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Motivation

Goal: A principal wants to design optimal policies to get the best outcomes from a

large population of agents who prioritize their own objectives

Some examples:

→ Systemic risk: A regulator incentivizes large number of banks borrowing and lending
from each other to minimize the expected number of defaults.

→ Contract theory: An employer (principal) writes a payment contract for a large number

of employees to maximize their expected return.

→ Carbon emissions: A regulator wants to find optimal carbon tax levels for electricity
producers to attain the targeted reduction in the carbon emission levels.

→ Advertisement: A company wants to optimize its advertisement strategies while
interacting with consumers to maximize their profits.

→ Management of epidemics: A government chooses nonpharmaceutical policies to
mitigate an epidemic in a country.

2



Outline of this Talk

→ Brief Review of Stochastic Optimal Control & Solving it with Deep Learning

→ Nash Equilibrium in Large Populations

→ Approximating Nash Equilibrium for Large Populations: Mean Field Games

→ Deep Learning for Solving Mean Field Games

→ Stackelberg Equilibrium

→ Introduction to Stackelberg Equilibrium
→ Optimal Policies for Large Populations: Stackelberg Mean Field Games

→ Rewriting Bi-level Stackelberg Mean Field Game Problem as a Single-level Problem
→ Single-level Deep Learning for Solving Stackelberg Mean Field Games
→ Numerical Examples
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Brief Review of

Stochastic Optimal Control Problems



Stochastic Optimal Control Problems

We have 1 agent.

She chooses her control to minimize her expected costs (or maximize her rewards)

between time t = 0 and t = T .

She has:

→ State: (Xt)t→[0,T ]

→ Control: (ωt)t→[0,T ]

→ Objectives: running cost & terminal cost

Example: The agent works in a company and she chooses her e!ort level that a!ects

the value of the project she is working on:

→ Xt : Value of the project at time t

→ ωt : E!ort level at time t

→ Objectives: e!ort’s cost & utility from the value of the project
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Stochastic Optimal Control Problems: Mathematical Formulation (I)

Example: The agent works in a company and she chooses her e!ort level that a!ects

the value of the project she is working on.

Mathematical Formulation:

min
(ωt )t

E
[ ∫ T

0

(
c1ω

2
t ↑ c2U(Xt)

)

Running Cost

dt ↑c3U(XT )

Terminal Cost

]

dXt = ωt

Drift

dt + εdWt , X0 = ϑ

→ U(·) is a utility function

→ c1, c2, c3,ε are positive constants (weights)

→ Wt is the Brownian motion

→ ϑ ↓ µ0 is the initial condition
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Stochastic Optimal Control Problems: Mathematical Formulation (II)

Agent’s problem:

min
(ωt )t

E
[ ∫ T

0

(
c1ω

2
t ↑ c2U(Xt)

)

Running Cost

dt ↑c3U(XT )

Terminal Cost

]

dXt = ωt

Drift

dt + εdWt , X0 = ϑ

More generally: stochastic optimal control (SOC) problem:

min
(ωt )t

E
[ ∫ T

0

f (t,Xt ,ωt)

Running Cost

dt + g(XT )

Terminal Cost

]

dXt = b(t,Xt ,ωt)

Drift

dt + εdWt , X0 = ϑ

Later: several interacting agents; not just SOC but game theory.
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Using Deep Learning to Solve

Stochastic Optimal Control Problems



Neural Networks as Function Approximators
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→ Neural networks (NNs) can be used to approximate functions

→ Empirically e”cient in high dimension

→ Provably breaks the curse of dimensionality in some cases

→ Ex.: Regression: To approximate a function f (x), we can use a NN that outputs

fε(x) and train it (i.e., adjust ϖ) to minimize the loss given by the MSE:

L(ϖ) = E|f (x)↑ fε(x)|2

→ In the sequel, we will use NN to minimize other loss functions L(ϖ)
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Deep Learning for Stochastic Optimal Control Problem

SOC problem:

min
(ωt )t

E
[ ∫ T

0

f (t,Xt ,ωt)dt + g(XT )
]

dXt = b(t,Xt ,ωt)dt + εdWt , X0 ↓ µ0

Numerical approach with deep learning:

→ Consider the control as a function of time and the current state: ωt = ϱ(t,Xt)

→ Use NN approximation ϱε(t,Xt) for the control function

→ Discretize the time: t = {0,#t, 2#t, . . . , n#t}, where T = n#t:

L(ϖ) = E
[∑

t

f (t,Xt ,ϱε(t,Xt))↔#t + g(XT )
]

Xt+!t = b(t,Xt ,ϱε(t,Xt))↔#t + εW!t , X0 ↓ µ0

→ Sample X0 and Brownian motion increments; simulate a trajectory

→ Train to minimize the loss (cost) L(ϖ) over the parameters ϖ. 1

We want to use deep learning to solve more complex problems.

1Similar to Han & E (2016), extended to MFC problems in Carmona, Laurière (2022) and Dayanıklı, Laurière, Zhang (2023).

See Hu, R., & Laurière, M. (2022) for a survey. 10
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Nash Equilibrium

in Large Populations



Overview of the Approach: Mean Field Game

One of the most studied solution concept in game theory: Nash equilibrium.

In this talk: Dynamic, stochastic, continuous time, (possibly) continuous space.

→ Challenge: Large number N of agents.

→ Approach: Approximate the game with a Mean Field Game.

In Mean Field Games (MFGs):
2

→ Assume N → ↗.

→ Agents are identical and infinitesimal.

→ Agents interact through the distribution.

→ Idea: Focus on

• a representative agent
• and her interactions with the distribution.

2Huang-Malhamé-Caines (2006), Lasry-Lions (2006).

Image credit: https://gbxglobal.org/the-importance-of-the-network/ 12
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Mathematical Formulation of Mean Field Game

The cost for the representative agent using control ω ↘ A when facing a population
with state distribution µ is

J(ω;µ) := E




∫ T

0
f (t,Xt ,ωt , µt)

Running Cost

dt + g(XT , µT )

Terminal Cost



 .

The agent’s state Xt has the following dynamics:

dXt = b(t,Xt ,ωt , µt)

Drift

dt + εdWt , X0 = ϑ ↑ µ0.

Definition: The pair (ω̂, µ̂) is a Mean Field Game Nash equilibrium if it satisfies:

(i) ω̂ minimizes the cost of representative agent given population distribution µ̂;

(ii) ≃t ↘ [0,T ], µ̂t is the distribution of the representative agent’s state Xt .

It can be characterized by a forward-backward stochastic di!erential equation

(FBSDE) system of McKean-Vlasov (MKV) type.
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Mean Field Game Example

→ Instead of 1 agent: there is a large population of agents.
→ Each agent

• chooses her e”ort level
• aims at minimizing their total cost
• interacts with other agents through the average project value

min
(ωt )t

E
[ ∫ T

0

(
1
2
ω2
t ↑ U(Xt)

)

Running Cost

dt + G(XT )
]

dXt = (ωt + X̄t)

Drift

dt + εdWt , X0 = ϑ

The Nash equilibrium control is

ω̂t = ↑ 1
ϑZt

where (Xt ,Yt ,Zt)t solves the FBSDE:

dXt = (↑Zt/ε + X̄t)dt + εdWt , X0 = ϑ

dYt =

(
1

2ε2
Z 2
t ↑ U(Xt)

)
dt + ZtdWt , YT = G(XT ).
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Using Deep Learning to Solve

Mean Field Games



Using Deep Learning to Find Mean Field Nash Equilibrium (1/3)

There are various MFG numerical methods (finite di!. schemes, ML methods, . . . ). 3

Here, we want to solve the FBSDE that characterizes the mean field Nash equilibrium:

→ Challenges: Coupled, McKean-Vlasov (interactions through the law)

→ Yt represents the value function of a representative player (i.e., the minimized

expected cost between time t and T when the player starts from x = Xt and the

population follows the equilibrium).

State dynamics ⇐ Xt = ϑ +

∫ t

0

b(s,Xs , ω̂s , µs)ds +

∫ t

0

εdWs

Value function ⇐ Yt = g(XT , µT ) +

∫ T

t

f (s,Xs , ω̂s , µs)ds ↑
∫ T

t

ZsdWs

where µt = L(Xt) and ω̂s = ω̂s(Xs , µs ,Zs).

3See e.g. Achdou & Laurière (2020) and Laurière (2021) for surveys. 16
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Using Deep Learning to Find Mean Field Nash Equilibrium (2/3)

In order to solve the coupled FBSDE, we are going to use a shooting method:4

→ Instead of:

Value function ⇐ Yt = g(XT , µT ) +

∫ T

t

f (s,Xs , ω̂s , µs)ds ↑
∫ T

t

ZsdWs

→ We write:

Yt = Y0 ↑
∫ t

0

f (s,Xs , ω̂s , µs)ds +

∫ t

0

ZsdWs

→ Goal: Find Y0 and (Zt)t s.t. the terminal condition YT = g(XT , µT ) is satisfied

4Han, Jentzen, E (2019); extended to McKean-Vlasov FBSDEs in Carmona, Laurière (2022). 17
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Using Deep Learning to Find Mean Field Nash Equilibrium (3/3)

→ Now we have forward-forward SDEs:

Xt = ϑ +

∫ t

0
b(s,Xs , ω̂s , µs)ds +

∫ t

0
εdWs

Yt = Y0 ↓
∫ t

0
f (s,Xs , ω̂s , µs)ds +

∫ t

0
ZsdWs

where µt = L(Xt) and ω̂s = ω̂s(Xs , µs ,Zs) and we need to shoot YT = g(XT , µT ).

→ As for SOC: Discretize the time.

→ But here:

• There is a distribution: we approximate it by an empirical distribution µN , obtained
by simulating a system of N particles: (Xi

t ,Y
i
t )t→[0,T ],i→[N]

• The controls are: Y0 = y0,ε1 (X0) and Zt = zε2 (t,Xt)
• The goal is to shoot the terminal condition: YT = g(XT , µT ).

→ The problem is to minimize over ε = (ϖ1, ϖ2) the loss:

L(ε) =
1
N
E

N∑

i=1

(
Y i,ω

T ↑ g(X i,ω
T , µN,ω

T )
)2

Application in finite state MFG: Aurell-Carmona-Dayanıklı-Laurière (2022a)

Graphon game application: Aurell-Carmona-Dayanıklı-Laurière (2022b) 18
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Stackelberg Equilibrium &

Stackelberg Mean Field Games



What is a Stackelberg Equilibrium?

Our aim is to design optimal policies/incentives in order to get the best

outcomes when we interact with many rational agents who prioritize their own.

→ There is a leader (principal) and a follower (agent).

→ The leader chooses incentives.

→ The follower gives their best response to these incentives.

→ The leader optimizes incentives by anticipating the follower’s reaction.

→ Bi-level optimization problem.

→ Stackelberg equilibrium
5
is di!erent from Nash Equilibrium

5Başar (1984, 1989), Holmström-Milgrom (1987), Sannikov (2008, 2013), Cvitanić-Possamäı-Touzi (2018)

Ljungqvist, Sargent (Chapter 19: Dynamic Stackelberg Problems) 20
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Ljungqvist, Sargent (Chapter 19: Dynamic Stackelberg Problems) 20



From Stackelberg Equilibrium to Stackelberg MFG

In our setup:

→ Not just one follower, but a large population of followers (agents).

→ They are noncooperative agents.

→ So the population of agents will be in a Nash equilibrium.

→ The Nash equilibrium depends on the incentives given by the principal.

Population of agents

Principal

Nash eq. in the population will be approximated with a Mean Field Game.
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Stackelberg Mean Field Games



Brief Literature Review

Some related references:

→ Contract theory models with large number of agents:

• Elie, Mastrolia, and Possamäı (2019): Continuous state space
• Carmona and Wang (2018): Finite state space
• Incentives through a terminal payment only

→ Numerical approaches:

• Aurell, Carmona, Dayanıklı, and Laurière (SICON, 2022)
• Campbell, Chen, Shrivats and Jaimungal (2021)

→ In the rest of the talk:

• A Machine Learning Method for Stackelberg Mean Field Games. Dayanıklı, Laurière
(2023, to appear in MOR).

See Gökçe Dayanıklı’s papers for more examples!
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Agent Population: Mean Field Game Given Principal’s Incentives

Principal Agent population

Incentives: ϑ

Mean field equilibrium: (ω̂ε, µ̂ε)

Mean field game: inf ϑ Jε(ω;µ)

The cost for the representative agent using control ω ↘ A when facing a population

with state distribution µ is

Jε(ω;µ) := E
[∫ T

0

f (t,Xt ,ωt , µt ;ςt)dt + g(XT , µT ;ςT )

]
,

where ϑ is incentive chosen by the principal, and the representative agent’s state Xt

has the following dynamics:

dXt = b(t,Xt ,ωt , µt ;ςt)dt + εdWt , X0 = ϑ ↓ µ0.

Di!erent than before: Impact of the principal’s incentive.

Given ϑ, the MFG solution can still be characterized with an FBSDE.

Remark: Principal’s incentive, ςt , can be in the form of ς(t,Xt , µt).

24



Agent Population: Mean Field Game Given Principal’s Incentives

Principal Agent population

Incentives: ϑ

Mean field equilibrium: (ω̂ε, µ̂ε)

Mean field game: inf ϑ Jε(ω;µ)

The cost for the representative agent using control ω ↘ A when facing a population

with state distribution µ is

Jε(ω;µ) := E
[∫ T

0

f (t,Xt ,ωt , µt ;ςt)dt + g(XT , µT ;ςT )

]
,

where ϑ is incentive chosen by the principal, and the representative agent’s state Xt

has the following dynamics:

dXt = b(t,Xt ,ωt , µt ;ςt)dt + εdWt , X0 = ϑ ↓ µ0.

Di!erent than before: Impact of the principal’s incentive.

Given ϑ, the MFG solution can still be characterized with an FBSDE.

Remark: Principal’s incentive, ςt , can be in the form of ς(t,Xt , µt).

24



Principal: Defining Stackelberg Equilibrium

Principal Agent population

Incentives: ϑ

Mean field equilibrium: (ω̂ε, µ̂ε)

Mean field game: inf ϑ Jε(ω;µ)

Optimization: infε J0(ϑ)

The principal’s cost for using incentive ϑ is

J0(ε) :=

∫ T

0
f0(t, µ̂

ε
t ,ϖt)dt + g0(µ̂

ε
T ,ϖT )

The principal’s optimization problem is

inf
ω
J0(ω).

subject to the constraint: the population is in MFG Nash equilibrium: (ω̂ε, µ̂ε)
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Stackelberg Mean Field Game Problem

The full problem becomes:

inf
ε→”

∫ T

0

f0(t, µ
ε
t ,ςt)︸ ︷︷ 

Running cost of principal

dt + g0(µ
ε
T ,ςT )︸ ︷︷ 

Terminal cost of principal





Optimization of

Principal

Xε
t︸︷︷

State of agent

= ϑ +

∫ t

0

b(s,Xε
s , ω̂ε

s , µ
ε
s ;ςs)︸ ︷︷ 

Drift of agent

ds +

∫ t

0

εdWs

Y ε
t︸︷︷

Value function

= g(Xε
T , µε

T ;ςT )︸ ︷︷ 
Terminal cost of agent

+

∫ T

t

f (s,Xε
s , ω̂ε

s , µ
ε
s ;ςs)︸ ︷︷ 

Running cost of agent

ds ↑
∫ T

t

ZsdWs






Equilibrium

in the

Population

where µε
t = L(Xε

t ) and ϑ ↓ µ0.

This is a bi-level problem!

→ We will rewrite the problem as a single level problem, to solve it more e”ciently.
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How to rewrite this problem

as a single-level optimization problem?



Rewriting the Problem I: Rewriting Backward Equation

We have the following objective

inf
ε

∫ T

0

f0(t, µ
ε
t ,ςt)dt + g0(µ

ε
T ,ςT )

where the trajectories of Xε
t and Y ε

t are determined by the forward backward SDEs:

Xε
t = ϑ +

∫ t

0

b(s,Xε
s , ω̂ε

s , µ
ε
s ;ςs)ds +

∫ t

0

εdWt

Y ε
t = g(Xε

T , µε
T ;ςT ) +

∫ T

t

f (s,Xε
s , ω̂ε

s , µ
ε
s ;ςs)ds ↑

∫ T

t

Zε
s dWs

with the constraint

Y ε,Z ,Y0
T = g(Xε,Z ,Y0

T , µε,Z ,Y0
T ;ςT ).

Controls of the problem: ϑ,Z ,Y0
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Rewriting the Problem I: Rewriting Backward Equation

We have the following objective

inf
ε

Z ,Y0

∫ T

0

f0(t, µ
ε,Z ,Y0
t ,ςt)dt + g0(µ

ε,Z ,Y0
T ,ςT )

where the trajectories of Xε
t and Y ε

t are determined by the forward forward SDEs:

Xε,Z ,Y0
t = ϑ +

∫ t

0

b(s,Xε,Z ,Y0
s , ω̂ε,Z ,Y0

s , µε,Z ,Y0
s ;ςs)ds +

∫ t

0

εdWs

Y ε,Z ,Y0
t = Y0 ↑

∫ t

0

f (s,Xε,Z ,Y0
s , ω̂ε,Z ,Y0

s , µε,Z ,Y0
s ;ςs)ds +

∫ t

0

ZsdWs
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T , µε,Z ,Y0
T ;ςT ).
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Rewriting the Problem II: Introducing the Penalty

Idea: Instead of solving a constrained optimization problem, introduce the penalized

objective function and directly minimize it

→ Our constrained problem is:

inf
ε,Z ,Y0

∫ T

0

f0(t, µ
ε,Z ,Y0
t ,ςt)dt + g0(µ

ε,Z ,Y0
T ,ςT )

with the constraint

Y ε,Z ,Y0
T = g(Xε,Z ,Y0

T , µε,Z ,Y0
T ;ςT ).

and where the trajectories of Xt and Yt are determined by the previously introduced

forward forward SDEs.

→ Introduce the penalized problem:

inf
ε,Z ,Y0

∫ T

0

f0(t, µ
ε,Z ,Y0
t ,ςt)dt + g0(µ

ε,Z ,Y0
T ,ςT )

+ φ E
[
P

(
Y ε,Z ,Y0

T ↑ g
(
Xε,Z ,Y0

T , µε,Z ,Y0
T ;ςT

))]
,

where P is a penalty function such that P(0) = 0 and P(x) > 0 for all x ⇒= 0.
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Rewritten Optimization Problem

The rewritten penalized problem becomes:

inf
ε,Z ,Y0

∫ T

0

f0(t, µ
ε,Z ,Y0
t ,ςt)dt + g0(µ

ε,Z ,Y0
T ,ςT )

︸ ︷︷ 
Cost of the principal: J0

+ φ E
[
P(Y ε,Z ,Y0

T ↑ g
(
Xε,Z ,Y0

T , µε,Z ,Y0
T ;ςT

))]

︸ ︷︷ 
Penalty: P̄

,

where

Xε,Z ,Y0
t = ϑ +

∫ t

0

b(s,Xε,Z ,Y0
s , ω̂ε,Z ,Y0

s , µε,Z ,Y0
s ;ςs)ds +

∫ t

0

εdWs ,

Y ε,Z ,Y0
t = Y0 ↑

∫ t

0

f (s,Xε,Z ,Y0
s , ω̂ε,Z ,Y0

s , µε,Z ,Y0
s ;ςs)ds +

∫ t

0

ZsdWs ,





FFSDE

and µε,Z ,Y0
t = L(Xε,Z ,Y0

t ).

⇑ This is a single-level problem.
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Using Deep Learning to Solve Stackelberg Mean Field Games

DeepStackelbergMFG Idea: Similar to the ideas introduced earlier, utilize neural

networks (NN) to approximate functions for the controls of the problem.

Steps:

→ Approximate the new controls (ϑ,Z ,Y0) by NNs.

→ Approximate the MF distribution by an empirical distribution.

→ Discretize time.

→ Simulate trajectories of (Xt ,Yt) by Monte Carlo using the forward forward SDEs.

→ Loss function = penalized cost.

Theorem (Dayanıklı, Laurière, 2023): Under suitable assumptions, the solution of

the parameterized, time discretized, empirically approximated, and penalized problem

converges to the solution of the original problem.

Remark: Still holds if policies are in the form ς(t,Xt) or ς(t,Xt , µt).
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Numerical Approach: Extensions

Numerically, we can implement this approach for models with more complexity:

→ For example, we can have a path dependent terminal payment as a control for the

principal as in contract theory.

→ We can have interactions through the distribution of control and state instead of

just the distribution of state in the spirit of extended mean field games.
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Mathematical Formulation of the Contract Theory Type Model

The representative agent’s model:

inf
ϑ

Jε,ϖ(ω,µ) := E
[∫ T

0
f (t,Xt ,ωt , µt ;ϖt)dt + g(XT , µT ;ϖT )↓U(ϱ)

]

dXt = b(t,Xt ,ωt , µt ;ϖt)dt + εdWt , X0 = ϑ,

→ Mean field Nash equilibrium can be characterized with an FBSDE.

The principal’s problem:

inf
ε,ϖ

E
[∫ T

0
f0(t, µ̂t ,ϖt)dt + g0(µ̂T ,ϖT )+ ϱ

]
,

s.t:

→ (ω̂, µ̂) is a mean field Nash equilibrium given (ϑ, ↼)

→ Introduce the walkaway option for the agents: Jε,ϖ(ω̂, µ̂) ⇓ ↽

The constraint becomes:

YT = g(XT , µT ;ςT )↑U(↼)
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Rewritten Extended Model

With the same idea, the model can be written as:

inf
Y0:E[Y0]↑ϱ

inf
Z ,ε,ϖ

E
[∫ T

0
f0(t, µ

ε,Z ,Y0,ϖ
t ,ϖt)dt + g0(µ

ε,Z ,Y0,ϖ
T ,ϖT )+ ϱ

]

+ ςE
[
P

(
Yε,Z ,Y0,ϖ
T ↓ g

(
Xε,Z ,Y0,ϖ
T , µε,Z ,Y0,ϖ

T ;ϖT
)
+U(ϱ)

)]

where the trajectories of Xt and Yt are determined by the forward forward SDE.

Special Case: Assume g(XT , ⇀T ;ςT ) = 0 and U(·) is invertible:

→ Terminal condition of (previously) backward SDE gives

YT = ↓U(ϱ) ↔ ϱ = U↓1(↓YT )

→ Then focus on minimizing:

inf
Y0:E[Y0]↑ϱ

inf
Z ,ε

E
[∫ T

0
f0(t, µ

ε,Z ,Y0
t ,ϖt)dt + g0(µ

ε,Z ,Y0
T ,ϖT )+U↓1(↓Yε,Z ,Y0

T )

]

No penalty function is needed!
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Numerical Results



Example 1: Systemic Risk Model with a Regulator
6

Principal (Regulator): Proposes incentive ϑ and has the objective:

inf
ς

∫ T

0
(ϖt ↓ ϖaim

t )2dt + φP
[
XT < D

]

for exogenous ςaim
t = aimed level and D = Default threshold < 0.

Agent Population (Banks): Control = lending/borrowing rate ωt .

The objective of the representative bank is given as

inf
ω

E
[∫ T

0

(
ω2
t

2
↓ ϖtωt(X̄t ↓ Xt) +

↼

2
(X̄t ↓ Xt)

2
)
dt +

c

2
(X̄T ↓ XT )

2
]

where ⇁, c,ς > 0 are exogenous constants and

dXt =

a(X̄t ↓ Xt) + ωt


dt + dWt

where Wt is the idiosyncratic noise and a > 0 is an exogenous constant.

6Carmona, Fouque, and Sun (2013) 36



Solutions: Systemic Risk with a Regulator

Figure 2: Systemic Risk Model with ω = 0.

T !t µ0 a c ω εaim ϑ D

2.0 0.02 ϖ1 1.0 1.0 1.0 0.5 0.0 →0.001
37



Solutions: Systemic Risk with a Regulator

Figure 3: Systemic Risk Model with ω = 10.

T !t µ0 a c ω εaim ϑ D

2.0 0.02 ϖ1 1.0 1.0 1.0 0.5 10.0 →0.001
38



Solutions: Systemic Risk with a Regulator

Figure 4: Systemic Risk Model with ω = 0 and multiple assets.
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Example 2: Contract Theory Model with a Principal and Many Agents
7

Principal: Proposes terminal payment ↼ and has the objective

inf
ϖ

E

ϱ ↓ XT



Agent Population: Controls the e!ort level ωt .

The objective of the representative agent is given as

inf
ω

E
[ ∫ T

0
k
ω2
t

2
dt ↓ ϱ

]

where k > 0 is an exogeneous constant and

dXt =
(
ωt + aXt + ↽1X̄t + ↽2ω̄t

)
dt + dWt

where β1,β2 ⇔ 0 are constants, and Wt is the idiosyncratic noise.

Remark: Optimal E!ort of the agent is given by

ω↔
t = (1 + β2)

e(a+φ1)(T↓t)

k

7Elie, Mastrolia, and Possamäı (2019) 40



Solutions: Interactions through the mean of the controls

Figure 5: dXt =
(
εt + aXt + ϑ2ε̄dt

)
dt + dWt

T !t µ0 ϱ k a ς1 ς2 ϑ

2.0 0.02 ϖ1 1.0 1.0 0.4 0.0 0.5 0

41



Solutions: Interactions through the mean of the controls (Special case)

Figure 6: dXt =
(
εt + aXt + ϑ2ε̄dt

)
dt + dWt

T !t µ0 ϱ k a ς1 ς2 ϑ

2.0 0.02 ϖ1 1.0 1.0 0.4 0.0 0.5 0

42



Example 3: Mitigating Epidemics (I): Intuitions
8

→ Agent Population:

→ Control: Socialization levels

→ Objectives: Follow the policies & minimize the cost (infection/treatment)

S I R

ωεt

∫
aϑt(a, I)da ϖ

ϱ

→ Principal:

→ Control: Social distancing measures, stimulus payment

→ Objectives: Follow the recommendations from healthcare professionals &

flatten the curve

8Aurell, Carmona, Dayanıklı, Laurière (2022) 43



Example 3: Mitigating Epidemics (II): Agent’s Model

Control: Socialization Level: ωt

States: Health Conditions: Susceptible (S), Infected (I), Recovered (R)

Objective:

inf
(ωt )t

E
[ ∫ T

0

cς
2

(
ϖ
(S)
t ↓ ωt

)2

S(x) +


1

2

(
ϖ
(I)
t ↓ ωt

)2
+ cI

treatment
cost



I(x)

+
1

2

(
ϖ
(R)
t ↓ ωt

)2

R(x)
  

cost of not following the policy

dt ↓ ϱ
]

where cς, cI ↘ R+ are constants.

State Dynamics:

S I R

ωεt

∫
aϑt(a, I)da ϖ

ϱ

44



Example 3: Mitigating Epidemics (III): Principal’s Model

Controls: Social Distancing Policy ς, stimulus check ↼

Objective:

inf
(ςt )t ,ϖ

E
[ ∫ T

0
cInf pt(I)

2

  
flattening the curve

+


i→{S,I,R}

↽̄(i)

2

(
ϖ
(i)
t ↓ ϖ̄

(i)
t

recommended
policy

)2
dt + ϱ

]

for constant ς̄, β̄ ↘ Rm
+ and cInf > 0.

https://www.npr.org/sections/health-shots/2020/03/13/815502262/flattening-a-pandemics-curve-why-staying-home-now-can-save-lives 45



Solution: SIR Mean Field Game

46

Figure 9: Late lockdown, explicit solution. Evolution of the population state distribution (left),
evolution of the controls (right).

Figure 10: Late lockdown, numerical solution. Evolution of the population state distribution (left),
evolution of the controls (right).



Solutions: SEIRD Stackelberg Mean Field Game

E I

R

ωεt

∫
aϑt(a, I)da

ϖ

ϱ

D

S

ς
ω

Figure 11: SEIRD Dynamics (top). SEIRD Stackelberg MFG vs free spread SEIRD dynamics (bottom):
Comparison of the Cumulative Density of Infected agents (left); Evolution of the controls (right).

T p0 cε cI cInf ς̄ ε̄ ς ϑ φ ω ϖ cd cD
30 [0.9, 0, 0.1, 0, 0] 10 1 1 [0.2, 0.2, 1, 0] [1, 1, 0.7, 1] 0.25 0.1 0.01 2 0.01 20 20
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Conclusions

This talk: Optimal policies for a large population of noncooperative agents

• Introduction to SOC and deep learning for such problems

• Equilibrium notions

• MFGs & FBSDEs

• Stackelberg MFGs

• Bi-level optim. → constrained optim. → single-level optim

• Deep learning algorithm & numerical examples

Future directions:

• Existence & uniqueness of solutions to general Stackelberg MFG

• Convergence rate to Nash equilibrium for the shooting method

• Real-world applications (e.g., in economics)

Thank you!
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