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Fractional calculus
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Origin and motivation

Fractional calculus is a branch of mathematics that generalizes
the order of derivatives (and integrals) of a function to the
non-integer numbers.
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Origin and motivation

Fractional calculus is a branch of mathematics that generalizes
the order of derivatives (and integrals) of a function to the
non-integer numbers.

Its origin is dated by 1695 and can be traced back to
L’Hopital and Leibniz.

( d f
=1 j_
What if the \ 2
order will be
(S n= %?
It will lead to a N

paradox, from which
one day useful

consequences will be

drawn. .

GFA deLHopital " G.W. Leibniz
(1661-1704) (1646-1716)

Source: https://igor.podlubny.website.tuke.sk/USU/02_overview. pdf
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The theory of derivatives and integrals of arbitrary order was
further developed by Liouville, Griinwald, Letnikov and
Riemann and used to be considered of a purely theoretical
interest.
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The theory of derivatives and integrals of arbitrary order was
further developed by Liouville, Griinwald, Letnikov and
Riemann and used to be considered of a purely theoretical
interest.

Range of applications:
® study of viscoelasticity and electrical circuits;
® control theory;
® modeling dynamical systems with memory;

® systems with anomalous diffusion.
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e Population model:

%u(t) = ku(t) t>0. Vs (Djere ) u(t) = ku(t) t >0,
u(0) = uo u(t) = wo(t) t<o0
[—Experiment T T T T T
-0-Classical Model, Effor=7.079468666966739x10°
7000 “'FrmWMmﬁ,EllmﬁmIS&mnzaxw’ -

World Population (in Millions)
E § §

§

2000}
R L S Y R W W —
1910 1920 1930 1940 1950 |v960 1970 1980 1990 2000 2010
‘ear

Ref. Almeida-Bastos-Monteiro: “Modeling some real phenomena by fractional differential equations”, Math. Methods Appl. Sci. 2016

Source:
https://coursemedia.gmu.edu/media/ CMAI_Colloquium/1_5lpprpgi
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e Porous media modeling:

Il
w

D=1 D=2 D

D =1.26 D =1.89 D =273

Source: https://igor.podlubny.website.tuke.sk/USU/02_overview.pdf
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e Anomalous diffusion:

A
x
L | superdiffusion
a) (r* <, a>1
m . .
= norm. diffusion

(YD1

subdiffusion
(r*y 1, a<l

~
R Cd
timet

Source: https://en.wikipedia.org/wiki/Anomalous_diffusion
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Fractional integrals and derivatives
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Fractional integrals and derivatives

If f is a locally integrable function on (a, o), then the n-fold
iterated integral is given by

S O T AR AROL )

for almost all ¢ with —co <a <t < oo and n € N.
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Fractional integrals and derivatives

If f is a locally integrable function on (a, o), then the n-fold
iterated integral is given by

Dy (1) = [ (1= 5)" () (1)
a't - (Tl— 1)' o S s)as
for almost all ¢ with —co <a <t < oo and n € N.

Using that (n—1)! =T'(n), the integral of f of the fractional
order a >0 (Riemann-Liouville fractional integral) reads:

D (1) = ﬁ [y ()5 (teft hand),  (2)
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Fractional integrals and derivatives

If f is a locally integrable function on (a,o0), then the n-fold
iterated integral is given by

Dy (1) = [ (1= 5)" () (1)
a't - (Tl—l)' o S s)as
for almost all ¢ with —co <a <t < oo and n € N.

Using that (n—1)! =T'(n), the integral of f of the fractional
order a >0 (Riemann-Liouville fractional integral) reads:

D (1) = ﬁ [y ()5 (teft hand),  (2)

and similarly for —oo <t <d < oo

tho‘f(t)=ﬁ A "(s—1)°"\f(s)ds (right hand).  (3)

2 y
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Riemann-Liouville fractional derivatives
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Riemann-Liouville fractional derivatives

If 0<a<1 then the left and right Riemann-Liouville FDs
are defined as

aDz*fos)—m— ([ e-seis), > @

and

(DE(t) = - ] (=8 f(s)ds). t<b (5)

F(l @) dt (

10 / 47
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Riemann-Liouville fractional derivatives

If 0<a<1 then the left and right Riemann-Liouville FDs
are defined as

aD?f(t)Zﬁ%([at(t—s)_aﬂs)ds), t>a, (4)

and

DEF(1) =5 a)dt( [0y “f(s)ds), t<b  (3)

Using this principle of generalization, the following

fractional derivatives were derived:

- Caputo;

- Hilfer — as a generalization of the Riemann-Liouville and
Caputo derivatives;

- further generatizations: Prabhakar, Hilfer-Prabhakar, etc.

10 / 47



Caputo fractional derivatives

The left and right Caputo FDs of order a € (0,1) are defined
by
SDYf(t) = 1‘(1—(/ (t-s)%f (s)ds) t>a,

and

SDRf(t) = (s )" f'(s)ds|, t<b.
r(1

11 / 47
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”"Memory effect” of the fractional derivative

Suppose that ¢ represents time and function /() describes a
certain dynamical process developing in time.
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”"Memory effect” of the fractional derivative

Suppose that ¢ represents time and function /() describes a
certain dynamical process developing in time.

oDf D}
Left derivative Right derivative
a the “past” of f(t) t the “future” of f(t) b
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”"Memory effect” of the fractional derivative

Suppose that ¢ represents time and function /() describes a
certain dynamical process developing in time.

oDf Dj
Left derivative Right derivative
a the “past” of f{t) t the “future” of f(t) b

Thus, the present state of the process f(t), started at 7 = a,
depends on all its previous states f(7) (a < 7 <t) — it represents
the "memory effect” of FDs. The same holds for the "future”.
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My research direction:

Study of nonlinear fractional differential systems of the
form:

oDViai(t) = fi (t,x1(t), ..., xn(t)),t € (a,b), (6)

for some p; € (0,1), 1 <4 <m, where DY is a fractional
differential operator with lower limit at O,
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My research direction:

Study of nonlinear fractional differential systems of the
form:

oDViai(t) = fi (t,x1(t), ..., xn(t)),t € (a,b), (6)

for some p; € (0,1), 1 <4 <m, where DY is a fractional
differential operator with lower limit at 0,

+ boundary conditions:
® periodic;
¢ linear;

* nonlinear (including integral boundary conditions).
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My focus lies on:

e Caputo, Hilfer and Hilfer-Prabhakar fractional differential
operators;
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My focus lies on:

e Caputo, Hilfer and Hilfer-Prabhakar fractional differential
operators;
® solvability analysis and

® approximation methods
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My focus lies on:

e Caputo, Hilfer and Hilfer-Prabhakar fractional differential
operators;

® solvability analysis and

® approximation methods =— numerical-analytic
technique

14 / 47
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Fractional differential
equations
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Fractional differential
equations:

analysis and approximations
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Main concept
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Consider a Boundary Value Problem (BVP)!

6 Diz(t) = f (t,2(t)), t€(0,T), pe(0,1) (7)
z(0) = (7). (8)

M. Fe¢kan and K.M., Approximation approach to periodic BVP for fractional differential
systems, European Physical Journal: Special Topics (2017) 226, 3681-3692, doi:
10.1140/epjst/e2018-00017-9
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Consider a Boundary Value Problem (BVP)!

6 Dix(t) = f (t,2 (1)), te(0,T), pe(0,1) (7)
z(0) = z(T). (8)

We perturb equation (7) by a constant term A and couple it
with with the initial condition as follows:

6 Dyx(t) = f (t.x (1) + A, (9)
z(0) =&. (10)

M. Fe¢kan and K.M., Approximation approach to periodic BVP for fractional differential
systems, European Physical Journal: Special Topics (2017) 226, 3681-3692, doi:
10.1140/epjst/e2018-00017-9
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Using the integral representation of solution of the Initial Value
Problem (IVP) (9), (10) we get:

B(t) = £ + fot(t—s)l’-l(f(s,x(s)) FA)ds. (1)

1
L'(p)
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Using the integral representation of solution of the Initial Value
Problem (IVP) (9), (10) we get:

1 t _
x(t)=g+mfo (t= )P L (f(s,2(s)) + A)ds. (1)

To compute the perturbation A we require solution z(t) to also
satisfy periodic boundary conditions

x(0) =z(T).
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Using the integral representation of solution of the Initial Value
Problem (IVP) (9), (10) we get:

B(t) = £ + fot(t—s)p-l(f(s,x(s)) FA)ds. (1)

1
I'(p)
To compute the perturbation A we require solution z(t) to also
satisfy periodic boundary conditions

x(0) = z(T).
This leads to

A= % fo (T = sy f(5,2(s) ) ds, (12)
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Using the integral representation of solution of the Initial Value
Problem (IVP) (9), (10) we get:

B(t) = £ + fot(t—s)p—l(f(s,x(s)) FA)ds. (1)

1
I'(p)
To compute the perturbation A we require solution z(t) to also
satisfy periodic boundary conditions

x(0) =z(T).
This leads to
A= % [OT(T — )P (s, 2(s))ds, (12)

and thus, solution of the periodic BVP reads:

.’Ij(t,f) =&+ ﬁ
tP

TPT(p) /OT(T - 5)P f(s,3(s,6))ds.

t
[ =9 1 (s m(5,6))as

18 / 47



H:igher-order fractional
periodic BV Ps




Let us now look at a higher order fractional differential system?

SDPx(t) = f(t,z(t)), pe (m,m+1), meN (13)

2M. Feckan, K. M., J.R. Wang, Periodic boundary value problems for higher order
fractional differential systems, Mathematical Methods in Applied Sciences (2019), 42, 3616-3632,
doi: 10.1002/mma.5601
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Let us now look at a higher order fractional differential system?

SDPx(t) = f(t,z(t)), pe (m,m+1), meN (13)

with periodic boundary conditions

2(0) = z(T),

2'(0) = 2'(T), (14)

s (0) = s™(T),

2M. Feckan, K. M., J.R. Wang, Periodic boundary value problems for higher order
fractional differential systems, Mathematical Methods in Applied Sciences (2019), 42, 3616-3632,
doi: 10.1002/mma.5601
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Let us now look at a higher order fractional differential system?

CDPa(t) = f(t,a(8), pe (mym+1), meN  (13)
with periodic boundary conditions
z(0) = z(T),
z'(0) = 2'(T), (1)
2™ (0) = 20™(T),

where t € [0,T], T >0, x ¢ C"™([0,T],D), D c R" is open,
feC(G,R"), G:=[0,T]x D and § DY is the generalized Caputo
fractional derivative with lower limit at 0.

2M. Feckan, K. M., J.R. Wang, Periodic boundary value problems for higher order
fractional differential systems, Mathematical Methods in Applied Sciences (2019), 42, 3616-3632,
doi: 10.1002/mma.5601
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Together with the BVP (13), (14) we consider a perturbed IVP:

§DVx(t) = f(t,z (1) + A (15)
z(0) =&, z'(0)=6&, ..., 2™(0)=¢, (16)

where A and &; € R™ are unknown parameters.

5 A
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Together with the BVP (13), (14) we consider a perturbed IVP:

§Dja(t) = f (tz (1) + A (15)
z(0) =&, «'(0)=¢&, ..., z'™(0)=¢, (16)
where A and &; € R™ are unknown parameters.

Then the solution of (15), (16) is determined as follows:

tk

x(t)—Z—' k+ T(p )[ (t-s)P f(s,x(s))ds + Att

L(p+1)

(17)

We find values of the unknowns &, k=1, m and of the parameter
A by substituting (17) into periodic conditions (14).

21 / 47



From (14) we define:

B m Tj—k:—lBj e » S
L TGm [ e ]H)f (T - )" f(s,2(s))d
(p_ m)Tm g+l p—m— _ .
W A (T-5s) lf(s,w(s))dsjlyk =1,m;
A=- Tpm[ (T )pmlf(s x(S))dS
(18)
fupelit .



From (14) we define:

m Tj_k_lB- &

= o ! ! —$)P I f(s,2(s))ds
“E2 G [F(p—j+1)/o (=)™ o))

(p — m)Tm_j+1 T p—m— _ .
e - sty - T
A=- Tpm[ (T S)pm 1f(8 m(S))ds

(18)

with 3; ;. being the Bernoulli numbers, resulting in the integral
representation of solution:

2t €0) =E0 + i%gj ; ﬁ fot(t _ )7L (s, (s, £0))ds
251

(p—m)t? (19)

T
-m-1
Fobet - TP-mT(p + 1) [) (T_S)p m f(s,x(s,gg))ds. o




Mixed-order fractional
periodic BVP
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Problem setting

We consider a mixed-order periodic BVP? :

{S’Dﬁx = f(t,z(t),y(t)),
§ Dy = g(t,(t),y(t))

2(0) = 2(T), y(0) = y(T), (21)

for some p.q € (0,1], where f: Gy - R™, g: G4 > R" are
continuous functions, Gy :=[0,7] x Dy, G4:=[0,17] x D, and
Dy cR™, D, c R" are closed and bounded domains.

(20)

3M. Feckan, K.M., Approximation approach to periodic BVP for mixed fractional
differential systems, Journal of Comp. and Applied Mathematics (2018) 339, 208-217, doi:
10.1016/j.cam.2017.10.028
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Problem setting

We consider a mixed-order periodic BVP? :

{S’Df:v = f(t,z(t), y(1)),
§Dly=g(t,z(t),y(t))

2(0) = 2(T), y(0) = y(T), (21)

for some p,q € (0,1], where f: Gy > R™, g: G4 - R"? are
continuous functions, Gy :=[0,7] x Dy, G4:=[0,17] x D, and
Dy cR™, D, c R" are closed and bounded domains.

(20)

Applications of (20):
® dynamical macroeconomic model of two national economies;
e fractional Van der Pol oscillator;

® Duffing systems, etc.

3M. Feckan, K.M., Approximation approach to periodic BVP for mixed fractional
differential systems, Journal of Comp. and Applied Mathematics (2018) 339, 208-217, doi:
10.1016/j.cam.2017.10.028
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Main assumptions on (20)-(21):

(A.1)
|f(t, @, y)| < My, |g(t,z,y)| < My; (22)

z .
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Main assumptions on (20)-(21):

(A.1)
|f(t, @, y)| < My, |g(t,z,y)| < My; (22)

(A.2)

|f(t,z1,y1) = f(t 22, y2) < Kii|ry — 22| + Kialyr — v,

23
lg(t,z1,91) — 9(t, 22, y2)| < Ka1|w1 — 22| + Kaoly1 — yal; (23)

z .
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(A.3)

Dpg, ={eDy:{ueR": [u-&|<Bs}c Dy} + @,

(24)
Dg,={&1eDy: {veR™:|v-£&1|< By} c Dy} # 2,

where

M,T9

gy AT .
! 22010 (g + 1)

T I (pr 1) Bg =

s
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(A.3)

Dg, ={eDy:{ueR": [u-&|<Bs}c Dy} + @,

(24)
Dg,={&1eDy: {veR™:|v-£&1|< By} c Dy} # 2,

where
M;T?

) M,T?
S 220710 (p+ 1)’

P 2210 (g + 1)’

ﬁg =

(A.4) The spectral radius r(Q) of the matrix @ := KT, satisfies
an inequality

r(@) <1,

where qu = maX{22p—11"(p+1)’ 22¢-17(g+1) } '

" c
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Approximation sequences

Tm (¢, 0,&1) = o

I‘( )[f (t=8)P (8 Tm-1(5,0,£1), Ym-1(5, &0, 1) )ds (25)

_ (?) [0 (T - 8)p_1f(87xm-l(s’507fl)aym-l(s,fo,ﬁl))ds:l,

ym(ta 60,51) = fl

O d
+W fO (t=5)""9(s,2m-1(5,£0,€1)s Ym-1(5, €0, 1) ) ds

7
_(%)q-[o (T—S)q—lg(S,917m_1(s,50,51),ym_1(8’,;:0761))dsj|7

(26)

27 / 47
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Approximation sequences

xm(ta&hgl) o= 50

+ ﬁ[fot(t = 8)P (8, 2m-1(8,€0,€1)s Ym-1(5, €0, €1) )ds

T
_(%)p‘[o (T_8)p_1f(87xm—1(s’60751)7ym—1(57§07£1))d8:|’

(25)

ym(t,80,81) = &1

F(q)[f (=) 9(8, Zm-1(5,£0,£1), Ym-1 (5, €0, &1))ds (26)

_ (?) .[0 (T- S)q_lg(s?xm—l(svfoafl)aym—l(s,«fo,&))ds],

where t € [0,T], £ € Dg,, & € Dg, and
xO(t’§07£1) =€0a yO(t7§07£1) =€1~

27 / 47
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Convergence of the sequence:
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Convergence of the sequence:

Assume that assumptions (A.1)-(A.4) for the BVP (20)—(21) hold.

z
TuDelft 28 /47



Convergence of the sequence:

Assume that assumptions (A.1)-(A.4) for the BVP (20)—(21) hold.
Then for all fived &y € Dg,, &1 € Dg, :
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Convergence of the sequence:

Assume that assumptions (A.1)-(A.4) for the BVP (20)—(21) hold.
Then for all fived &y € Dg,, &1 € Dg, :

1. Functions of the sequence (25), (26) are continuous and satisfy
periodic boundary conditions

xm(07£07€1) = Zl,'m(T7 £0a§1)7
ym(ovgoagl) = ym(T7 50761)-
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Convergence of the sequence:

Assume that assumptions (A.1)-(A.4) for the BVP (20)—(21) hold.
Then for all fived &y € Dg,, &1 € Dg, :

1. Functions of the sequence (25), (26) are continuous and satisfy
periodic boundary conditions

Im(07£07€1) = J)m(T, gOagl)v
ym(ovgoaél) = ym(T7 50761)-

2. The sequences of functions (25), (26) for t € [0,T] converge
uniformly as m — oo to the appropriate limit functions

‘rw(t7£07§1) = %iz)réomm(agngl)y
yoo(ta§07£1) = nlllilloym(tagmél)

” A
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3. The limit functions Teo, Yoo Salisfy periodic boundary conditions

x°°(07§07§1) = xOO(T7 50761)7
y°°(07§07€l) = yOO(TJ 50761)’

z
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3. The limit functions Teo, Yoo Salisfy periodic boundary conditions
‘T°°(07£0a€1) = xW(T7§07§1)7
Yoo (0,60,&1) = Yoo (T',£0,61)-

4. The limit functions (27) are the unique continuous solutions of

the Cauchy problem:
§ Dfa = f(t.x(t).y(1) + A% (S0,61),  2(0) =&,

c (28)
o Diy=g(t,x(t),y(t)) + A&, &1),  y(0) =&,
where
8960, 60) =~ [T )77 5,60, 60) (50,60,
Aq(é-Oygl) = _ﬁ »/0\ (T_ s)q_lg(s,x,x,(s,50,51),y°°(s,§0,§1))ds.
(29)
29 / 47
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3. The limit functions Teo, Yoo Salisfy periodic boundary conditions

IOO(Ozg()’gl) = 1‘°°(T,£0,§1),

y°°(07§07€1) = yOO(T7§07§1)°

4. The limit functions (27) are the unique continuous solutions of
the Cauchy problem:

o Dy = 162 (0).y(0) + A &), 2 =60

6 Diy = g(t,z(t),y(t)) + A% %0, &), y(0) =&,

where

p T -1
AP(60,60) = = [ (T = 8) (5, (5,00 60). o (5,0, 60)) s,

q __4 r q-1
A (50761)'_ _EA (T—S) g(S,CCoo(é’,50,51),2/00(8,50,51))61&
(29)

5. The following error estimations hold:

|m°°(ta€7£)_xM(t7§7§ )| m - M7
(lywa,sg,é)—ym(t,és,fll)l)SF“’Q (I-Q) 1(Mfg) (30)

where I is the identity matriz. 29 / 47
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Main result:
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Main result:

Let assumptions (A.1)-(A.4) hold.
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Main result:

Let assumptions (A.1)-(A.4) hold.

Then Too (0", €17), Yoo (,€0™,€17) are unique solutions of
(20)-(21) iff a pair (§*,&17) are is a solution of the
determining system:

A(&o,&1) = (AP(&0,41), A%(&0,€1)) = 0, (31)

where AP, A? qre given by (29).

30 / 47



Fractional differential
equations
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Fractional differential
equations:

applications
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Step-by-step application of the technique:

S.1: Check conditions of the type (A.1)-(A.4) in the given
domain D.

S.2: If S.1 holds, then construct parameter-dependent
sequences {x;, (&)}

S.3: For each m solve the determining system (numerically)
AP(£) =0,
and find approximate values of £(™).

S.4: Substitute values £™) into {x,,(- &)} to find the m-th
approximation to the exact solution of the given system:

X (1) = Xm (t, g(m)) .

S.5: Compare results (via plotting, error functions calculation,
etc.).
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Numerical example
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Fractional Duffing oscillator

Let us find approximate solutions of a mixed-order Duffing
system 4

1/2 _ o
{ §D;Pu(t) = v(t) (= f(tu(t), v(t))), te(0,1/4)

o' (t) = —ud(t) +0.65in(1.2t) (= g(t,u(t),v(t))),
(32)

subject to periodic boundary conditions:

u(0) =u(1/4), v(0)=wv(1/4) (33)

in the domain
DyxDgy=[-1,1] x[-1,1].

47. Li, D. Chen, J. Zhu, Y. Liu, Nonlinear dynamics of fractional order Duffing system,
Chaos Solitons Fractals (2015) 81, 11-116, do0i:10.1016/j.chaos.2015.09.012
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We first check if assumptions (A.1)—(A.4) are satisfied.

5 r
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We first check if assumptions (A.1)—(A.4) are satisfied.
Indeed, we find that for

01

1). Mg=1, My~1.18 and K = (3 0

hold;
2) Dg, x Dg, =[-0.44,0.44] x [-0.85,0.85] = (A.3) holds;

) — (A.1)-(A.2)

3) r(Q)=0.98<1 — (A.4) holds.

35 / 47



Constructed approximations:
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Figure: Five approximations to the exact solution (u*(t),v*(t)) of the BVP (32),
(33): um (t) — left plot, vy, (t) — right plot
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Errors of approximation for u(t):
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u_er[0] —— = u_er[l] ——— u_er(t) —— - u_en(®) u_erd(t)

U_er(0) === = u_er{l] = u_er(t) ~— * u_er3(t) u_erd(n) |

Figure: Error of approximation of the first component of solution (left plot) and

its zoomed version (right plot): thl/zum(t) — f(t, um (t), vm (1))
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Errors of approximation for v(t):
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Figure: Error of approximation of the second component of solution (left plot) and

its zoomed version (right plot): 'u:n(t) —g(t,um (t), vm (t))
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open questions
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® Work in progress:
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® Work in progress:

® (non-)periodicity under action of a fractional
differential operator:

- R. Garrappa, K. Gorska, E. Kaslik, K.M., The action of
the Sonine kernel on periodic function, Fractional Calculus
and Applied Analysis (2024);

- N. Goedegebure, K.M., Mized-order fractional
boundary-value problem with Hilfer differential operator

(2024);
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Do you want to explore possibilities for collaboration?
Just send me an email to K.Marynets@tudelft.nl
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Thank you for your
attention!
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