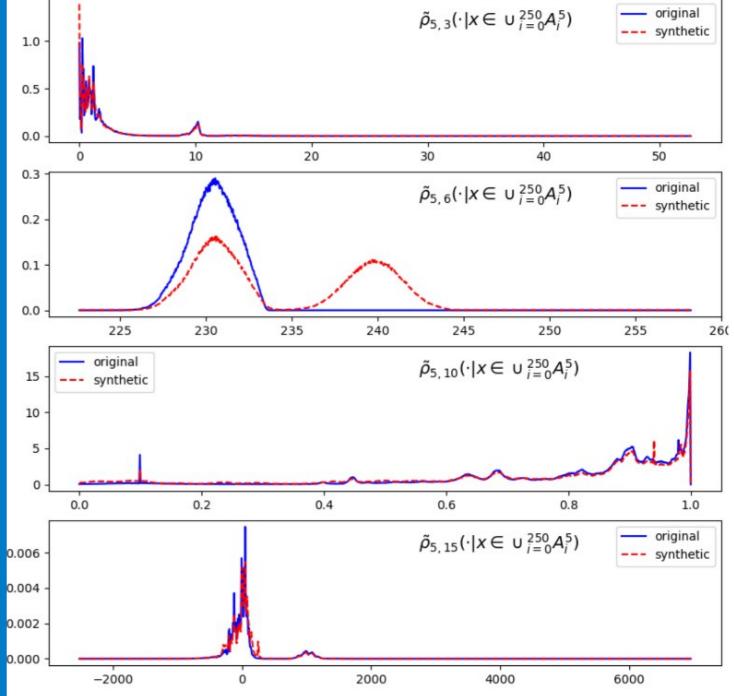
age, etc

				Marital	
PLEASED	Sex	Age	Education	status	Inco
TLY SATISFIED	MALE	81	PRIMARY/NO EDUCATION	MARRIED	
MIXED	MALL	01	TRIMARIJNO EDUCATION	MANNED	
DISSATISFIED	MALE	54	VOCATIONAL/GRAMMAR	MARRIED	
PLEASED		22			
	FEMALE	32	VOCATIONAL/GRAMMAR	DIVORCED	
	FEMALE	98	PRIMARY/NO EDUCATION	MARRIED	
DELIGHTED MIXED	FEMALE	50	PRIMARY/NO EDUCATION	MARRIED	
TH/CD	FEMALE	37	VOCATIONAL/GRAMMAR	MARRIED	
	MALE	28	VOCATIONAL/GRAMMAR	NA	
	FEMALE	62	PRIMARY/NO EDUCATION	MARRIED	
	MALE	78	PRIMARY/NO EDUCATION	MARRIED	
	FEMALE	29	SECONDARY	MARRIED	
	MALE	59	PRIMARY/NO EDUCATION	MARRIED	
	MALE	41	SECONDARY	UNMARRIED	
Generate sex,	MALE	18	SECONDARY	UNMARRIED	
ano oto '	FEMALE	73	PRIMARY/NO EDUCATION	WIDOWED	

Joint distribution is approximated by a set of conditional distributions

Compared to CART

- > Pro:
 - Less finicky to use
- > Con:
 - Worse results for two dimensional distributions



Questions?

Integral privacy decisions

Question: How do you judge the privacy impact of synthetic data?

- Many privacy measures exist in the literature
- Our first approach: we picked one that seemed to worked well and set a treshhold
- > Unsatisfactory
 - Hard to interpret
 - Behaved weirdly
 - Does not include context

Alternative: Integral privacy judgement

LEGAL

Memo

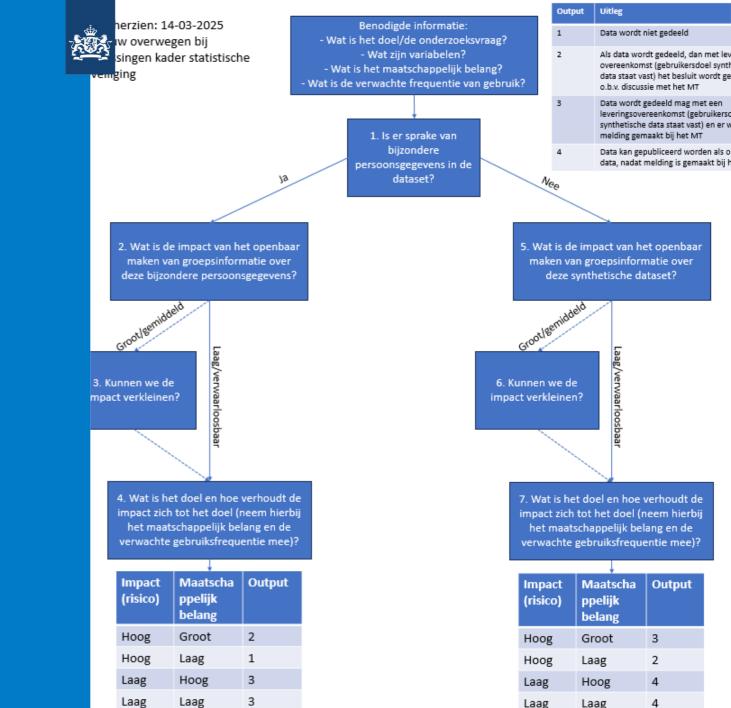
(in collaboration with legal professionals)

Conclusion: our synthetic data has more or less the same legal status as our aggregated data

ETHICAL-STATISTICAL

 A) Evaluation before synthetisizing: mostly ethical

 B) Evaluation after synthesizing: mostly statistical

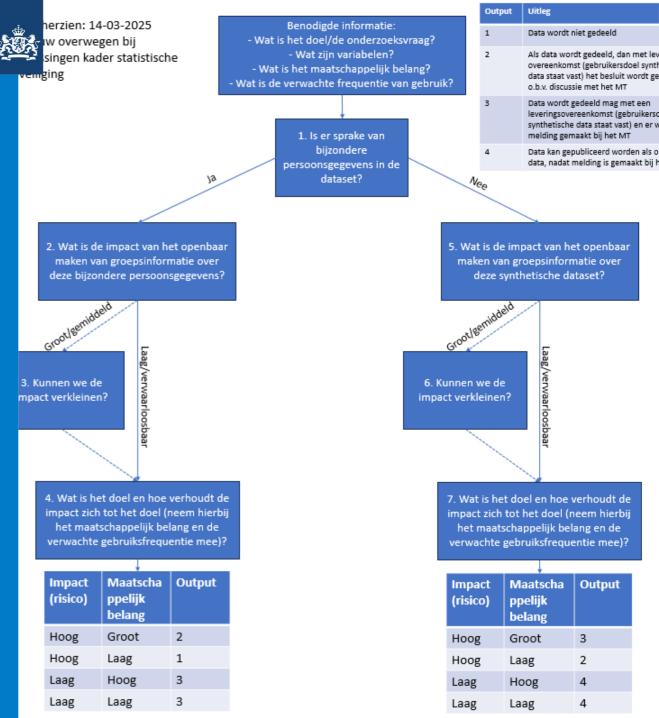


Evaluation before

- Mainly concerns group information
- > Questions:
 - Does the dataset contain sensitive personal data (i.e. etnicity)
 - What's the possible impact of publication on people the original data?
 - What are the societal benefits and frequency of use?

Evaluation before: outcomes

- > Four categories:
 - 1: Don't share synthetic data
 - 2: Synthetic data
- Always a 'comply or explain', ethics can't be fully captured with a flow chart

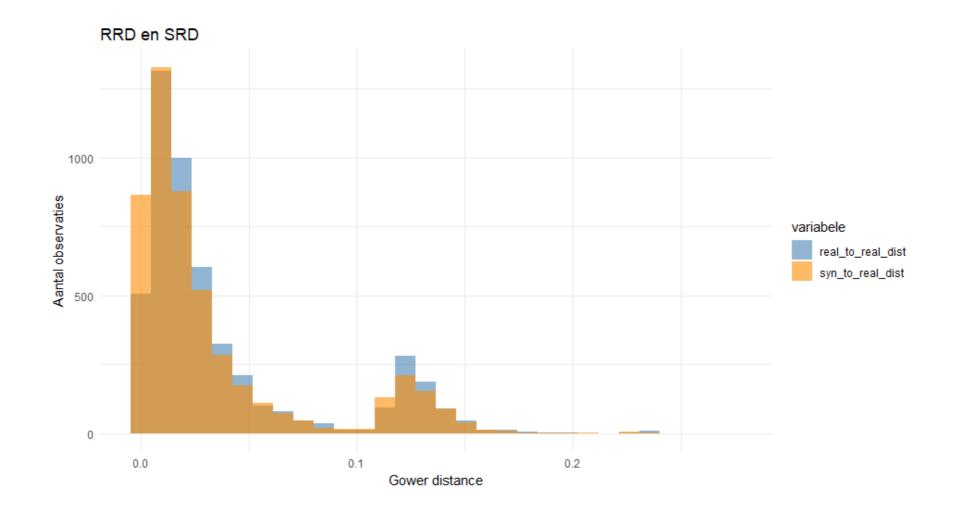


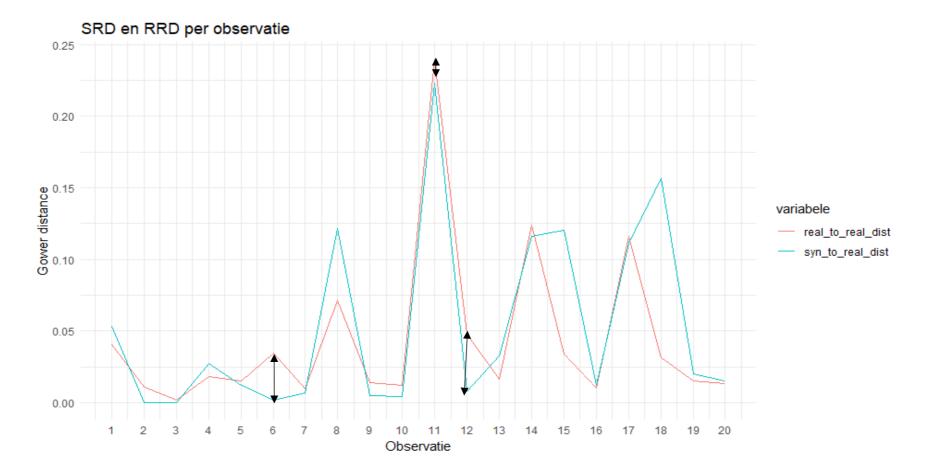
Evaluation after: metrics from literature.

- > Atrribute disclose
- > Chose metrics from literature
- > From three categories:
 - Identity disclosure & singling out
 - Attribute disclosure
 - General similarity & outliers

- Distance to Closest Record (DCR)
 - "General similarity & outliers"
- > Idea:
 - Measure distance between individual rows
 - Gower distance
 - Real to Real Distance (RRD)
 - Synthetic to Real Distance (SRD)

sex ‡	age	÷	region [‡]	¢ ¢	depress	income [‡]	ls ÷	marital [‡]	workab 🗘	syn_to_real_dist [‡]	real_to_real_dist [‡]
FEMALE		57	Lubuskie	URBAN 100,000-200,000	(800	PLEASED	MARRIED	NO	0.0531994048	0.040197861
MALE		20	Podlaskie	RURAL AREAS	(350	MOSTLY SATISFIED	SINGLE	NO	0.0000000000	0.010582011
FEMALE		18	Mazowieckie	URBAN 500,000 AND OVER	(NA NA	PLEASED	SINGLE	NA	0.0000000000	0.001763668
FEMALE		78	Podlaskie	RURAL AREAS	16	900	MIXED	WIDOWED	NO	0.0274136741	0.017804223
FEMALE		54	Zachodnio-pomorskie	URBAN 100,000-200,000	2	1500	MOSTLY SATISFIED	MARRIED	NO	0.0122023810	0.015023463
MALE		20	Slaskie	URBAN 100,000-200,000	ļ	-8	PLEASED	SINGLE	NO	0.0017857143	0.034636268
FEMALE		39	Wielkopolskie	RURAL AREAS	â	2000	MOSTLY SATISFIED	MARRIED	NO	0.0066798942	0.009635100
MALE		39	Lubuskie	URBAN 100,000-200,000	2	1197	MIXED	MARRIED	NO	0.1217139446	0.071563829
FEMALE		43	Swietokrzyskie	RURAL AREAS	(580	MOSTLY SATISFIED	MARRIED	NO	0.0046875000	0.013683487
FEMALE		63	Dolnoslaskie	URBAN BELOW 20,000	(5 1400	PLEASED	MARRIED	NO	0.0041666667	0.012215527
FEMALE		38	Kujawsko-pomorskie	URBAN 100,000-200,000	(1500	MOSTLY DISSATISFIED	MARRIED	YES	0.2231303991	0.239418444
FEMALE		73	Slaskie	URBAN 200,000-500,000	(1700	PLEASED	WIDOWED	NO	0.0079848964	0.047823972
FEMALE		54	Slaskie	URBAN 200,000-500,000	2	2000	MOSTLY SATISFIED	WIDOWED	NO	0.0325389884	0.016534392
MALE		30	Zachodnio-pomorskie	URBAN 200,000-500,000	5	900	MOSTLY SATISFIED	SINGLE	NO	0.1159718752	0.123816105





Questions?