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Fractional calculus is a branch of mathematics that generalizes
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Origin and motivation

Fractional calculus is a branch of mathematics that generalizes
the order of derivatives (and integrals) of a function to the
non-integer numbers.

Its origin is dated by 1695 and can be traced back to
L’Hopital and Leibniz.

Source: https://igor.podlubny.website.tuke.sk/USU/02 overview.pdf
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The theory of derivatives and integrals of arbitrary order was
further developed by Liouville, Grünwald, Letnikov and
Riemann and used to be considered of a purely theoretical
interest.
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The theory of derivatives and integrals of arbitrary order was
further developed by Liouville, Grünwald, Letnikov and
Riemann and used to be considered of a purely theoretical
interest.

Range of applications:
󲽨 study of viscoelasticity and electrical circuits;

󲽨 control theory;

󲽨 modeling dynamical systems with memory;

󲽨 systems with anomalous diffusion.
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󲽨 Population model:

Source:
https://coursemedia.gmu.edu/media/CMAI Colloquium/1 5lpprpgi
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󲽨 Porous media modeling:

Source: https://igor.podlubny.website.tuke.sk/USU/02 overview.pdf
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󲽨 Anomalous diffusion:

Source: https://en.wikipedia.org/wiki/Anomalous diffusion
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Fractional integrals and derivatives

If f is a locally integrable function on (a,∞), then the n-fold
iterated integral is given by

aD
−n
t f(t) = 1

(n − 1)! 󱮬
t

a
(t − s)n−1f(s)ds (1)

for almost all t with −∞ ≤ a < t <∞ and n ∈ N.
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iterated integral is given by

aD
−n
t f(t) = 1

(n − 1)! 󱮬
t

a
(t − s)n−1f(s)ds (1)

for almost all t with −∞ ≤ a < t <∞ and n ∈ N.

Using that (n − 1)! = Γ(n), the integral of f of the fractional
order α > 0 (Riemann-Liouville fractional integral) reads:

aD
−α
t f(t) = 1

Γ(α) 󱮬
t

a
(t − s)α−1f(s)ds (left hand), (2)

and similarly for −∞ < t < d ≤ ∞

tD
−α
b f(t) = 1

Γ(α) 󱮬
b

t
(s − t)α−1f(s)ds (right hand). (3)
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Riemann-Liouville fractional derivatives

If 0 < α < 1 then the left and right Riemann-Liouville FDs
are defined as

aD
α
t f(t) =

1

Γ(1 − α)
d

dt
󳆘󱮬

t

a
(t − s)−αf(s)ds󳆝 , t > a, (4)

and

tD
α
bf(t) = −

1

Γ(1 − α)
d

dt
󳆘󱮬

b

t
(s − t)−αf(s)ds󳆝 , t < b. (5)
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If 0 < α < 1 then the left and right Riemann-Liouville FDs
are defined as

aD
α
t f(t) =

1

Γ(1 − α)
d

dt
󳆘󱮬

t

a
(t − s)−αf(s)ds󳆝 , t > a, (4)

and

tD
α
bf(t) = −

1

Γ(1 − α)
d

dt
󳆘󱮬

b

t
(s − t)−αf(s)ds󳆝 , t < b. (5)

Using this principle of generalization, the following
fractional derivatives were derived:

- Caputo;
- Hilfer – as a generalization of the Riemann-Liouville and
Caputo derivatives;

- further generatizations: Prabhakar, Hilfer-Prabhakar, etc.
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Caputo fractional derivatives

The left and right Caputo FDs of order α ∈ (0,1) are defined
by

C
a D

α
t f(t) =

1

Γ(1 − α)
󳆘󱮬

t

a
(t − s)−αf 󰐞(s)ds󳆝 , t > a,

and

C
t D

α
bf(t) = −

1

Γ(1 − α)
󳆘󱮬

b

t
(s − t)−αf 󰐞(s)ds󳆝 , t < b.
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”Memory effect” of the fractional derivative

Suppose that t represents time and function f(t) describes a
certain dynamical process developing in time.
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”Memory effect” of the fractional derivative

Suppose that t represents time and function f(t) describes a
certain dynamical process developing in time.

Thus, the present state of the process f(t), started at τ = a,
depends on all its previous states f(τ) (a ≤ τ < t) 󲿎⇒ it represents
the ”memory effect” of FDs. The same holds for the ”future”.
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My research direction:

Study of nonlinear fractional differential systems of the
form:

aDpi
t xi(t) = fi (t, x1(t), . . . , xn(t)) , t ∈ (a, b), (6)

for some pi ∈ (0,1), 1 ≤ i ≤m, where aDp
t is a fractional

differential operator with lower limit at 0,
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My research direction:

Study of nonlinear fractional differential systems of the
form:

aDpi
t xi(t) = fi (t, x1(t), . . . , xn(t)) , t ∈ (a, b), (6)

for some pi ∈ (0,1), 1 ≤ i ≤m, where aDp
t is a fractional

differential operator with lower limit at 0,

+ boundary conditions:

󲽨 periodic;

󲽨 linear;

󲽨 nonlinear (including integral boundary conditions).
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My focus lies on:

󲽨 Caputo, Hilfer and Hilfer-Prabhakar fractional differential
operators;
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My focus lies on:

󲽨 Caputo, Hilfer and Hilfer-Prabhakar fractional differential
operators;

󲽨 solvability analysis and

󲽨 approximation methods 󲿎⇒ numerical-analytic
technique
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Fractional differential
equations
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Fractional differential
equations:

analysis and approximations
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Main concept
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Consider a Boundary Value Problem (BVP)1

C
0 D

p
t x(t) = f (t, x (t)) , t ∈ (0, T ), p ∈ (0,1) (7)

x(0) = x(T ). (8)

1M. Fečkan and K.M., Approximation approach to periodic BVP for fractional differential
systems, European Physical Journal: Special Topics (2017) 226, 3681-3692, doi:
10.1140/epjst/e2018-00017-9
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Consider a Boundary Value Problem (BVP)1

C
0 D

p
t x(t) = f (t, x (t)) , t ∈ (0, T ), p ∈ (0,1) (7)

x(0) = x(T ). (8)

We perturb equation (7) by a constant term ∆ and couple it
with with the initial condition as follows:

C
0 D

p
t x(t) = f (t, x (t)) +∆, (9)

x(0) = ξ. (10)

1M. Fečkan and K.M., Approximation approach to periodic BVP for fractional differential
systems, European Physical Journal: Special Topics (2017) 226, 3681-3692, doi:
10.1140/epjst/e2018-00017-9
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Using the integral representation of solution of the Initial Value
Problem (IVP) (9), (10) we get:

x(t) = ξ + 1

Γ(p) 󱮬
t

0
(t − s)p−1(f(s, x(s)) +∆)ds. (11)
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Using the integral representation of solution of the Initial Value
Problem (IVP) (9), (10) we get:

x(t) = ξ + 1

Γ(p) 󱮬
t

0
(t − s)p−1(f(s, x(s)) +∆)ds. (11)

To compute the perturbation ∆ we require solution x(t) to also
satisfy periodic boundary conditions

x(0) = x(T ).
This leads to

∆ = p

T p 󱮬
T

0
(T − s)p−1f(s, x(s))ds, (12)

and thus, solution of the periodic BVP reads:

x(t, ξ) = ξ + 1

Γ(p) 󱮬
t

0
(t − s)p−1f(s, x(s, ξ))ds

− tp

T pΓ(p) 󱮬
T

0
(T − s)p−1f(s, x(s, ξ))ds.
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Higher-order fractional

periodic BVPs
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Let us now look at a higher order fractional differential system2

C
0 D

p
t x(t) = f(t, x(t)), p ∈ (m,m + 1), m ∈ N (13)

2M. Fečkan, K. M., J.R. Wang, Periodic boundary value problems for higher order
fractional differential systems, Mathematical Methods in Applied Sciences (2019), 42, 3616-3632,
doi: 10.1002/mma.5601
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Let us now look at a higher order fractional differential system2

C
0 D

p
t x(t) = f(t, x(t)), p ∈ (m,m + 1), m ∈ N (13)

with periodic boundary conditions

x(0) = x(T ),
x󰐞(0) = x󰐞(T ),

⋯
x(m)(0) = x(m)(T ),

(14)

2M. Fečkan, K. M., J.R. Wang, Periodic boundary value problems for higher order
fractional differential systems, Mathematical Methods in Applied Sciences (2019), 42, 3616-3632,
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Let us now look at a higher order fractional differential system2

C
0 D

p
t x(t) = f(t, x(t)), p ∈ (m,m + 1), m ∈ N (13)

with periodic boundary conditions

x(0) = x(T ),
x󰐞(0) = x󰐞(T ),

⋯
x(m)(0) = x(m)(T ),

(14)

where t ∈ [0, T ], T > 0, x ∈ Cm([0, T ],D), D ⊂ Rn is open,
f ∈ C(G,Rn), G ∶= [0, T ]×D and C

0 D
p
t is the generalized Caputo

fractional derivative with lower limit at 0.

2M. Fečkan, K. M., J.R. Wang, Periodic boundary value problems for higher order
fractional differential systems, Mathematical Methods in Applied Sciences (2019), 42, 3616-3632,
doi: 10.1002/mma.5601
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Together with the BVP (13), (14) we consider a perturbed IVP:

C
0 D

p
t x(t) = f (t, x (t)) +∆ (15)

x(0) = ξ0, x󰐞(0) = ξ1, . . . , x(m)(0) = ξm (16)

where ∆ and ξi ∈ Rn are unknown parameters.
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Together with the BVP (13), (14) we consider a perturbed IVP:

C
0 D

p
t x(t) = f (t, x (t)) +∆ (15)

x(0) = ξ0, x󰐞(0) = ξ1, . . . , x(m)(0) = ξm (16)

where ∆ and ξi ∈ Rn are unknown parameters.

Then the solution of (15), (16) is determined as follows:

x(t) =
m

󱮦
k=0

tk

k!
ξk +

1

Γ(p) 󱮬
t

0
(t − s)p−1f(s, x(s))ds + ∆tp

Γ(p + 1)
. (17)

We find values of the unknowns ξk, k = 1,m and of the parameter
∆ by substituting (17) into periodic conditions (14).
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From (14) we define:

ξk =
m

󱮦
j=k

T j−k−1Bj−k

(j − k)!
󳇥− 1

Γ(p − j + 1) 󱮬
T

0
(T − s)p−jf(s, x(s))ds

+ (p −m)T
m−j+1

Γ(p − j + 2) 󱮬
T

0
(T − s)p−m−1f(s, x(s))ds󳈓, k = 1,m;

∆ = − p −m
T p−m 󱮬

T

0
(T − s)p−m−1f(s, x(s))ds,

(18)
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From (14) we define:

ξk =
m

󱮦
j=k

T j−k−1Bj−k

(j − k)!
󳇥− 1

Γ(p − j + 1) 󱮬
T

0
(T − s)p−jf(s, x(s))ds

+ (p −m)T
m−j+1

Γ(p − j + 2) 󱮬
T

0
(T − s)p−m−1f(s, x(s))ds󳈓, k = 1,m;

∆ = − p −m
T p−m 󱮬

T

0
(T − s)p−m−1f(s, x(s))ds,

(18)

with Bj−k being the Bernoulli numbers, resulting in the integral
representation of solution:

x(t, ξ0) =ξ0 +
m

󱮦
j=1

tj

j!
ξj +

1

Γ(p) 󱮬
t

0
(t − s)p−1f(s, x(s, ξ0))ds

− (p −m)tp

T p−mΓ(p + 1) 󱮬
T

0
(T − s)p−m−1f(s, x(s, ξ0))ds.

(19)
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Mixed-order fractional
periodic BVP
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Problem setting
We consider a mixed-order periodic BVP3 :

⎧⎪⎪⎨⎪⎪⎩

C
0 D

p
t x = f(t, x(t), y(t)),

C
0 D

q
t y = g(t, x(t), y(t))

(20)

x(0) = x(T ), y(0) = y(T ), (21)

for some p, q ∈ (0,1], where f ∶ Gf → Rn1 , g ∶ Gg → Rn2 are
continuous functions, Gf ∶= [0, T ] ×Df , Gg ∶= [0, T ] ×Dg and
Df ⊂ Rn1 , Dg ⊂ Rn2 are closed and bounded domains.

3M. Fečkan, K.M., Approximation approach to periodic BVP for mixed fractional
differential systems, Journal of Comp. and Applied Mathematics (2018) 339, 208-217, doi:
10.1016/j.cam.2017.10.028
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C
0 D

p
t x = f(t, x(t), y(t)),

C
0 D

q
t y = g(t, x(t), y(t))

(20)

x(0) = x(T ), y(0) = y(T ), (21)

for some p, q ∈ (0,1], where f ∶ Gf → Rn1 , g ∶ Gg → Rn2 are
continuous functions, Gf ∶= [0, T ] ×Df , Gg ∶= [0, T ] ×Dg and
Df ⊂ Rn1 , Dg ⊂ Rn2 are closed and bounded domains.

Applications of (20):

󲽨 dynamical macroeconomic model of two national economies;

󲽨 fractional Van der Pol oscillator;

󲽨 Duffing systems, etc.
3M. Fečkan, K.M., Approximation approach to periodic BVP for mixed fractional

differential systems, Journal of Comp. and Applied Mathematics (2018) 339, 208-217, doi:
10.1016/j.cam.2017.10.028
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Main assumptions on (20)-(21):

(A.1)
󳈌f(t, x, y)󳈌 ≤Mf , 󳈌g(t, x, y)󳈌 ≤Mg; (22)
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󳈌f(t, x, y)󳈌 ≤Mf , 󳈌g(t, x, y)󳈌 ≤Mg; (22)

(A.2)

󳈌f(t, x1, y1) − f(t, x2, y2)󳈌 ≤K11󳈌x1 − x2󳈌 +K12󳈌y1 − y2󳈌,
󳈌g(t, x1, y1) − g(t, x2, y2)󳈌 ≤K21󳈌x1 − x2󳈌 +K22󳈌y1 − y2󳈌;

(23)

25 / 47



(A.3)

Dβf
∶= 󳆟ξ0 ∈Df ∶ {u ∈ Rn ∶ 󳈌u − ξ0󳈌 ≤ βf} ⊂Df󳆣 ≠ ∅,

Dβg ∶= {ξ1 ∈Dg ∶ {v ∈ Rm ∶ 󳈌v − ξ1󳈌 ≤ βg} ⊂Dg} ≠ ∅,
(24)

where

βf ∶=
MfT

p

22p−1Γ(p + 1)
, βg ∶=

MgT
q

22q−1Γ(q + 1)
;
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Dβg ∶= {ξ1 ∈Dg ∶ {v ∈ Rm ∶ 󳈌v − ξ1󳈌 ≤ βg} ⊂Dg} ≠ ∅,
(24)

where

βf ∶=
MfT

p

22p−1Γ(p + 1)
, βg ∶=

MgT
q

22q−1Γ(q + 1)
;

(A.4) The spectral radius r(Q) of the matrix Q ∶=KΓpq satisfies
an inequality

r(Q) < 1,

where Γpq ∶=max󳆠 T p

22p−1Γ(p+1) ,
T q

22q−1Γ(q+1)󳆤 .
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Approximation sequences

xm(t, ξ0, ξ1) ∶= ξ0

+ 1

Γ(p)
󳇥󱮬

t

0
(t − s)p−1f(s, xm−1(s, ξ0, ξ1), ym−1(s, ξ0, ξ1))ds

− 󳆘 t
T
󳆝
p

󱮬
T

0
(T − s)p−1f(s, xm−1(s, ξ0, ξ1), ym−1(s, ξ0, ξ1))ds󳈓,

(25)

ym(t, ξ0, ξ1) ∶= ξ1

+ 1

Γ(q)
󳇥󱮬

t

0
(t − s)q−1g(s, xm−1(s, ξ0, ξ1), ym−1(s, ξ0, ξ1))ds

− 󳆘 t
T
󳆝
q

󱮬
T

0
(T − s)q−1g(s, xm−1(s, ξ0, ξ1), ym−1(s, ξ0, ξ1))ds󳈓,

(26)
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Approximation sequences
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+ 1

Γ(p)
󳇥󱮬

t

0
(t − s)p−1f(s, xm−1(s, ξ0, ξ1), ym−1(s, ξ0, ξ1))ds

− 󳆘 t
T
󳆝
p

󱮬
T

0
(T − s)p−1f(s, xm−1(s, ξ0, ξ1), ym−1(s, ξ0, ξ1))ds󳈓,

(25)

ym(t, ξ0, ξ1) ∶= ξ1

+ 1

Γ(q)
󳇥󱮬

t

0
(t − s)q−1g(s, xm−1(s, ξ0, ξ1), ym−1(s, ξ0, ξ1))ds

− 󳆘 t
T
󳆝
q

󱮬
T

0
(T − s)q−1g(s, xm−1(s, ξ0, ξ1), ym−1(s, ξ0, ξ1))ds󳈓,

(26)

where t ∈ [0, T ], ξ0 ∈Dβf
, ξ1 ∈Dβg and

x0(t, ξ0, ξ1) = ξ0, y0(t, ξ0, ξ1) = ξ1.
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Assume that assumptions (A.1)-(A.4) for the BVP (20)–(21) hold.

Then for all fixed ξ0 ∈Dβf
, ξ1 ∈Dβg :

1. Functions of the sequence (25), (26) are continuous and satisfy
periodic boundary conditions

xm(0, ξ0, ξ1) = xm(T, ξ0, ξ1),
ym(0, ξ0, ξ1) = ym(T, ξ0, ξ1).

2. The sequences of functions (25), (26) for t ∈ [0, T ] converge
uniformly as m→∞ to the appropriate limit functions

x∞(t, ξ0, ξ1) = lim
m→∞

xm(t, ξ0, ξ1),

y∞(t, ξ0, ξ1) = lim
m→∞

ym(t, ξ0, ξ1).
(27)
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3. The limit functions x∞, y∞ satisfy periodic boundary conditions

x∞(0, ξ0, ξ1) = x∞(T, ξ0, ξ1),
y∞(0, ξ0, ξ1) = y∞(T, ξ0, ξ1).
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x∞(0, ξ0, ξ1) = x∞(T, ξ0, ξ1),
y∞(0, ξ0, ξ1) = y∞(T, ξ0, ξ1).

4. The limit functions (27) are the unique continuous solutions of
the Cauchy problem:

C
0 D

p
t x = f(t, x(t), y(t)) +∆

p(ξ0, ξ1), x(0) = ξ1,
C
0 D

q
t y = g(t, x(t), y(t)) +∆

q(ξ0, ξ1), y(0) = ξ1,
(28)

where

∆p(ξ0, ξ1) ∶= −
p

T p 󱮬
T

0
(T − s)p−1f(s, x∞(s, ξ0, ξ1), y∞(s, ξ0, ξ1))ds,

∆q(ξ0, ξ1) ∶= −
q

T q 󱮬
T

0
(T − s)q−1g(s, x∞(s, ξ0, ξ1), y∞(s, ξ0, ξ1))ds.

(29)
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∆q(ξ0, ξ1) ∶= −
q

T q 󱮬
T

0
(T − s)q−1g(s, x∞(s, ξ0, ξ1), y∞(s, ξ0, ξ1))ds.

(29)

5. The following error estimations hold:

󳆚󳈌x∞(t, ξ0, ξ1) − xm(t, ξ0, ξ1)󳈌
󳈌y∞(t, ξ0, ξ1) − ym(t, ξ0, ξ1)󳈌

󳆞 ≤ ΓpqQ
m(I −Q)−1 󳆚Mf ,

Mg
󳆞 , (30)

where I is the identity matrix. 29 / 47
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Main result:

Let assumptions (A.1)-(A.4) hold.

Then x∞(⋅, ξ0∗, ξ1∗), y∞(⋅, ξ0∗, ξ1∗) are unique solutions of
(20)-(21) iff a pair (ξ0∗, ξ1∗) are is a solution of the
determining system:

∆(ξ0, ξ1) ∶= (∆p(ξ0, ξ1),∆q(ξ0, ξ1)) = 0, (31)

where ∆p, ∆q are given by (29).
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Fractional differential
equations

31 / 47



Fractional differential
equations:

applications
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Step-by-step application of the technique:

S.1: Check conditions of the type (A.1)-(A.4) in the given
domain D.

S.2: If S.1 holds, then construct parameter-dependent
sequences {xm(⋅, ξ)}.

S.3: For each m solve the determining system (numerically)

∆p
m(ξ) = 0,

and find approximate values of ξ(m).

S.4: Substitute values ξ(m) into {xm(⋅, ξ)} to find the m-th
approximation to the exact solution of the given system:

Xm(t) = xm 󳆗t, ξ(m)󳆜 .

S.5: Compare results (via plotting, error functions calculation,
etc.).
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Numerical example
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Fractional Duffing oscillator

Let us find approximate solutions of a mixed-order Duffing
system 4

⎧⎪⎪⎨⎪⎪⎩

C
0 D

1󳆋2
t u(t) = v(t) (∶= f(t, u(t), v(t))),

v󰐞(t) = −u3(t) + 0.6 sin(1.2t) (∶= g(t, u(t), v(t))),
t ∈ (0,1󳆋4)

(32)

subject to periodic boundary conditions:

u(0) = u(1󳆋4), v(0) = v(1󳆋4) (33)

in the domain
Df ×Dg = [−1,1] × [−1,1].

4Z. Li, D. Chen, J. Zhu, Y. Liu, Nonlinear dynamics of fractional order Duffing system,
Chaos Solitons Fractals (2015) 81, 11-116, doi:10.1016/j.chaos.2015.09.012
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We first check if assumptions (A.1)–(A.4) are satisfied.
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We first check if assumptions (A.1)–(A.4) are satisfied.

Indeed, we find that for

1). Mf = 1, Mg ≈ 1.18 and K = 󳆚 0 1
3 0

󳆞 󲿎⇒ (A.1)–(A.2)

hold;

2) Dβf
×Dβg = [−0.44,0.44] × [−0.85,0.85] 󲿎⇒ (A.3) holds;

3) r(Q) = 0.98 < 1 󲿎⇒ (A.4) holds.
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Constructed approximations:

Figure: Five approximations to the exact solution (u∗(t), v∗(t)) of the BVP (32),

(33): um(t) – left plot, vm(t) – right plot
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Errors of approximation for u(t):

Figure: Error of approximation of the first component of solution (left plot) and

its zoomed version (right plot): C
0 D

1󳆋2
t um(t) − f(t,um(t), vm(t))
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Errors of approximation for v(t):

Figure: Error of approximation of the second component of solution (left plot) and

its zoomed version (right plot): v󰐞m(t) − g(t,um(t), vm(t))
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Do you want to explore possibilities for collaboration?
Just send me an email to K.Marynets@tudelft.nl

40 / 47



Thank you for your
attention!

41 / 47




