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Motivation

Goal: A principal wants to design optimal policies to get the best outcomes from a
large population of agents who prioritize their own objectives

Some examples:
— Systemic risk: A regulator incentivizes large number of banks borrowing and lending
from each other to minimize the expected number of defaults.

— Contract theory: An employer (principal) writes a payment contract for a large number
of employees to maximize their expected return.

— Carbon emissions: A regulator wants to find optimal carbon tax levels for electricity
producers to attain the targeted reduction in the carbon emission levels.

— Advertisement: A company wants to optimize its advertisement strategies while
interacting with consumers to maximize their profits.

— Management of epidemics: A government chooses nonpharmaceutical policies to
mitigate an epidemic in a country.
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Stochastic Optimal Control Problems

We have 1 agent.

She chooses her control to minimize her expected costs (or maximize her rewards)
between time t =0 and t = T.

She has:
— State: (Xi)eepo, 1]

— Control: (a¢)eepo, 7]

— Objectives: running cost & terminal cost



Stochastic Optimal Control Problems

We have 1 agent.

She chooses her control to minimize her expected costs (or maximize her rewards)
between time t =0 and t = T.

She has:

— State: (Xt)te[O,T]
— Control: (a¢)eepo, 7]

— Objectives: running cost & terminal cost

Example: The agent works in a company and she chooses her effort level that affects
the value of the project she is working on:

— X:: Value of the project at time t
— «a: Effort level at time t

— Objectives: effort’'s cost & utility from the value of the project



Stochastic Optimal Control Problems: Mathematical Formulation (1)

Example: The agent works in a company and she chooses her effort level that affects
the value of the project she is working on.

Mathematical Formulation:

(T:;l E[/OTI<claf - czU(Xt))I dt._C3U(XT).]

Running Cost Terminal Cost
dX: = a; dt +odW;, Xo=¢(

L

Drift

U(+) is a utility function
ci, &, ¢3, 0 are positive constants (weights)

W; is the Brownian motion

Ll

¢ ~ po is the initial condition



Stochastic Optimal Control Problems: Mathematical Formulation (I1)

Agent’s problem:

min E[/OTI(claf - cQU(xt)) dt —csU(Xr)

(ce)e . ,

Running Cost Terminal Cost
dXe = a; dt +odW:, Xo=¢

L

Drift

More generally: stochastic optimal control (SOC) problem:

min E[/()Tlf(t,Xt,at)ldt—l— Ig(XT)I }

(ove)e

Running Cost Terminal Cost

dXt = b(t, Xt70tt) dt + O'th, Xo = C
Drift



Stochastic Optimal Control Problems: Mathematical Formulation (I1)

Agent’s problem:

min E[/()Tl(claf - cQU(xt)) dt —csU(Xr)

(ce)e . ,

Running Cost Terminal Cost
dXe = a; dt +odW:, Xo=¢

L

Drift

More generally: stochastic optimal control (SOC) problem:

min E[/()Tlf(t,Xt,at)ldt—l— Ig(XT)I }

(ove)e

Running Cost Terminal Cost

dXt = b(t, Xt70tt) dt + O'th, Xo = C
Drift

Later: several interacting agents; not just SOC but game theory.



Using Deep Learning to Solve

Stochastic Optimal Control Problems



Neural Networks as Function Approximators

Hidden
layer 1

Hidden
layer 2

Output
layer

— Neural networks (NNs) can be used to approximate functions

— Empirically efficient in high dimension

— Provably breaks the curse of dimensionality in some cases

— Ex.: Regression: To approximate a function f(x), we can use a NN that outputs
fo(x) and train it (i.e., adjust #) to minimize the loss given by the MSE:

L(0) = E|f(x) — fo(x)[*



Neural Networks as Function Approximators

Hidden
layer 1

Hidden
layer 2

Output
layer

Neural networks (NNs) can be used to approximate functions
Empirically efficient in high dimension
Provably breaks the curse of dimensionality in some cases

Ll

Ex.: Regression: To approximate a function f(x), we can use a NN that outputs
fo(x) and train it (i.e., adjust #) to minimize the loss given by the MSE:

L(0) = E|f(x) — fo(x)[*

— In the sequel, we will use NN to minimize other loss functions L(#)



Deep Learning for Stochastic Optimal Control Problem

SOC problem:

.,
min E[/ f(t,Xt,at)dt-i-g(XT)]
at)t 0

dXt = b(t, Xt,O[t)dt+Uth7 Xo ~ o
Numerical approach with deep learning;:

— Consider the control as a function of time and the current state: a; = o(t, X;)

— Use NN approximation ¢g(t, X¢) for the control function

LSimilar to Han & E (2016), extended to MFC problems in Carmona, Lauriere (2022) and Dayanikli, Lauriere, Zhang (2023).
See Hu, R., & Lauriere, M. (2022) for a survey. 10
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min E[/ f(t,Xt,at)dt-i-g(XT)]
at)t 0

dXt = b(t, Xt,O[t)dt + O'th7 Xo ~ o

Numerical approach with deep learning;:

— Consider the control as a function of time and the current state: a; = o(t, X;)
— Use NN approximation ¢g(t, X¢) for the control function
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Deep Learning for Stochastic Optimal Control Problem

SOC problem:

.,
min E[/ f(t,Xt,at)dt-i-g(XT)]
at)t 0

dXt = b(t, Xt,Oét)dt + O'th7 Xo ~ o

Numerical approach with deep learning;:

— Consider the control as a function of time and the current state: a; = o(t, X;)
— Use NN approximation ¢g(t, X¢) for the control function

— Discretize the time: t = {0, At,2At,...,nAt}, where T = nAt:
L(0) = [Z F(t, Xe, po(t, X2)) % At+g(XT)]

Xerae = b(t, Xt,goe(L Xt)) X At + ocWae, Xo ~ po

— Sample Xo and Brownian motion increments; simulate a trajectory
— Train to minimize the loss (cost) L(0) over the parameters 6. !

We want to use deep learning to solve more complex problems.

LSimilar to Han & E (2016), extended to MFC problems in Carmona, Lauriere (2022) and Dayanikli, Lauriere, Zhang (2023).
See Hu, R., & Lauriere, M. (2022) for a survey. 10



Nash Equilibrium

in Large Populations



Overview of the Approach: Mean Field Game

One of the most studied solution concept in game theory: Nash equilibrium.

In this talk: Dynamic, stochastic, continuous time, (possibly) continuous space.

— Challenge: Large number N of agents.

— Approach: Approximate the game with a Mean Field Game.

2Huang-Mthamé-Caines (2006), Lasry-Lions (2006).
Image credit: https://gbxglobal.org/the-importance-of-the-network /

12



Overview of the Approach: Mean Field Game

One of the most studied solution concept in game theory: Nash equilibrium.
In this talk: Dynamic, stochastic, continuous time, (possibly) continuous space.

— Challenge: Large number N of agents.

— Approach: Approximate the game with a Mean Field Game.
In Mean Field Games (MFGs):? i

— Assume N — oo.

— Agents are identical and infinitesimal. ‘ “ ' 4.
— Agents interact through the distribution. z’\\‘\ Ry
— ldea: Focus on &)

® a representative agent X '——\,/

e and her interactions with the distribution-___ -

2Huang-Mthamé-Caines (2006), Lasry-Lions (2006).

Image credit: https://gbxglobal.org/the-importance-of-the-network/ 12



Mathematical Formulation of Mean Field Game

The cost for the representative agent using control o € A when facing a population
with state distribution p is

T
J(a;p) :=E |:/ If(t,Xt,ozt,;Lt)ldt+Ig(X7—,;rr)
0 Running Cost Terminal Cost

The agent’s state X; has the following dynamics:

dXe = b(t, Xt, g, put) dt + odW, Xo = ¢ ~ po-
— 4
Drift
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Mathematical Formulation of Mean Field Game

The cost for the representative agent using control o € A when facing a population

with state distribution p is

;
J(a;p) = =E [/ f(t, Xe, our, pe) dt + (X7, pr)
O L ] L

Running Cost Terminal Cost
The agent’s state X; has the following dynamics:

dXe = b(t, Xt, g, put) dt + odW, Xo = ¢ ~ po-
— 4
Drift

Definition: The pair (&, 1) is a Mean Field Game Nash equilibrium if it satisfies:

(i) & minimizes the cost of representative agent given population distribution fi;

(i) Vt € [0, T], it is the distribution of the representative agent’s state X;.

13



Mathematical Formulation of Mean Field Game

The cost for the representative agent using control o € A when facing a population

with state distribution p is

]
Running Cost Terminal Cost

;
J(a;p) = =E [/ f(t, Xe, our, pe) dt + (X7, pr)
O L ] L

The agent’s state X; has the following dynamics:

dXe = b(t, Xt, g, put) dt + odW, Xo = ¢ ~ po-
— 4
Drift

Definition: The pair (&, 1) is a Mean Field Game Nash equilibrium if it satisfies:

(i) & minimizes the cost of representative agent given population distribution fi;

(i) Vt € [0, T], it is the distribution of the representative agent’s state X;.

It can be characterized by a forward-backward stochastic differential equation
(FBSDE) system of McKean-Vlasov (MKV) type.

13



Mean Field Game Example

— Instead of 1 agent: there is a large population of agents.
— Each agent
e chooses her effort level
e aims at minimizing their total cost
e interacts with other agents through the average project value

(o)t

T
min IE[/ (%af - U(Xt)> dt + G(XT)]
0
el
Running Cost

dX: = (o + Xe) dt + adWe, Xo=¢
| |

Drift

14



Mean Field Game Example

— Instead of 1 agent: there is a large population of agents.
— Each agent
e chooses her effort level
e aims at minimizing their total cost
e interacts with other agents through the average project value

(@:Q E[/()T (%0@ - U(Xr)> dt + G(XT)]

Running Cost

dX: = (o + Xe) dt + adWe, Xo=¢
Drift

The Nash equilibrium control is
dt == —%Zt
where (Xt, Yt, Z:): solves the FBSDE:

dX; = (—Z:/o + X¢)dt + odW, Xo=¢

dy: = (%‘223 - U(Xt)> dt + Z.dW:, Y1 = G(Xr).

14



Using Deep Learning to Solve
Mean Field Games



Using Deep Learning to Find Mean Field Nash Equilibrium (1/3)

There are various MFG numerical methods (finite diff. schemes, ML methods, ...

3See e.g. Achdou & Lauriere (2020) and Laurigre (2021) for surveys.

).3
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Using Deep Learning to Find Mean Field Nash Equilibrium (1/3)

There are various MFG numerical methods (finite diff. schemes, ML methods, ...). *

Here, we want to solve the FBSDE that characterizes the mean field Nash equilibrium:

— Challenges: Coupled, McKean-Vlasov (interactions through the law)

— Y: represents the value function of a representative player (i.e., the minimized
expected cost between time t and T when the player starts from x = X; and the
population follows the equilibrium).

t t
State dynamics + X; = ¢ +/ b(s, Xs, &s, pis)ds +/ odWs
0 0

T T
Value function < Y; = g(X7, 1) +/ (s, Xs, Qs, ps)ds —/ ZsdW

t t

where e = L(X¢) and &s = as(Xs, ps, Zs).

3See e.g. Achdou & Lauriere (2020) and Laurigre (2021) for surveys.
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Using Deep Learning to Find Mean Field Nash Equilibrium (2/3)

In order to solve the coupled FBSDE, we are going to use a shooting method:*
— Instead of:
T T
Value function < Y; = g(X7, 1) +/ (s, Xs, Gis, pus)ds 7/ ZsdW
t t

— We write: . .
Y=Y —/ (s, Xs, Gs, ps)ds +/ ZsdW
0 0

— Goal: Find Yp and (Z;): s.t. the terminal condition Y7 = g(Xr, ur) is satisfied

4Han, Jentzen, E (2019); extended to McKean-Vlasov FBSDEs in Carmona, Lauriére (2022).
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Using Deep Learning to Find Mean Field Nash Equilibrium (2/3)

In order to solve the coupled FBSDE, we are going to use a shooting method:*
— Instead of:
T T
Value function < Y; = g(X7, 1) +/ (s, Xs, Gisy pis)ds — / ZsdW
t t

— We write: . .
Yi = Yo — / (s, Xs, Gs, ps)ds +/ ZsdW
Jo 0

— Goal: Find Yp and (Z;): s.t. the terminal condition Y7 = g(Xr, ur) is satisfied

O +<T -0 +<T

4Han, Jentzen, E (2019); extended to McKean-Vlasov FBSDEs in Carmona, Lauriére (2022).

17



Using Deep Learning to Find Mean Field Nash Equilibrium (3/3)

— Now we have forward-forward SDEs:

t t
thg—s—/ b(s,Xs,&s,,u,s)ds—l-/ ocdW,
0 0

t t
Y: = Yof/ f(s,Xs,&s,us)der/ ZedW,s
0 0

where p1p = L(X¢) and &s = &s(Xs, ps, Zs) and we need to shoot Y7 = g(Xr, pur).

Application in finite state MFG: Aurell-Carmona-Dayanikli-Lauriére (2022a)
Graphon game application: Aurell-Carmona-Dayanikli-Lauriere (2022b)

18
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— Now we have forward-forward SDEs:

t t
thg—s—/ b(s,Xs,ds,,u,s)ds—i-/ ocdW,
0 0

t t
Y: = Yof/ f(s,Xs,&s,us)der/ ZedW,s
0 0

where p1p = L(X¢) and &s = &s(Xs, ps, Zs) and we need to shoot Y7 = g(Xr, pur).

— As for SOC: Discretize the time.
— But here:
e There is a distribution: we approximate it by an empirical distribution ;V, obtained
by simulating a system of N particles: (X{, Yti)tE[O,T],iE[N]
e The controls are: Yo = yg 9, (X0) and Z: = zp,(t, Xt)
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Graphon game application: Aurell-Carmona-Dayanikli-Lauriere (2022b)



Using Deep Learning to Find Mean Field Nash Equilibrium (3/3)

— Now we have forward-forward SDEs:

t t
thg—s—/ b(s,Xs,ds,,u,s)ds—i-/ ocdW,
0 0

t t
Y: = Yof/ f(s,Xs,&s,ps)der/ ZedW,s
0 0

where p1p = L(X¢) and &s = &s(Xs, ps, Zs) and we need to shoot Y7 = g(Xr, pur).

— As for SOC: Discretize the time.
— But here:

e There is a distribution: we approximate it by an empirical distribution ;V, obtained
by simulating a system of N particles: (X{, Yti)tE[O,T],iE[N]

e The controls are: Yo = yg 9, (X0) and Z: = zp,(t, Xt)

e The goal is to shoot the terminal condition: Y = g(X7,pu71).

— The problem is to minimize over 8 = (61, 6>) the loss:

LSy ;
L(O) = HED (Y7’ — g%, u7))’

i=1

Application in finite state MFG: Aurell-Carmona-Dayanikli-Lauriére (2022a)

Graphon game application: Aurell-Carmona-Dayanikli-Lauriere (2022b) 18



Stackelberg Equilibrium &
Stackelberg Mean Field Games



What is a Stackelberg Equilibrium?

Our aim is to design optimal policies/incentives in order to get the best
outcomes when we interact with many rational agents who prioritize their own.

— There is a leader (principal) and a follower (agent).

— The leader chooses incentives.

— The follower gives their best response to these incentives.

— The leader optimizes incentives by anticipating the follower's reaction.

— Bi-level optimization problem.

5Basar (1984, 1989), Holmstrm-Milgrom (1987), Sannikov (2008, 2013), Cvitani¢-Possamai-Touzi (2018)
Ljungqvist, Sargent (Chapter 19: Dynamic Stackelberg Problems)

20



What is a Stackelberg Equilibrium?

Our aim is to design optimal policies/incentives in order to get the best
outcomes when we interact with many rational agents who prioritize their own.

— There is a leader (principal) and a follower (agent).

— The leader chooses incentives.

— The follower gives their best response to these incentives.

— The leader optimizes incentives by anticipating the follower’s reaction.
— Bi-level optimization problem.

— Stackelberg equilibrium® is different from Nash Equilibrium

5Basar (1984, 1989), Holmstrm-Milgrom (1987), Sannikov (2008, 2013), Cvitani¢-Possamai-Touzi (2018)
Ljungqvist, Sargent (Chapter 19: Dynamic Stackelberg Problems)

20



From Stackelberg Equilibrium to Stackelberg MFG

In our setup:

— Not just one follower, but a large population of followers (agents).

— They are noncooperative agents.

— So the population of agents will be in a Nash equilibrium.

— The Nash equilibrium depends on the incentives given by the principal.

Principal

Population of agents

21



From Stackelberg Equilibrium to Stackelberg MFG

In our setup:

— Not just one follower, but a large population of followers (agents).
— They are noncooperative agents.
— So the population of agents will be in a Nash equilibrium.

— The Nash equilibrium depends on the incentives given by the principal.

Principal

Population of agents

Nash eq. in the population will be approximated with a Mean Field Game.

21



Stackelberg Mean Field Games



Brief Literature Review

Some related references:

— Contract theory models with large number of agents:

e Elie, Mastrolia, and Possamai (2019): Continuous state space
e Carmona and Wang (2018): Finite state space
e Incentives through a terminal payment only

— Numerical approaches:

e Aurell, Carmona, Dayanikl, and Lauriere (SICON, 2022)
e Campbell, Chen, Shrivats and Jaimungal (2021)

— In the rest of the talk:

e A Machine Learning Method for Stackelberg Mean Field Games. Dayanikli, Lauriére
(2023, to appear in MOR).

See Gokce Dayanikh's papers for more examples!
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Agent Population: Mean Field Game Given Principal’s Incentives

Incentives: A ——— Mean field game: inf o J*(a; )

Principal Agent population

Mean field equilibrium: (&>, &™)

The cost for the representative agent using control o € A when facing a population
with state distribution g is

.
Mo p) =E U f(t, Xe, e, pe; Ae)dt + g(Xr, uri A7) |
0

where A is incentive chosen by the principal, and the representative agent'’s state X;
has the following dynamics:

d)(LL = b(t, Xf? Oty [ty )\t)dt + (7'th7 XO = é‘ ~ lo.

24



Agent Population: Mean Field Game Given Principal’s Incentives

Incentives: A ——— Mean field game: inf o J*(a; )

Principal Agent population

Mean field equilibrium: (&>, &™)

The cost for the representative agent using control o € A when facing a population

with state distribution g is

.
Mo p) =E U f(t, Xe, e, pe; Ae)dt + g(Xr, uri A7) |
0

where A is incentive chosen by the principal, and the representative agent'’s state X;
has the following dynamics:

d)(LL = b(t,Xt,at,ﬂt;At)dt+O'th7 XO :CN/,LO
Different than before: Impact of the principal’s incentive.
Given A, the MFG solution can still be characterized with an FBSDE.

Remark: Principal’s incentive, \;, can be in the form of A(t, Xt, pu¢).
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Principal: Defining Stackelberg Equilibrium

Incentives: A ——— Mean field game: inf o J*(;

)

Principal Agent population

Y $—

Optimization: infx J°(X) ~—— Mean field equilibrium: (&>, ju

)

The principal’s cost for using incentive A is

.
20 ::/ fo(t, A2, \e)dt + go(p2, A7)
0

25



Principal: Defining Stackelberg Equilibrium

Incentives: A ——— Mean field game: inf o J*(;

)

Principal Agent population

Y —

Optimization: infx J°(X) ~—— Mean field equilibrium: (&>, ju

)

The principal’s cost for using incentive A is

i
L) ::/ o, 2 A )dt + go(7i2 A7)
0

The principal’s optimization problem is

e 0
|r>1\fJ (A).

subject to the constraint: the population is in MFG Nash equilibrium: (&>, ™)

25



Stackelberg Mean Field Game Problem

The full problem becomes:

T . . .
. Optimization of
of [ At det @A) P
———— ——

Xen J Principal
Running cost of principal Terminal cost of principal
A ! A A A !
X¢ :CJr/ b(s,Xs,ds,,us;/\s)der/adWs o
0 0 Equilibrium
State of agent Drift of agent . h
A A A T A AN A T e
Y2 = g(X}pdiAr) + / Fs, X2, 42, 12 As) ds — / Z.dW, | Population
S t t
Value function Terminal cost of agent Running cost of agent

where p = £(X2) and ¢ ~ po.
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Stackelberg Mean Field Game Problem

The full problem becomes:

Optimization of

T
. A A
inf fo(t A dt + 0 AT L
AGI\/O (t 1, o) w,’_)/ Principal
Running cost of principal Terminal cost of principal
A ! A A A !
X¢ :CJr/ b(s,Xs,ds,,us;/\s)der/adWs o
~~ 0 0 Equilibrium
State of agent Drift of agent .
T - in the
A A A A AN A H
Y2 = g dian) + [ s X082 A ds— [ Z.dw, | Population
N— t t
Value function Terminal cost of agent Running cost of agent

where p = £(X2) and ¢ ~ po.

This is a bi-level problem!
— We will rewrite the problem as a single level problem, to solve it more efficiently.

26



How to rewrite this problem

as a single-level optimization problem?



Rewriting the Problem I: Rewriting Backward Equation

We have the following objective

;
inf / ot 12 At + g1, A7)
0

where the trajectories of X* and Y;* are determined by the forward backward SDEs:

t t
Xt)\ = < + / b(S, Xskvd?7usk; )\s)ds + / Uth
0 J0

T T
y2 =g(X%,u¢;AT)+/ f(s,xs*,a?,u?;xs)ds—/ Z2dW,
t t

28



Rewriting the Problem I: Rewriting Backward Equation

We have the following objective

)

inf [ (e TN + gl )
0

ZYo

where the trajectories of X* and Y{* are determined by the forward forward SDEs:

t t
XMEY :<+/ b(s,Xf"z’YO,d;\’z’y°,u§"z’y°;)\s)ds—i—/ odW.
0 0

t

t
YYo= vy — / F(s, X270, G227, u2 Y0\ )ds + / Z.dW,
0 0

with the constraint
AZYy _ XZ,Yo  NZ,Yp.
Yo = g(XF T, uy T AT).

Controls of the problem: A\, Z, Y;

28



Rewriting the Problem Il: Introducing the Penalty

Idea: Instead of solving a constrained optimization problem, introduce the penalized
objective function and directly minimize it
— Our constrained problem is:

T

inf [ fo(t,m %70 A)dt + go(uy ™, AT)
X.Z,% /o

with the constraint

AZ, Y AZYe  AZ)Y.
‘YT O =g(XF T uy T AT).

and where the trajectories of X; and Y: are determined by the previously introduced
forward forward SDEs.

29



Rewriting the Problem Il: Introducing the Penalty

Idea: Instead of solving a constrained optimization problem, introduce the penalized
objective function and directly minimize it
— Our constrained problem is:

T

inf [ fo(t,m %70 A)dt + go(uy ™, AT)
X.Z,% /o

with the constraint

AZ, Y AZYe  AZ)Y.
‘YT O =g(XF T uy T AT).

and where the trajectories of X; and Y: are determined by the previously introduced
forward forward SDEs.

— Introduce the penalized problem:

.
inf [ Rt w70 A)dt + go (17 E ™, A7)
Xz o

+v|E[P(YP5Y0 — g (X}, 13570 00)) ]

where P is a penalty function such that P(0) = 0 and P(x) > 0 for all x # 0.
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Rewritten Optimization Problem

The rewritten penalized problem becomes:

.
inf fo(t, % Ae)dt + go(up? ™, A7)
AZ,Y0 Jo

Cost of the principal: JO

+v E [P — g (X2, 1377 00) )]

Penalty: P

where

t t
X0 :¢+/ b(s,Xf"z’Y",ds)"z’y",u?"z’y";)\s)ds+/ odWs,
o, ’. FFSDE
YN =y, — / F(s, X2 G057, 2270\ ) ds + / Z.dW,
0 0

and M2 = £(x}Z0).

= This is a single-level problem.
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Using Deep Learning to Solve Stackelberg Mean Field Games

DeepStackelberglFG ldea: Similar to the ideas introduced earlier, utilize neural
networks (NN) to approximate functions for the controls of the problem.

Steps:
— Approximate the new controls (X, Z, Yg) by NNs.

Approximate the MF distribution by an empirical distribution.

N
— Discretize time.
— Simulate trajectories of (X¢, Y:) by Monte Carlo using the forward forward SDEs.
N

Loss function = penalized cost.
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Using Deep Learning to Solve Stackelberg Mean Field Games

DeepStackelberglFG ldea: Similar to the ideas introduced earlier, utilize neural
networks (NN) to approximate functions for the controls of the problem.

Steps:
— Approximate the new controls (X, Z, Yg) by NNs.

Approximate the MF distribution by an empirical distribution.

N
— Discretize time.
— Simulate trajectories of (X¢, Y:) by Monte Carlo using the forward forward SDEs.
N

Loss function = penalized cost.

Theorem (Dayanikh, Lauriére, 2023): Under suitable assumptions, the solution of
the parameterized, time discretized, empirically approximated, and penalized problem
converges to the solution of the original problem.

Remark: Still holds if policies are in the form \(t, Xt) or A(t, Xe, pit).

31



Numerical Approach: Extensions

Numerically, we can implement this approach for models with more complexity:

— For example, we can have a path dependent terminal payment as a control for the

principal as in contract theory.

— We can have interactions through the distribution of control and state instead of
just the distribution of state in the spirit of extended mean field games.
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Mathematical Formulation of the Contract Theory Type Model

The representative agent’s model:

-
igf Jk,ﬁ(a,p) =E {/ f(t, Xe, e, pe; Ae)dt + g( X, pr; A1) — U(€)
0

dXy = b(t, X, at, jue; Ar)dt + odW, Xo = ¢,

— Mean field Nash equilibrium can be characterized with an FBSDE.
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Mathematical Formulation of the Contract Theory Type Model

The representative agent’s model:
T
iQf (e, p) =E {/ f(t, Xe, e, pe; Ae)dt + g( X, pr; A1) — U(€)
0

dXe = b(t, X, at, pe; Ae)dt + odWe, Xo = ¢,
— Mean field Nash equilibrium can be characterized with an FBSDE.

The principal’s problem:
-
TEE |:/ fb(tzﬂh)‘t)dt+g0(ﬂT’AT)+£:| )
; 0
s.t:

— (&, iv) is a mean field Nash equilibrium given (A, €)
— Introduce the walkaway option for the agents: J*(é&, 1) < &
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Mathematical Formulation of the Contract Theory Type Model

The representative agent’s model:
T
iQf (e, p) =E {/ f(t, Xe, e, pe; Ae)dt + g( X, pr; A1) — U(€)
0

dXe = b(t, X, at, pe; Ae)dt + odWe, Xo = ¢,
— Mean field Nash equilibrium can be characterized with an FBSDE.

The principal’s problem:
-
TEE |:/ fb(tzﬂh)‘t)dt+g0(ﬂT’AT)+£:| )
; 0
s.t:

— (&, iv) is a mean field Nash equilibrium given (A, €)
— Introduce the walkaway option for the agents: J*(é&, 1) < &

The constraint becomes:

’ YT = g(Xr,uri A7) — U(§) ‘
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Rewritten Extended Model

With the same idea, the model can be written as:
[/ fot, pe 2 Y08 Ae)dt + go(uy? Y0 Ar)+£}

+ B [P(YP IS g (xP BN VSN 1 U())]

Yo ]E[Y0]<n z >\ &

where the trajectories of X: and Y; are determined by the forward forward SDE.
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Rewritten Extended Model

With the same idea, the model can be written as:
[/ fot, pe 2 Y08 Ae)dt + go(uy? Y0 Ar)+£}

+ B [P(YP IS g (xP BN VSN 1 U())]

where the trajectories of X: and Y; are determined by the forward forward SDE.

Yo ]E[Y0]<n z >\ &

Special Case: Assume g(Xr, pr; A1) = 0 and U(:) is invertible:

— Terminal condition of (previously) backward SDE gives
Yr=-U) = ¢=U(-Y7)

— Then focus on minimizing:

;
fE fo(t, uF Y0 Ap)dt A2 Yo\ Ut (—yXEYo
ot B | [ 2 e (Y A 4 U

No penalty function is needed!

)
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Numerical Results



Example 1: Systemic Risk Model with a Regulator®

Principal (Regulator): Proposes incentive A and has the objective:
T .
inf / (A = AF™)2dt + 9P [Xr < D]
A Jo

for exogenous A\¥™ = aimed level and D = Default threshold < 0.

Agent Population (Banks): Control = lending/borrowing rate c.
The objective of the representative bank is given as
. T (a2 c €. S 5 c, >
infE — —Atat(Xt—Xt)—‘r*(Xt—Xt) dt+ 7(XT_XT)
a o 2 2 2
where €, ¢, A > 0 are exogenous constants and
dXe = [a(Xe — X¢) + a¢]dt + dW;

where W, is the idiosyncratic noise and a > 0 is an exogenous constant.

®Carmona, Fouque, and Sun (2013)
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Solutions: Systemic Risk

with a Regulator
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—— total loss —— penalty 0.504 — :a’m
08 0.08
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Time
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Time i
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Figure 2: Systemic Risk Model with v = 0.

At 1o a c € Aaim

0.02 81 1.0 1.0 0.5 0.0 —0.001
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Solutions: Systemic Risk

with a Regulator
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Figure 3: Systemic Risk Model with v = 10.
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Solutions: Systemic Risk with a Regulator

— total loss 100 — penalty 121 —An
. o
10! —
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Figure 4: Systemic Risk Model with v = 0 and multiple assets.
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Example 2: Contract Theory Model with a Principal and Many Agents’

Principal: Proposes terminal payment £ and has the objective

irng[g - X71]

Agent Population: Controls the effort level a;.

The objective of the representative agent is given as

T 2
inf IE[/ k—tdt—ﬁ]
« 0 2
where k > 0 is an exogeneous constant and
dX; = (Oét + aXe + B Xe + 6207:) dt + dW;
where 31, 52 > 0 are constants, and W, is the idiosyncratic noise.

Remark: Optimal Effort of the agent is given by

oot B)(T—1)

k

Oé:LK = (1-1—,82)

"Elie, Mastrolia, and Possamai (2019)
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Solutions: Interactions through the mean of the controls

0.5
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Figure 5: dX; = (at TaXe + ﬁzadt) dt + dW,

T

At

Ko

o

k

a

B1

Bo

~

2.0

0.02

51

1.0

1.0

0.4

0.0

0.5

0

41



Solutions: Interactions through the mean of the controls (Special case)
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Figure 6: dX; = ((xf + aX; + BZ&dt) dt + dW;
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Example 3: Mitigating Epidemics (l): Intuitions®

— Agent Population:

— Control: Socialization levels
— Objectives: Follow the policies & minimize the cost (infection/treatment)

ﬁat/apt(a, Ida Y
S || I Il R

— Principal:
— Control: Social distancing measures, stimulus payment
— Objectives: Follow the recommendations from healthcare professionals &
flatten the curve

SAureII, Carmona, Dayanikli, Lauriere (2022)
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Example 3: Mitigating Epidemics (I1): Agent’s Model

Control: Socialization Level: a:
States: Health Conditions: Susceptible (S), Infected (1), Recovered (R)

Objective:
T 2 1 2
: X (\(5) _ 20
(:lntf)tE[/o 5 ()\t ozt) ]ls(x)+<2 (,\t ozt) + g >11.(x)

treatment
cost

T (,\ER) - at>2 1r(x) dt— 5]

cost of not following the policy

1
2
where ¢y, a € Ry are constants.

State Dynamics:

Bay /apz(a, I)da.
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Example 3: Mitigating Epidemics (I11): Principal’'s Model

Controls: Social Distancing Policy A, stimulus check &

Objective:
T 10) R .
inf E[/ cme pe(1)? + g Al ()\E') — )\g') )2dt + {]
(Ae)e,€ 0 . ~—
flattening the curve i€{S,I,R} recommended
policy

for constant X, 3 € R7 and cpnr > 0.

Health care system capacity

Without
Protective
Measures

With Protective

Time since first case

https://www.npr.org/sections/health-shots/2020,/03 /13 /815502262 flattening-a-pandemics-curve-why-staying-home-now-can-save-lives
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Solution: SIR Mean Field Game

1.0
0.8
206 —s
g — 0.8
004 _—
0.7 S
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o 10 20 30 40 50 0 10 20 30 40 50
Days Days

Figure 9: Late lockdown, explicit solution. Evolution of the population state distribution (left),
evolution of the controls (right).
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Figure 10: Late lockdown, numerical solution. Evolution of the population state distribution (left),

evolution of the controls (right).
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Solutions: SEIRD Stackelberg Mean Field Game

— Stackelberg 100 - - - - - - - - - - - - - -—-—-—-——=
- Free Spread ———— ]

0.75

0 5 1o 15 20 25 30 S 10 15 20 25 30

Days Days
Figure 11: SEIRD Dynamics (top). SEIRD Stackelberg MFG vs free spread SEIRD dynamics (bottom):
Comparison of the Cumulative Density of Infected agents (left); Evolution of the controls (right).
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Conclusions

This talk: Optimal policies for a large population of noncooperative agents

e Introduction to SOC and deep learning for such problems
Equilibrium notions

MFGs & FBSDEs

Stackelberg MFGs

Bi-level optim. — constrained optim. — single-level optim

Deep learning algorithm & numerical examples
Future directions:

e Existence & uniqueness of solutions to general Stackelberg MFG
e Convergence rate to Nash equilibrium for the shooting method
e Real-world applications (e.g., in economics)

Thank you!
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