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Motivation and geometry

Q) How far does the concentration of a diffusant
species penetrate into a rubber?

Our goal is to:

1 approximate numerically the diffusant
concentration profile and the penetration
front that reflect the lab experiment results.

2 investigate the effectiveness of the numerical
method (order of convergence).

ℓ

x = s(0)

x = s(Tf )

Rubber (diffusant free)

Modeling domain

0 s(0) s(Tf ) ℓ
Zone inside rubber with penetration of diffusants at t = 0

Diffusant-free rubber at t = 0
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Model equations

Find the concentration profile m(t, x) and the position of moving boundary s(t)
such that

∂m

∂t
− D

∂2m

∂x2
= 0 in (t, x) ∈ (0,Tf )× (0, s(t)),

−D
∂m

∂x
(t, 0) = β(b(t)− Hm(t, 0)),

−D
∂m

∂x
(t, s(t)) = s ′(t)m(t, s(t)),

s ′(t) = a0(m(t, s(t))− σ(s(t))),

m(0, x) = m0(x) for x ∈ [0, s(0)],

s(0) = s0 with 0 < s0 < s(t) < ℓ,

where

D is a diffusion constant,

σ represents the swelling behaviour of the rubber,

s0 > 0 and m0 are initial data,

β is mass transfer coefficient,

H is Henry’s constant.
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Assumptions

We assume the following restrictions on the parameters:

(A1) a0 > 0, H > 0, D > 0, s0 > 0, Tf > 0;

(A2) b ∈ W 1,2(0,Tf ) with 0 < b∗ ≤ b ≤ b∗ on (0,Tf );

(A3) β ∈ C 1(R) ∩W 1,∞(R) such that β = 0 on (−∞, 0], and there exists rβ > 0
such that β′ > 0 on (0, rβ) and β = k0 on [rβ ,+∞), where k0 > 0;

(A4) σ ∈ C 1(R) ∩W 1,∞(R) such that σ = 0 on (−∞, 0), and there exist rσ such
that σ′ > 0 on (0, rσ) and σ = c0 on [rσ,+∞), where c0 satisfying

0 < c0 < min{2σ(0), b∗H−1};

(A5) 0 < s0 < rσ and m0 ∈ H1(0, s0) such that σ(0) ≤ u0 ≤ b∗H−1 on [0, s0].

K. Kumazaki and A. Muntean. Global weak solvability, continuous dependence on data,
and large time growth of swelling moving interfaces. Interfaces and Free Boundaries, 2020.
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Non-dimensionalization

Find u(τ, z) and h(τ) such that

∂u

∂τ
− ∂2u

∂z2
= 0 in (τ, z) ∈ (0,T )× (0, h(τ)),

−∂u
∂z

(τ, 0) = Bi

(
b(τ)

mref
−Hu(τ, 0)

)
,

−∂u
∂z

(τ, h(τ)) = h′(τ)u (τ, h(τ)) ,

h′(τ) = A0

(
u (τ, h(τ))− σ(h(τ))

mref

)
,

u(0, z) = u0(z) for z ∈ [0, h(0)],

h(0) = h0 with 0 < h0 < h(τ) < L,

where u0(z) := m0/mref , h0 := s0/xref and L := ℓ/xref .
Bi := βxref /D is the standard mass transfer Biot number.
A0 := xrefmref a0/D is a sort of Thiele modulus.
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Fixed domain transformation

Landau Transformation: y = z/h(τ).

(0,T )× (0, h(τ)) =⇒ (0,T )× (0, 1) =: Q(T ).

In dimensionless form, the transformed problem read as follows:

∂u

∂τ
− y

h′(τ)

h(τ)

∂u

∂y
− 1

(h(τ))2
∂2u

∂y 2
= 0 in Q(T ),

− 1

h(τ)

∂u

∂y
(τ, 0) = Bi

(
b(τ)

m0
− Hu(τ, 0)

)
for τ ∈ (0,T ),

− 1

h(τ)

∂u

∂y
(τ, 1) = h′(τ)u(τ, 1),

h′(τ) = A0

(
u(τ, 1)− σ(h(τ))

m0

)
u(0, y) = u0(y) for y ∈ [0, 1],

h(0) = h0.

We call the problem described above as (P).

S. Nepal, R. Meyer, N. H. Kröger, T. Aiki, A. Muntean, Y. Wondmagegne, and U. Giese. A
moving boundary approach of capturing diffusants penetration into rubber: FEM
approximation and comparison with laboratory measurements. Kautschuk Gummi
Kunststoffe, 2021
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Weak solution to (P)

We call (u, h) a weak solution to problem (P) on ST := (0,T ) if and only if

h ∈ W 1,∞(ST ) with h0 < h(T ) ≤ L, and

u ∈ W 1,2(Q(T )) ∩ L∞(ST ,H
1(0, 1)) ∩ L2(ST ,H

2(0, 1)), such that for all τ ∈ ST

and for all φ ∈ H1(0, 1) the following relations hold:(
∂u

∂τ
, φ

)
− h′(τ)

h(τ)

(
y
∂u

∂y
, φ

)
+

1

(h(τ))2

(
∂u

∂y
,
∂φ

∂y

)
− 1

h(τ)
Bi

(
b(τ)

m0
−Hu(τ, 0)

)
φ(0) +

h′(τ)

h(τ)
u(τ, 1)φ(1) = 0,

h′(τ) = A0

(
u(τ, 1)− σ(h(τ))

m0

)
,

u(0, y) = u0(y) for y ∈ [0, 1], h(0) = h0.

Theorem ( K. Kumazaki and A. Muntean (2020))

If (A1)–(A5) hold, then the problem (P) has a unique solution (u, h) on ST .
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Weak solution to semi-discrete form

Define Vk := {ψ ∈ C [0, 1] : ψ|Ij ∈ P1} ⊂ H1(0, 1), where Ij := [yj , yj+1].

We call the couple (uk , hk) a weak solution to a semi-discrete problem if and only
if there is a ST := (0,T ) such that

hk ∈ W 1,∞(ST ) with h0 < hk(T ) ≤ L

uk ∈ H1(ST ,Vk) ∩ L2(ST ,H
1(0, 1)) ∩ L∞(ST , L

2(0, 1))

and for all τ ∈ ST and for all φk ∈ Vk , it holds(
∂uk
∂τ

, φk

)
− (hk)

′(τ)

hk(τ)

(
y
∂uk
∂y

, φk

)
+

1

(hk(τ))2

(
∂uk
∂y

,
∂φk

∂y

)
− 1

hk(τ)
Bi

(
b(τ)

m0
−Huk(τ, 0)

)
φk(0) +

h′k(τ)

hk(τ)
uk(τ, 1)φk(1) = 0,

h′k(τ) = A0

(
uk(τ, 1)−

σ(hk(τ))

m0

)
,

uk(0) = u0,k(y), hk(0) = h0.

We call the problem described above for semi-discrete form (Pk).
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A priori and a posteriori error estimate 1

Theorem

Assume (A1)–(A5) and u0 ∈ H2(0, 1). Let (u, h) and (uk , hk) be the corresponding weak
solutions to problems (P) and (Pk).
1) Then there exists a constant c > 0 (not depending on k) such that

∥u − uk∥2L∞(ST ,L2(0,1))∩L2(ST ,H1(0,1)) + ∥h − hk∥2H1(ST ) ≤ ck2.

2) Then there exists constants c1, c2, c3 > 0 (independent of k and u) it holds

∥u − uk∥2L2(0,1) + c1|h − hk |2 + c2

∫ τ

0

∥∥∥∥ ∂∂x (u − uk)

∥∥∥∥2
L2(0,1)

ds

≤ c3

(
|h(0)− hk(0)|2 +

N−2∑
i=0

k2
i

{
∥R(uk)∥2L2(ST ,L2(Ii ))

+ k2
i ∥u0∥2H2(Ii )

})
,

where the residual R(uk) is defined by

R(uk) :=
h′
k

hk
y
∂uk
∂y

+
1

hk
Bi

(
b(τ)

m0
−Huk(τ, 0)

)
− h′

k

hk
uk(τ, 1)−

∂uk
∂τ

.

1
S. Nepal, Y. Wondmagegne, A. Muntean, Error estimates for semi-discrete finite element approximations for a moving boundary problem capturing

the penetration of diffusants into rubber. International Journal of Numerical Analysis & Modeling, 2022.
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Fully discrete Euler-Galerkin scheme

Let M ∈ N. Let ∆τ := T/M be a time step size. Define τ n := n∆τ for
n ∈ {0, 1, 2, · · · ,M}. Given (Un,W n), we want to find the pair (Un+1,W n+1) ∈ Vk ×R+

such that the following system holds for all n ∈ {0, · · · ,M − 1} and for all φk ∈ Vk :

(∆τU
n, φk)−

∆τW
n

W n+1

(
y
∂Un+1

∂y
, φk

)
+

1

(W n+1)2

(
∂Un+1

∂y
,
∂φk

∂y

)
− 1

W n+1
Bi

(
b(τ)

m0
−HUn(0)

)
φk(0) +

∆τW
n

W n+1
Un(1)φk(1) = 0,

∆τW
n = A0

(
Un(1)− σ(W n)

m0

)
,

U0 = U0, W 0 = h0,

where U0 is an appropriate approximation of the initial condition u0 ∈ Vk and

∆τU
n :=

Un+1 − Un

∆τ
and ∆τW

n :=
W n+1 −W n

∆τ
.

Theorem (Solvability of the fully discrete problem)

Assume (A1)–(A5) hold. Then there exists a unique solution to the fully discrete
problem.
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A priori error estimate 2

Denote hn := h(τ n) and un := u(τ n, y). Let en1 := W n − hn and
en := Un − un = ψn + ρn, with ψn := Un − Iku

n and ρn := Iku
n − un.

Theorem

Assume (A1)–(A5) and u0 ∈ H2(0, 1). Let (u, h) be the corresponding regular solution to
the problem (P). Let (Un,W n) be the solution to the fully discrete formulation. Then
there exists a constant K > 0 such that the following holds for sufficiently small ∆τ :

∥ψn+1∥2 + |en+1
1 |2 + α∆τ

n+1∑
i=1

∥∥∥∥∂ψj

∂y

∥∥∥∥2 ≤ K{∆τ 2 + k2}.

Theorem (A priori error estimate)

Assume (A1)–(A5) and u0 ∈ H2(0, 1). Then there exists a constant K > 0 such that

max
0≤n≤M

∥Un − un∥2 + max
0≤n≤M

|W n − hn|2 ≤ K{∆τ 2 + k2}.

2S. Nepal, Y. Wondmagegne, A. Muntean. Analysis of a fully discrete approximation to a
moving-boundary problem describing rubber exposed to diffusants. Applied Mathematics and
Computation, 2023
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Numerical illustration

Figure: Log log scale plot of an error on the concentration profile and the
moving-boundary. Top: convergence order in space when time step size ∆t = 10−4 is
fixed. Bottom: convergence order in time when space mesh size is fixed with N = 320.
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Simulation results

Figure: Dense rubber case: Concentration vs. space with σ(s(t)) = s(t)
20

(left),

σ(s(t)) = s(t)
10

(right).

Figure: Comparison of the experimental diffusant front with numerical diffusant front.
Left: a0 = 500 and for different choices of σ(s(t)). Right: σ(s(t)) = s(t)

10
and for

different choices of a0. 14



Random walk method

Can we approximate the moving front and concentration profile by using a finite
number of randomly driven diffusant particles?

Space discretization: 0 = z0 < z1 < · · · < zN ≤ L with ∆z = zi − zi−1.
Time discretization: 0 = τ0 < τ1 < · · · < τM = T with ∆τ = τi − τi−1.

Consider a walker represents a unit concentration.
Each walker chooses randomly p ∈ {−1, 1} and decides the direction to move.

z0 z1 zN Lzi−1 zi+1zi

Let N j
i denote the number of walkers at z = zi and τ = τj . Then

N j+1
i = N j

i − PN j
i − PN j

i + PN j
i+1 + PN j

i−1

=⇒
N j+1

i − N j
i

∆τ
= d

(N j
i−1 − 2N j

i + N j
i+1)

(∆z)2
,

where d = (P/∆τ)(∆z)2, P = 1/2 =⇒ ∆z =
√
2∆τ

S. Nepal, M. Ögren, Y. Wondmagegne, A. Muntean. Random walks and moving
boundaries: Estimating the penetration of diffusants into dense rubbers. Probabilistic
Engineering Mechanics, 2023.
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Initial condition and boundary conditions at z = z0

Let hj and u(τj , zi ) be the RW approximation of h at τ = τj and of u at τ = τj
and z = zi .

Define

kj :=

⌊
hj
∆z

⌋
, j ∈ {0, 1, · · · ,M − 1},

where ⌊x⌋ rounds x down towards the nearest integer.

Let N(τj , zi ) denote the number of walkers at τ = τj and z = zi .

Initial condition: N(τ0, zi ) = nu0(zi ), n is a large number, i ∈ {0, 1, · · · , k0}.

Boundary condition at z = z0:

Using the forward difference gives

u(τj , z0)− u(τj , z1)

∆z
= Bi

(
b(τj)

m0
− Hu(τj , z0)

)
.

N(τj , z0) =

⌊
n∆zBi b(τj)/m0 + u(τj , z1)

1 + ∆zBiH

⌉
for j ∈ {1, 2, · · · ,M},

where ⌊x⌉ rounds x to the nearest integer.
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Treatment of the moving boundary

Recall that

h′(τ) = A0

(
u (τ, h(τ))− σ(h(τ))

mref

)
.

Update formula

hj+1 = hj +
∆hj
n
, j ∈ {0, 1, 2, · · · ,M − 1},

where

∆hj
n

= Nj

[
∆τA0

n

(
N (τj , hj)−

σ(hj)

mref

)]
.

Nj is the total number of walkers contributing to the increment of the
moving boundary.

∆τA0

n

(
N (τj , hj)− σ(hj )

mref

)
is the increment of the boundary for a walker at

time τ = τj .
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Boundary condition at the moving boundary z = h(τ)

For walkers at the boundary z = zkj , they
move to the left if p = −1.

and if p = 1,
1 Compute

Pb(τj) =

√
2∆τA0

n

(
N
(
τj , zkj

)
− σ(hj)

mref

)
.

2 Generate a random number r between
(0, 1).

3 If r < Pb(τj), the boundary will be
increased. We update hj+1 and

N(τj+1, zkj ) = N(τj+1, zkj ) + 1.

4 If r ≥ Pb(τj), the walker is reflected and
moves to the left, i.e.

N(τj+1, zkj−1) = N(τj+1, zkj−1) + 1.
z

τ

z1 z2 z3 z4 z5 z6

τ1

τ2

τ3

τ4

τ5

τ6

τ7

18



Simulation results

Figure: Concentration profile at τ = 0.00005 with ∆τ = 2.5× 10−8.

Figure: Moving front by RWM for different values of n and FEM, with ∆τ = 5× 10−8

(left), and ∆τ = 2.5× 10−8 (right).
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Simulation results

Figure: Comparison of FEM and RWM solution in the experimental range.

Figure: Concentration profile at t = 3 min with ∆t = 0.0005 min.
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Conclusions

We discussed a one-dimensional moving boundary approach to model the penetration of a
diffusant into rubber.

We constructed a finite element scheme to solve the moving boundary problem and proved
a priori and a posteriori error estimates.

We constructed a random walk algorithm and presented simulation results for the moving
boundary problem.

S. Nepal, R. Meyer, N. H. Kröger, T. Aiki, A. Muntean, Y. Wondmagegne, and U. Giese. A
moving boundary approach of capturing diffusants penetration into rubber: FEM
approximation and comparison with laboratory measurements. Kautschuk Gummi
Kunststoffe, 2021.

S. Nepal, Y. Wondmagegne, and A. Muntean. Error estimates for semi-discrete finite
element approximations for a moving boundary problem capturing the penetration of
diffusants into rubber. International Journal of Numerical Analysis & Modeling, 2022.

S. Nepal, Y. Wondmagegne, and A. Muntean. Analysis of a fully discrete approximation to
a moving-boundary problem describing rubber exposed to diffusants. Applied Mathematics
and Computation, 2023.

S. Nepal, M. Ögren, Y. Wondmagegne, A. Muntean. Random walks and moving
boundaries: Estimating the penetration of diffusants into dense rubbers. Probabilistic
Engineering Mechanics, 2023.

The laboratory experiment was conducted at the Deutsches Institut für Kautschuktechnologie
(DIK) e. V. in Hannover, Germany by R. Meyer, N. H. Kröger, and U. Giese.
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Two-scale elliptic-parabolic system

Find (u,W ) (with W = (w1,w2)) satisfying

∂tu + div(−D∗(W )∇u) = f in (0,T )× Ω,

u = 0 on (0,T )× ∂Ω,

u(0) = u0 in Ω,

divy (−D∇ywi + G(u)Bwi ) = divy (Dei ) in Y ,

(−D∇ywi + G(u)Bwi ) · ny = (Dei ) · ny on ΓN ,

wi is Y –periodic.

where

D∗(W ) :=
1

|Y |

∫
Y

D(y)

(
I +

[
∂w1
∂y1

∂w2
∂y1

∂w1
∂y2

∂w2
∂y2

])
dy .

x

Ω

ΓN

Y

S. Nepal, V. Raveendran, M. Eden, R. Lyons, A. Muntean. Numerical study of a strongly coupled two-scale system with nonlinear dispersion.

arXiv:2402.09607, 2024. 22



Scheme 1 (Iterative scheme)

We set u0 = u0, and, for any k ∈ N ∪ {0}, we denote as uk+1,wk
1 , and wk

2 the
solutions to the following decoupled system:

divy
(
−D∇yw

k
i + G (uk)Bwk

i

)
= divy (Dei ) in Y ,(

−D∇yw
k
i + G (uk)Bwk

i

)
· ny = (Dei ) · ny on ΓN ,

wk
i is Y –periodic, i ∈{1, 2}

∂tu
k+1 + div(−D∗(W k)∇xu

k+1) = f in (0,T )× Ω,

uk+1(0) = u0 in Ω,

uk+1 = 0 on (0,T )× ∂Ω,

where the dispersion tensor D∗(W k) is given by

D∗(W k) :=
1

|Y |

∫
Y

D(y)

(
I +

[
∂wk

1

∂y1

∂wk
2

∂y1
∂wk

1

∂y2

∂wk
2

∂y2

])
dy .

V. Raveendran, S. Nepal, R. Lyons, M. Eden, A. Muntean. Strongly coupled two-scale
system with nonlinear dispersion: Weak solvability and numerical simulation
arXiv:2311.12251, 2023
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Scheme 1 (Iterative scheme)

Given ukn−1 and uk+1
n−1, find (W k

n−1, u
k+1
n ) such that the following holds for

n ∈ {1, 2, · · · ,M}:

divy
(
−D∇yw

k
i,n−1 + G (ukn−1)Bw

k
i,n−1

)
= divy (Dei ) in Y ,(

−D∇yw
k
i,n−1 + G (ukn−1)Bw

k
i,n−1

)
· ny = (Dei ) · ny on ΓN ,

wk
i,n−1 is Y –periodic, i ∈{1, 2},

uk+1
n − uk+1

n−1

∆t
+ div(−D∗(W k

n−1)∇xu
k+1
n ) = fn in Ω,

uk+1
n (0) = u0 in Ω,

uk+1
n = 0 on ∂Ω,

where the dispersion tensor D∗(W k
n−1) is given by

D∗(W k
n−1) :=

1

|Y |

∫
Y

D(y)

I +

∂wk
1,n−1

∂y1

∂wk
2,n−1

∂y1
∂wk

1,n−1

∂y2

∂wk
2,n−1

∂y2

 dy .

24



Scheme 2 (Time stepping scheme)

Given un−1, find (Wn−1, un) such that the following holds for n ∈ {1, 2, · · · ,M}:

divy (−D∇ywi,n−1 + G (un−1)Bwi,n−1) = divy (Dei ) in Y ,

(−D∇ywi,n−1 + G (un−1)Bwi,n−1) · ny = (Dei ) · ny on ΓN ,

wi,n−1 is Y –periodic, i ∈{1, 2}

un − un−1

∆t
+ div(−D∗(Wn−1)∇xun) = fn in Ω,

un(0) = u0 in Ω,

un = 0 on ∂Ω,

where the dispersion tensor D∗(Wn−1) is given by

D∗(Wn−1) :=
1

|Y |

∫
Y

D(y)

(
I +

[
∂w1,n−1

∂y1

∂w2,n−1

∂y1
∂w1,n−1

∂y2

∂w2,n−1

∂y2

])
dy .
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Precomputing strategy

divy (−D∇ywi,p + pBwi,p) = divy (Dei ) in Y ,

(−D∇ywi,p + pBwi,p) · ny = (Dei ) · ny on ΓN ,

wi is Y –periodic,

where i ∈ {1, 2} and p ∈ [−L, L] ⊂ R.

Figure: Computed values for the entries of the dispersion tensor D∗ for different values of
p and its interpolated values.
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Simulation results

Macro DOFs
Scheme 1 Scheme 1 (precomputing)

Errors Computational time (s) Errors Computational time (s)
16 4.8023658 396.91 4.804463 2.25
64 1.6308094 1781.25 1.632296 4.42
256 0.4155008 7059.71 0.416212 11.70
1024 0.1678484 28417.18 0.1671295 53.35
4096 113488.39 189.84

Macro DOFs
Scheme 2 Scheme 2 (precomputing)

Errors Computational time (s) Errors Computational time (s)
16 4.8023659 70.52 4.804463 0.36
64 1.6308094 278.65 1.632296290 0.48
256 0.4141075 1112.10 0.416212306 1.30
1024 0.1667797 4345.78 0.16712954 4.64
4096 17013.41 20.92

Table: Errors and computational time of the schemes for T = 2 with M = 20.

Figure: Log-log plot of L2 error versus H, h and ∆t with scheme 2 precomputing.
27



Simulation results

Figure: Microscopic solutions w1 with different microscopic geometries.

Figure: Macroscopic solutions with scheme 2 (precomputing) for different microscopic
geometries. 28



Conclusion

We discussed a two-scale elliptic-parabolic coupled problem, describing the
transport of particles into a porous media.

We constructed two numerical schemes and presented simulation results.

We introduced a precomputing strategy that reduces the computation time of
both schemes.

S. Nepal, V. Raveendran, M. Eden, R. Lyons, A. Muntean. Numerical study of a strongly
coupled two-scale system with nonlinear dispersion. arXiv:2402.09607, 2024.
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Outline for future work

We plan to extend the current moving boundary model to a multiscale
framework and perform numerical simulation to understand the macroscopic
swelling driven by the microscopic absorption of diffusants, model equation
based on T. Aiki, N. H. Kröger, A. Muntean (2021).

We plan to study the convergence behaviour of the constructed random walk
method in the same framework proposed by O. H. Hald (1981) and W. Lu
(1998).

We plan to study the wellposedness and convergence of scheme 2 for the
two-scale elliptic-parabolic problem, ideas follows from M. Lind, A. Muntean,
O. Richardson (2020).
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S. Nepal, R. Meyer, N. H. Kröger, T. Aiki, A. Muntean, Y. Wondmagegne, and U. Giese. A
moving boundary approach of capturing diffusants penetration into rubber: FEM
approximation and comparison with laboratory measurements. Kautschuk Gummi
Kunststoffe, 2021.

S. Nepal, Y. Wondmagegne, and A. Muntean. Error estimates for semi-discrete finite
element approximations for a moving boundary problem capturing the penetration of
diffusants into rubber. International Journal of Numerical Analysis & Modeling, 2022.

S. Nepal, Y. Wondmagegne, and A. Muntean. Analysis of a fully discrete approximation to
a moving-boundary problem describing rubber exposed to diffusants. Applied Mathematics
and Computation, 2023.
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