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Magnetorheological fluids

Figure: Magnetite particles aggregating into chains. Image from K. Jiangang et al (Miner. Enginrg. '15)

m Suspension of non-colloidal ferromagnetic particles in a non-magnetizable
fluid

—> Brownian motion effects are neglected

m .05-10 pum size particles

—> Volume fractions of ~ 10% to ~ 50%
m Once a magnetic field is applied, the particles organize in chain structures

m Millisecond transformation form fluid to semi-solid state
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Typical modeling approaches

m Phenomenological approach

» Jacob Rabinow (aige Trans. 48)
» Basic mathematical model by Rosensweig & Neuringer (phys. Fuids, '64)

* Shliomis (sov. Phys. JETP, '72) improves model by allowing “internal rotations”

» Classical thermodynamics approach
* Brigadnov & Dorfmann (Cont. Mechanics Thermod., '05)

m Homogenization approach

» First attempt using homogenization was in Lévy (s mec, Theor. App.. '85)
> Lévy & Hsieh (int s Engng. sci.. 88) extended the work of Lévy

» Perlak & Vernescu (Rev. Roumaine Math. Pures Appl., 'oo)

» Gorb, Maris, Vernescu (s math. Anal. Appl. '14)

» N. & Vernescu (zamp, 20, Emerg. Problems Homogen. PDE, '21)

> Tang, GOI’b, & Jimenez-Bolanos (S\AP, 21, SIMA, ’23)
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Cauchy stress

g

m Magnetorheological fluids exhibit non-Newtonian behavior

m In shear experiments the Bingham constitutive law models response of

magnetotheological fluids

B Newtonian incompressible fluids

=—pl+2ve(v), e(v)=

N| —

(Vv+V'y)

o =2veév), A)=A- % tr(A)

{

B Bingham incompressible fluids

if |o| > o,, then 0 =2ve(v)+ o,
if |o| < oy, then e(v) =0

e(v)
le(v)l

e

Figure: stress versus strain rate
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Governing equations

—dive =0, 0 =2¢(v) —plLin Qp,

divv = 0 in Qp,
v =vk) L) x (xfx(k)) ondPM k=1, . K,
divB =0 in Q,
curlH = Ry v X Bxg,, in £,
i —0i . p(k) —
div( Ry vxBxq,)=0in Q, <Rm vxB-n ’1>H1/2(6P<k>),H1/2(aP<k>) 0

compatibility conditions
m Magnetic permeability,

uE in S,

. (A :=1/u>0)
wp in p,

H =B, u::{

m Interface and exterior boundary conditions,
[v]=00n8P*®) v=0B-n=b"nonry,
m [R, ] = [7rL V] is the magnetic Reynolds number
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Balance of forces and torques

m The force can be written in terms of the magnetic Maxwell stress,
1
F=—3 |H|? Vi <= F = div( 7™¢ ) — B x curl({i B),

1
T =) B®B_§ﬂ IBI’T = div( 7™ )_{

0= / on'® ds+a / [ ™2 (=] ds—a/Bxcurl(;lB) dx

(%) OP(K) P(x)

:/ (x —x\®) ds+/ex /[['rm“‘gn x (x —x®) ds

OP(K) OP(K)

—a /(Bxcurl(ﬂ B)) x (x —x®) dx.

P(x)

m [a]| = [gHL/vV] is the Alfven number

0 if x € QF,
B xcurl(iB) if x € Qp.

m Hence, we can write the balance of forces and torques on each particle as,
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Some results regarding function spaces

Proposition

Let © ¢ R? be any open, bounded, multiply connected set with boundary

I := 00 of class C2. The exterior boundary will be denoted by [y and by
M, j=1..., Kk — 1, the other components of ['. Define ) to be the Hilbert
space of vector fields,

y::{u € L?(O;RY) | divu € L?(0), curl( u ) € L>(O;RY),u-n € H1/2(r0)},

for the norm,

Wl = W lhziormey + ldiv Wl + [fcurt( w )|, o+ 1w Allsegey

L2(O;R?

then for allw € Y we have, Wlo € HY(O;RY) fori=1,..., k and

< Co, [wlly -

Oi H1(O;;RY)

|

m (small) extension of Prop. 3.1 in Foias & Temam (am. sc. nom. super. Pisa, 78)
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Some results regarding function spaces

Proposition

Define a new norm on ) by

W= lldiv wll 2 o) + [[eurl( Aw )

L2(O;RY)
then Y is also a Hilbert space with norm [-]y.

+ w0l

Theorem (Poincaré type inequality for (), [-]y))

There exists a constant, ¢ := c(O), such that

Wl 2(orey < cwly,
for allw € Y.

m Proof by contradiction
m Use the positivity of g > 0 ({ig := min; ;)
m Global Div-Curl lemma of L. Tartar
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The function spaces

m Inner product space for the velocity,

V= {v € Hf (Qr; RY) | divw=0 in QF, v=v{F) 4w x (x — x)) on 6P("‘)}.

(v]), = /2 e(v):e(d) d.
Qr
m Inner product space for the magnetic induction,
Y= {w € L2(;RY) | div(w) € L2(Q), curl(w) €L2(; RY),

w~neH1/2(Fo)},

(h] 't[))y:/div(h) div('z[J)dX—l-/curl(ﬂ h)-curl(fap)dx
Q

Q

+ /(h~n)(1/;~n)ds.
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Variational formulation of Stokes’ equation

m Multiply with am appropriate test function,
- / ont ¢ ds+/26(v):e(¢) dx=0.
Uk_ aPx) QF
m Use balance of forces and torques,

a / [r™2en)]. ds—a/ [Bxcurl(AB)].¢ dx

UK, aPx) o
+/2€(v):e(¢) dx=0.
QF

m Findv eV,

(v]g), + oc/'r"‘ag:e(d)) dx =0 forall¢p € V.
Qp
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Augmented variational formulation of Maxwell’s
equations

For an appropriate test function,
m multiply the divergence part by g~ d1v(1/1)
m multiply the rotational part by ﬂcurl (2)
m multiply the exterior boundary condition by ﬁw -n

(h|®),= / div(h) div(4)dx+ / curl(2 h)-curl (i) dx+ / (h-n)(¥-n)ds

Q Q o

Find B € Y such that,

Rgm (B] 1[1)y = a/[v x BJ-curl (1) dx + Rgm /(b0~n)(1/)~n) ds,

forally € Y.
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Variational formulation of the problem
Find (v, B) € V x Y such that,

(v|o), + Rgm (Bl¥)y = —a/Tmag:e(d)) dx + a/[v x B].curl (A1) dx

Q]: QP

+% /(bo.n)('z/}.n) ds,
o

for all (¢, %) € V x Y. Naturally, a norm is associated to the above inner
(cross-) product space denoted by [[|(—, )l := =y + g [1y-

Theorem (N., Vernescu (Banach J. Math. Anal., '24))

The pair (v, B) satisfies the strong form of Maxwell’s and Stokes’ equations as
well as their BC if and only if it is a solution to the above weak formulation.
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Equivalence between weak and strong form of the
problem

m One direction is clear
m Recover Maxwell's equations: introduce ¢° : RY — [0, 1]

x) = {1 f d(x,To) < 6,
0 if d(x,To) > 206
m Using the approach of Ledyzhenskaya, s, define 8(x) := (b9x3, b3x1, b9x0).
Set a°(x):=curl(¢?(x)6(x)). Then a’(x) is a divergence free and equals b°
in the 0 neighbourhood of Iy
m Using Lemma 3.5 in Amrouche et al., (vath metn appiied sci., 08y there exists a vector

field V € HY(Q, R®) such that div(V) = 0 and curl(V) = RV x Bxq,.
| | Use approach Of P—E Dl’uet, (Discrete Contin. Dyn. Syst. Ser. A, '15)
div(uVp) = div(eV) in Qp U QF,
[48pp] = [uV.n")] on 6PM), k=1, . K,
Onp =0o0n Ty
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The test function

m Construct W:=uV—uVp and verify,

div(W)=0, curl(AW)=R,vxBxq,, W.n=0
m Construct 9:=B-W-a% € ),

/ div B div(B—W—2a%) dx
Q

+ /[curl (i B)—Rpvx Bxaq,].curl (i (B—W—2a%)) dx
Q

+/[(B—b0).n][(B—W—a5).n] ds =0

m Using the properties of the vector fields W and a° we obtain:

/|divB|2dx+/\curl(ﬂB)—RmvaxQP|2 dx+/|(B—bO).n|2ds:O
Q Q Iy

14/18



The Altman-Shinbrot fixed point theorem

Let H denote a real or complex Hilbert space, and S, and B, denote the sphere
and the closed ball of radius r centered at zero, respectively:

S={xeH|lIxly=rt, Br={xeH|lxly<r}.

Theorem ( Altman, Bull. Acad. Polon. Sci. '57; Shinbrot, ARMA 64 )

Let H be an operator on the separable Hilbert space H, continuous in the weak
topology on H. If there is a positive constant r such that R(Hx, x) < Hx||§{ for
all x € B,, then H has a fixed point in B,.

Corollary: Let G be an operator on the separable Hilbert space H, continuous in
the weak topology on H. Let y be an element of H. If there exists a positive r
such that either R(Gx — y, x) > 0 for all x € S, OR

R(Gx — y,x) <0 for all x € S, then y is in the range of G.

Corollary: Let G be an operator on the separable Hilbert space H, continuous in
the weak topology on #H. Then, zero is in the range of G if (Gx, x) is of one sign
on some sphere S,.
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Existence
m For all v, B, ¢, ¥ we define the following expression Q by,

O[(v,B); (¢, ¥)] ::—a/ﬂp B®B:e(¢) dx+oz/v><B-curl(ﬂp¢) dx.

QF QP

m We have the following bound on @ in terms of the product space norm:

1Q[(v. B); (&, 9)]| < Clox, fi, . Qv) [[[(v. B)III” [11(.9)]1].

m Cauchy-Schwartz and Riesz’s theorem allows us to write the variational
formulation as,

(F(v. B): (&.9))=((F.9): (&.9)) for all (9,) €V x ¥,
(F(v.B): (@ 9))=(v )+ (B 1)~ Ql(v. B): (4. 9)]

(F.9): (6. 9)=- / (6° - n)(@ - n) ds.
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Existence

Lemma |

The nonlinear operator F : (v, B) — F(v, B) is continuous in the weak topology
of the product space Vx ).

Lemma

If the magnetic Reynolds number, Ry, is small then
1
(F(v,B);(v.B)) > 5 [11(v, B)Hl2 for all (v,B) € Vx ).
Theorem

If the magnetic Reynolds number, Ry, satisfies,

5 Crp|b°|mesg—1(Io)

1 1-— CFPY(QP)Rm

1
==
-2

then problem (F(v,B); (¢,%))=((f.9); (. %)) for all (¢. %) €V x Y admits
at least one weak solution.
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Existence and comments

m Apply Altman-Shinbrot theorem to the operator equation
m Show there exists r such that

(F(v.B) = (f.9):(v.B)) = 0

for all (v, B) with |[|(v, B)||| = r
m Select r =2 [||(f. 9)|l|

m The case of R, = 0 can be thought off as a limit case of the above model.

B R, = 0 the system becomes weakly coupled and, existence and uniqueness
follow by invoking the Lax-Milgram lemma, once higher integrability of the
magnetic induction is established

m |n two spatial dimensions system can also be solved analytically. Resulting
behavior is of a Bingham type fluid.
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