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Motivation and geometry

Q) How far does the concentration of a diffusant
species penetrate into a rubber? Rubber (diffusant frec)

Our goal is to: Modeling domain

@ approximate numerically the diffusant
concentration profile and the penetration
front that reflect the lab experiment results.

@ investigate the effectiveness of the numerical
method (order of convergence).

Diffusant-free rubber at t =0
} % 4 :
0 T s(0) s(T¢) /
Zone inside rubber with penetration of diffusants at t =0




Model equations

Find the concentration profile m(t, x) and the position of moving boundary s(t)
such that

m 2m
% — Dg? = 0 in (t,X) S (0, Tf) X (O,S(t)),
—Dg—,:(t,O) = B(b(t) — Hm(t,0)),

om

—DZ (e, 5(1)) = 5/ (e)m(z, (1)),

s'(t) = ao(m(t,s(t)) — o(s(t))),
m(0,x) = mp(x) for x € [0,s(0)],
s(0) = sp with 0 < 59 < s(t) < ¥,

where
@ D is a diffusion constant,
@ o represents the swelling behaviour of the rubber,
@ sgp > 0 and mg are initial data,
@ [ is mass transfer coefficient,
@ H is Henry's constant.



We assume the following restrictions on the parameters:
(Al) a>0,H>0,D>0,5s>0, Tr >0;
(A2) b€ Wh2(0, T¢) with 0 < b, < b < b* on (0, T);

(A3) B € CL(R) N WL>°(R) such that 8 =0 on (—o0,0], and there exists rz > 0
such that 3/ > 0 on (0, rg) and 8 = kg on [rg, +00), where kg > 0;

(A4) o € CHR) N W(R) such that o = 0 on (—o0,0), and there exist r, such
that ¢’ > 0 on (0,r,) and o0 = ¢ on [r,, +00), where ¢; satisfying

0 < ¢ < min{25(0), b*"H™1};

(A5) 0 < 5o < r, and my € H(0, sp) such that o(0) < up < b*H™* on [0, so].

@ K. Kumazaki and A. Muntean. Global weak solvability, continuous dependence on data,
and large time growth of swelling moving interfaces. Interfaces and Free Boundaries, 2020.



Non-dimensionalization

Find u(7,z) and h(7) such that

ou O%u )
57@20 n (T,Z)G(O7 T)X(Ovh(T))7
Oou e [ B(7)
T, m0) =B <mf ~ 0)) ’
ou

28 () = W ().
h'(T) = Ao (U (7, h(7)) — U(h(T))> ’

Myef

u(0,z) = up(z) for z €0, h(0)],
h(0) = hy with 0 < hg < h(7) < L,
where ug(z) := mo/Myer, ho := So/Xrer and L := £/xer.

Bi := Bx,er/D is the standard mass transfer Biot number.
Ao = Xref Mrerag/ D is a sort of Thiele modulus.



Fixed domain transformation

Landau Transformation: y = z/h(7).

(0, T) x (0,h(7)) = (0, T) x (0,1) =: Q(T).

In dimensionless form, the transformed problem read as follows:

ou_ Wow 1 Fu_

o VR oy mpayr 0 ™ AT
L@T = Bi M— u(T or T
o0 =B (mo Hu( ,o)) for 7€ (0,T),
1o

(r,1) = A (7)u(r, 1),

() = Ao (atr 1) - 2D

u(0,y) = w(y) for y €[0,1],
h(0) = ho.
We call the problem described above as (P).

~ h(r) 9y

@ S. Nepal, R. Meyer, N. H. Kroger, T. Aiki, A. Muntean, Y. Wondmagegne, and U. Giese. A
moving boundary approach of capturing diffusants penetration into rubber: FEM

approximation and comparison with laboratory measurements. Kautschuk Gummi
Kunststoffe, 2021



Weak solution to (P)

We call (u, h) a weak solution to problem (P) on St := (0, T) if and only if
h € WL>(S7) with hy < h(T) < L, and

ue WE2(Q(T)) N L>®(St, HY(0,1)) N L3(ST, H?(0,1)), such that for all 7 € St
and for all ¢ € H(0, 1) the following relations hold:

(52) =553 () * e (55
- %Bi <b’577(;) — Hu(r, 0)) ©(0) + i;;((:_—)) u(r, (1) =0,
K (1) = Ao (U(T, 1) - U(h(T))) ,

mo

u(0,y) = uo(y) for y € 0,1], h(0) = ho.

Theorem ( K. Kumazaki and A. Muntean (2020))

If (A1)—(A5) hold, then the problem (P) has a unique solution (u, h) on St.




Weak solution to semi-discrete form

Define Vi := {¢ € C[0,1] : 9|, € P} C H*(0,1), where [; := [y}, yj+1].

We call the couple (ug, hx) a weak solution to a semi-discrete problem if and only
if there is a St := (0, T) such that

he € WE°(S7) with hy < he(T) < L
ug € HY(St, Vi) N L3(ST, H*(0,1)) N L>°(ST, L3(0,1))
and for all 7 € St and for all ¢, € Vi, it holds
Oue N\ (h)'(7) [ Ouk 1 (O 9k
( ar ’“"k) hi(7) (y dy ’“’k> OIGE (ay dy )
_ 1 i ( ) uk (T, hL(T)
B (22 - 1. 0)) ou(0) + P 1)) =0,
W (r) = Ao (( 1)- “‘“”) ,

mo

uk(0) = o k(y), hk(0) = ho.

We call the problem described above for semi-discrete form (Py).



A priori and a posteriori error estimate !

Assume (A1)—(A5) and uo € H?(0,1). Let (u, h) and (ux, hx) be the corresponding weak

solutions to problems (P) and (Px).
1) Then there exists a constant ¢ > 0 (not depending on k) such that

2 2
lu = ukllLoo sy, 20,10 22(57, 12 (0,1)) T 1 = hillins,y < ck

2) Then there exists constants ci, ¢, c3 > 0 (independent of k and u) it holds
2

ds

a
(u— w)
12(0,1)

dx

Ju= i + il — hel* + o [
0
N—2
& (|h(0) — h(0) + Y & IR (s, 20 + k?|uo||i,2(,,.)}) :
i=0

where the residual R(ux) is defined by
3uk

i Ou 15 (b(T) _ B
R(uk) == Y + th1< o Huy(7,0) B u(r,1) — 5

v

S. Nepal, Y. Wondmagegne, A. Muntean, Error estimates for semi-discrete finite element approximations for a moving boundary problem capturing
the penetration of diffusants into rubber. International Journal of Numerical Analysis & Modeling, 2022
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Fully discrete Euler-Galerkin scheme

Let M € N. Let A7 := T /M be a time step size. Define 7" := nAr for
ne{0,1,2,---,M}. Given (U", W"), we want to find the pair (U™, W) € V, x R*

such that the following system holds for all n € {0,--- , M — 1} and for all px € Vi:
AW (Ut 1 oU™ Oy
AT na - ) )
(AU 00 = i (y dy w) T wey ( dy 9y )
1 . b(T n AW
- gyt (5 1U°(0)) u(0) + ot U @enta) =
A W™ = A (U"(l) — M) 7
mo

U° = Uy, W°=hy,
where Up is an appropriate approximation of the initial condition uy € Vi and

ntl _ pyn Wn+1 —_wn
o ad aw = W0

AU =
AT AT

Theorem (Solvability of the fully discrete problem)

Assume (A1)—(A5) hold. Then there exists a unique solution to the fully discrete
problem.




A priori error estimate 2

Denote h" := h(7") and u" := u(r",y). Let ef := W" — h" and
e":=U"—u"=¢"+ p", with " := U" — [ku" and p" := u" — u".

Assume (A1)-(A5) and ug € H*(0,1). Let (u, h) be the corresponding regular solution to
the problem (P). Let (U", W") be the solution to the fully discrete formulation. Then
there exists a constant K > 0 such that the following holds for sufficiently small Ar:

n+1

™% + |e"+1|2+amz < K{AT* + K*}.

A\

Theorem (A priori error estimate)

Assume (A1)—(A5) and uo € H?(0,1). Then there exists a constant K > 0 such that

omax, U™ — ™| +  max |W"—h"| < K{A7T* + K*}.

2S. Nepal, Y. Wondmagegne, A. Muntean. Analysis of a fully discrete approximation to a
moving-boundary problem describing rubber exposed to diffusants. Applied Mathematics and
Computation, 2023



Numerical illustration
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Figure: Log log scale plot of an error on the concentration profile and the
moving-boundary. Top: convergence order in space when time step size At = 10 is
fixed. Bottom: convergence order in time when space mesh size is fixed with N = 320.
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Simulation results
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Figure: Dense rubber case: Concentration vs. space with o(s(t)) = s(t (left),

o(s(t)) = 53 (right).
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Figure: Comparison of the experimental diffusant front with numerical diffusant front.

Left: ap = 500 and for different choices of o(s(t)). Right: o(s(t)) = Ttt)) and for
different choices of ap.
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Random walk method

Can we approximate the moving front and concentration profile by using a finite
number of randomly driven diffusant particles?

Space discretization: 0 =2y < z; < --- < zy < L with Az =z — z;_;.

Time discretization: 0= <7 < --- <7y =T with A7t =7 —77_1.
Consider a walker represents a unit concentration.

Each walker chooses randomly p € {—1,1} and decides the direction to move.

. 1 NN

il
I T T T T T

]
1
2y Z1 Zi_1 Zj Ziy1 zy L

Let N,j denote the number of walkers at z = z; and 7 = 7;. Then
NI = NI~ PN] — PN/ + PNL | + PN,
NN 2 )
AT (Az)? ’
where d = (P/AT)(Az)?, P=1/2 = Az =+2AT

@ S. Nepal, M. Ogren, Y. Wondmagegne, A. Muntean. Random walks and moving
boundaries: Estimating the penetration of diffusants into dense rubbers. Probabilistic
Engineering Mechanics, 2023.



Initial condition and boundary conditions at z = z

Let hj and u(7j, z;) be the RW approximation of hat 7 =7j and of v at 7 =7
and z = z;.

Define

h.
kj = LA;J’ jE{O,l,"' 3M71}7

where | x| rounds x down towards the nearest integer.

Let N(7j, z;) denote the number of walkers at 7 = 7; and z = z;.

Initial condition: N(7g, z;) = nup(z;), nis a large number,i € {0,1,--- , ko}.
Boundary condition at z = zy:

Using the forward difference gives

u(7j, 20) — u(7,21) _ o (b(Tj)

Az TO — HU(TI"ZQ)) .

nAzBi b(7;)/mg + u(7j, z1)
Nz 20) = { It AZBIH

where | x] rounds x to the nearest integer.

—‘ fOI’jE{].,z,-”,M},



Treatment of the moving boundary

Recall that

Myef

H (1) = Ao <u(T, h(r)) — "(”(T))> .

Update formula

Ah;
hiwn = hi+ =7, j€{0.1,2,-- . M—1},

where

[ (v 2)]

n Myef

o N; is the total number of walkers contributing to the increment of the
moving boundary.

o £TA (N (75, hj) — M) is the increment of the boundary for a walker at

Myef

time 7 = 7;.

17



Boundary condition at the moving boundary z = h(r)

@ For walkers at the boundary z = z,, they
move to the left if p = —1.

e andif p=1,
@ Compute
V2ATA h;
Py(7;) = # (N (15, 21;) — :(7 Jf)

© Generate a random number r between
(0,1).
@ If r < Py(75), the boundary will be
increased. We update hj;; and
N(7-J'+1vzkj) = N(7-J'+1vzkj) +1
@ If r > Py(75), the walker is reflected and

moves to the left, i.e.

N(7j+1, 25-1) = N(7j11, 25-1) + 1.

T4 4

T3 ¢

T2 ¢

T1 ¢

~




Simulation results
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Figure: Concentration profile at 7 = 0.00005 with A7 = 2.5 x 1078,
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Figure: Moving front by RWM for different values of n and FEM, with A7 =5 x 1078
(left), and AT = 2.5 x 10™® (right).
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Simulation results
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Figure: Comparison of FEM and RWM solution in the experimental range.
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Conclusions

@ We discussed a one-dimensional moving boundary approach to model the penetration of a
diffusant into rubber.

@ We constructed a finite element scheme to solve the moving boundary problem and proved
a priori and a posteriori error estimates.

@ We constructed a random walk algorithm and presented simulation results for the moving
boundary problem.

@ S. Nepal, R. Meyer, N. H. Kroger, T. Aiki, A. Muntean, Y. Wondmagegne, and U. Giese. A
moving boundary approach of capturing diffusants penetration into rubber: FEM
approximation and comparison with laboratory measurements. Kautschuk Gummi
Kunststoffe, 2021.

@ S. Nepal, Y. Wondmagegne, and A. Muntean. Error estimates for semi-discrete finite
element approximations for a moving boundary problem capturing the penetration of
diffusants into rubber. International Journal of Numerical Analysis & Modeling, 2022.

ﬁ S. Nepal, Y. Wondmagegne, and A. Muntean. Analysis of a fully discrete approximation to
a moving-boundary problem describing rubber exposed to diffusants. Applied Mathematics
and Computation, 2023.

@ S. Nepal, M. Ogren, Y. Wondmagegne, A. Muntean. Random walks and moving
boundaries: Estimating the penetration of diffusants into dense rubbers. Probabilistic
Engineering Mechanics, 2023.

The laboratory experiment was conducted at the Deutsches Institut fiir Kautschuktechnologie

(DIK) e. V. in Hannover, Germany by R. Meyer, N. H. Krdger, and U. Giese.
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Two-scale elliptic-parabolic system

Find (u, W) (with W = (w1, w»)) satisfying

Oru+ div(—=D*(W)Vu) =f in (0,T) x Q,
u=0 on (0,T) x 09,
u(0) = wo in Q,
divy (=DV,w; + G(u)Bw;) = div,(De;) in Y,
(=DV,w; + G(u)Bw;) - n, = (De;) - n, on Iy,
w; is Y—periodic.

where
Owy Owy

) )

on o dy.

Oy> Oy>

D" (W) ::ﬁ/yo(y) </+

B S. Nepal, V. Raveendran, M. Eden, R. Lyons, A. Muntean. Numerical study of a strongly coupled two-scale system with nonlinear dispersion.

arXiv:2402.09607, 2024.



Scheme 1 (Iterative scheme)

We set u® = up, and, for any k € NU {0}, we denote as u**1 wf, and wX the
solutions to the following decoupled system:

div, (=DV,wf + G(u*)Bw}) = div,(De;) in Y,

(=DV,wf + G(u*)Bwf) - n, = (De;) - n, on Iy,
w is Y—-periodic, ie{1,2}

AeuF T + div(—D*(WS)V, k) = f in (0,T) xQ,

u*1(0) = wo in Q,
=0 on (0,T) x 09Q,
where the dispersion tensor D*(W¥) is given by
D*(Wk) := i/ D(y) (/ + %V: %VyviD dy.
Yy S o

@ V. Raveendran, S. Nepal, R. Lyons, M. Eden, A. Muntean. Strongly coupled two-scale
system with nonlinear dispersion: Weak solvability and numerical simulation
arXiv:2311.12251, 2023
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Scheme 1 (Iterative scheme)

Given u,’j 1 and u*t1, find (WX |, uk™) such that the following holds for
ne{l,2,- M}

I'I

div, (—Dv wf,_1 + G(uh_y)Bwf,_;) = div,(De)) in Y,
(-DV W,,., L+ G(uk 1)BW _1) - ny = (De) - n, on Iy,
W,-’fn_l is Y—periodic, ie{1,2},

uktl ket

At””*l + div(—D* (WK )Wkt = f, in Q,
uk(0) = wp in Q,
uktt =0 on 09,

where the dispersion tensor D*(W¥X ;) is given by

K K
6W1,n—1 6W2,n—1

. 1
D'(Wi) = 7 / D) |1+ o2, o2 ||

Oy» Oy»

24



Scheme 2 (Time stepping scheme)

Given u,_1, find (W, _1, u,) such that the following holds for n € {1,2,--- M}

divy (=DVyw; n—1 + G(up—1)Bw; n_1) = div,(De;)
(—DV},W,-,,,,l + G(Unfl)BW,"nfl) -ny, = (De,-) - ny

in Y,
on I'N,
Wi n—1 is Y—periodic, i€{1,2}
i _A‘lf"—l + div(—D* (Wy_1)Vup) = in Q,
un(0) = ug in Q,
u, =0 on 09,
where the dispersion tensor D*(W,_1) is given by

Owy n_1

Owz n—1
o Oyt
Owin_1  Owapn_1 dy'
Oy» 9y2

D*(W, 1) :—\1/|/YD(y) </+

25



Precomputing strategy

div, (=DV,w; , + pBw; ) = div,(Dey) in Y,
(—=DV,w; , + pBwi ) - n, = (De;) - n, on Iy,
w; is Y—periodic,
where i € {1,2} and p € [-L, L] C R.
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Figure: Computed values for the entries of the dispersion tensor D* for different values of
p and its interpolated values.
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Simulation results

Scheme 1 Scheme 1 (precomputing
Macro DOFs Errors Computational time (s) Errors Co(mputational tiZne (s)
16 4.8023658 396.91 4.804463 2.25
64 1.6308094 1781.25 1.632296 4.42
256 0.4155008 7059.71 0.416212 11.70
1024 0.1678484 28417.18 0.1671295 53.35
4096 113488.39 189.84

Scheme 2 Scheme 2 (precomputing)
Macro DOFs Errors  Computational time (s) Errors ~ Computational time (s)
16 4.8023659 70.52 4.804463 0.36
64 1.6308094 278.65 1.632296290 0.48
256 0.4141075 1112.10 0.416212306 1.30
1024 0.1667797 4345.78 0.16712954 4.64
4096 17013.41 20.92

Table: Errors and computational time of the schemes for T = 2 with M = 20.

Scheme 2 (precomputing)

Figure: Log-log plot of L? error versus H, h and At with scheme 2 precomputing.
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Simulation results
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Figure: Macroscopic solutions with scheme 2 (precomputing) for different microscopic
geometries. 28



Conclusion

@ We discussed a two-scale elliptic-parabolic coupled problem, describing the
transport of particles into a porous media.

@ We constructed two numerical schemes and presented simulation results.
@ We introduced a precomputing strategy that reduces the computation time of
both schemes.

ﬁ S. Nepal, V. Raveendran, M. Eden, R. Lyons, A. Muntean. Numerical study of a strongly
coupled two-scale system with nonlinear dispersion. arXiv:2402.09607, 2024.
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Outline for future work

@ We plan to extend the current moving boundary model to a multiscale
framework and perform numerical simulation to understand the macroscopic
swelling driven by the microscopic absorption of diffusants, model equation
based on T. Aiki, N. H. Kroger, A. Muntean (2021).

@ We plan to study the convergence behaviour of the constructed random walk
method in the same framework proposed by O. H. Hald (1981) and W. Lu
(1998).

@ We plan to study the wellposedness and convergence of scheme 2 for the
two-scale elliptic-parabolic problem, ideas follows from M. Lind, A. Muntean,
O. Richardson (2020).
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