

Mathematics / Computer science

Deep Learning for PDE based Forward and Inverse Problems

Tom Freudenberg, N. Heilenkötter, D. Nganyu, J. Gödeke, P. Maaß, U. Iben

04.12.2023

Topics

Tom Freudenberg, et al.

Faculty 03 Mathematics / Computer science

1 Basics of Deep Learning and physics informed approaches

2 TORCHPHYSICS: a software for PI-Deep Learning

Output in the study to inverse problems

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Basics of Deep Learning

What is a Neural Network (NN)?

- Parameterized function
 - $u: \Theta \times \mathbb{R}^n \longrightarrow \mathbb{R}^m$ $(\theta, x) \longmapsto u(\theta, x)$
 - parameter space $\Theta \subseteq \mathbb{R}^p$
- Notation: $u_{\theta}(x) := u(\theta, x)$

3

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Basics of Deep Learning

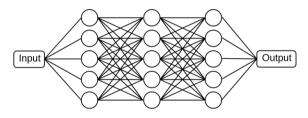
What is a Neural Network (NN)?

- Parameterized function
 - $u: \Theta imes \mathbb{R}^n \longrightarrow \mathbb{R}^m$ $(heta, x) \longmapsto u(heta, x)$

parameter space $\Theta \subseteq \mathbb{R}^{p}$

• Notation: $u_{\theta}(x) := u(\theta, x)$

Fully Connected NN:



Tom Freudenberg, et

al.

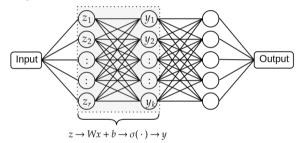
Faculty 03 Mathematics / Computer science

Basics of Deep Learning

What is a Neural Network (NN)?

- Parameterized function
 - $u: \Theta imes \mathbb{R}^n \longrightarrow \mathbb{R}^m$ $(heta, x) \longmapsto u(heta, x)$ parameter space $\Theta \subset \mathbb{R}^p$
- Notation: $u_{\theta}(x) := u(\theta, x)$

Fully Connected NN:



- Weight matrix $W \in \mathbb{R}^{k \times r}$ and bias $b \in \mathbb{R}^k$ belong to parameters θ
- Activation function $\sigma:\mathbb{R}\to\mathbb{R}$ applied coordinate-wise

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Universal Approximation Theorem¹

Theorem (Hornik, 1989)

Let $K \subset \mathbb{R}^n$ be compact and consider a continuous function

 $f: K \subset \mathbb{R}^n \to \mathbb{R}^m.$

For each error ε there exists a NN u_{θ} with N hidden neurons and "specific" activations that uniformly approximates f, i.e.

 $\|f(x) - u_{\theta}(x)\| < \varepsilon$ for every $x \in K$.

¹ Hornik: Multilayer Feedforward Networks are Universal Approximators, 1989

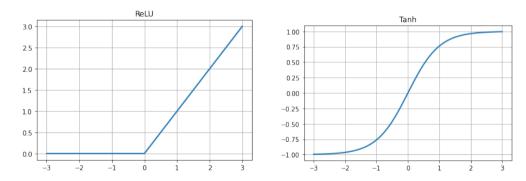
Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

"Specific" activations

For example:

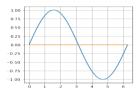


Universität Bremen Center for Industrial Mathematics (ZeTeM) Tom Freudenberg, et

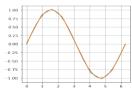
al.

Faculty 03 Mathematics / Computer science

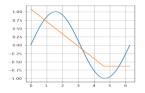
Example of Approximation Properties



(a) 1 layer with 1 neuron



(d) 1 layer with 10 neurons



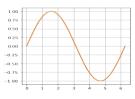
(b) 1 layer with 2 neurons



(e) 1 layer with 50 neurons



(c) 1 layer with 5 neurons



(f) 1 layer with 100 neurons

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Motivation: Why Deep Learning for DEs?

Parameter identification/optimization problems

- \rightarrow Iterative algorithms: Solve many similar PDEs
- ightarrow Classical methods like FDM or FEM: Time-consuming
- \rightarrow Replace by trained NN
- \rightarrow Less time-consuming

al.

Faculty 03 Mathematics / Computer science

DL for DEs: Data-Driven Approach

• For example, Harmonic Oscillator:

$$\begin{cases} \partial_t^2 u(t) = -\lambda u(t) \\ u(0) = u_0, \ \partial_t u(0) = 0 \end{cases}$$

- Generate/obtain data $\{\tilde{u}_j, t_j, \lambda_j\}_{j=1}^N$, with $\tilde{u}_j \approx u(t_j; \lambda_j)$
- Initialize a neural network $u_{\theta} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
- Train u_{θ} by minimizing

$$\mathcal{L}(heta_i) = rac{1}{N}\sum_{j=1}^N ig| u_{ heta_i}(t_j,\lambda_j) - ilde{u}_j ig|^2$$
 (Mean-Squared-Error)

with gradient descent: $\theta_{i+1} = \theta_i - \eta \nabla_{\theta} \mathcal{L}(\theta_i)$

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Problems of Data-Driven Approach

- Deep Learning generally needs lot of data
- Obtaining data of solution *u* is complicated
 - Through multiple experiments
 - Solving the equation with classical methods
 - \rightarrow Expensive and time consuming

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Problems of Data-Driven Approach

- Deep Learning generally needs lot of data
- Obtaining data of solution *u* is complicated
 - Through multiple experiments
 - Solving the equation with classical methods
 - \rightarrow Expensive and time consuming
- Encode physical laws/PDEs into DL approaches?
 - \rightarrow Physics-informed neural networks (PINNs)
 - \rightarrow Plug neural network into the differential equation

Physics-Informed Neural Networks (PINNs)

Faculty 03 Mathematics / Computer science

PINNs² - Main Idea

• Find solution $\mathbf{u}: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ of

 $\mathcal{N}[\mathbf{u}](x) = 0, \text{ for } x \in \Omega,$ $\mathcal{B}[\mathbf{u}](x) = 0, \text{ for } x \in \partial\Omega.$

• E.g.
$$\Omega = [0, 1] \times [0, 1], \boldsymbol{u} : \mathbb{R}^2 \to \mathbb{R}$$

$$\mathcal{N}[\mathbf{u}](x) = \Delta \mathbf{u}(x) - f(x), \text{ for } x \in \Omega,$$

$$\mathcal{B}[\mathbf{u}](x) = \mathbf{u}(x) - u_0, \quad \text{ for } x \in \partial \Omega.$$

² Raissi, Perdikaris and Karniadakis: *Physics-informed neural networks: [...]*, 2019

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

PINNs - Main Idea

• Find solution $\mathbf{u}: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ of

 $\mathcal{N}[\mathbf{u}](x) = 0, \text{ for } x \in \Omega,$ $\mathcal{B}[\mathbf{u}](x) = 0, \text{ for } x \in \partial\Omega.$

- Sample points $x_i^{\mathcal{N}} \in \Omega$ and $x_j^{\mathcal{B}} \in \partial \Omega$
- Train network \mathbf{u}_{θ} that minimizes the PDE-loss

$$\frac{1}{N_{\mathcal{N}}}\sum_{i=1}^{N_{\mathcal{N}}}\left\|\mathcal{N}[\mathbf{u}_{\theta}](x_{i}^{\mathcal{N}})\right\|^{2}+\frac{1}{N_{\mathcal{B}}}\sum_{j=1}^{N_{\mathcal{B}}}\left\|\mathcal{B}[\mathbf{u}_{\theta}](x_{j}^{\mathcal{B}})\right\|^{2}$$

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Physics-Informed Loss: We need to ...

- Compute differential operator \mathcal{N} of NN u_{θ} , e.g. Laplacian Δu_{θ}
 - $\rightarrow~$ Compute the derivatives of a neural network
 - ightarrow Generally possible with basics math operations

al.

Faculty 03 Mathematics / Computer science

Physics-Informed Loss: We need to ...

- Compute differential operator N of NN u_{θ} , e.g. Laplacian Δu_{θ}
 - \rightarrow Compute the derivatives of a neural network
 - ightarrow Generally possible with basics math operations
- Consider $u_{\theta} : \mathbb{R} \to \mathbb{R}$, with $u_{\theta}(x) = \sigma(W_2 \sigma(W_1 x + b_1) + b_2)$, then:

$$\partial_{x}u_{\theta}(x) = \partial_{x}\sigma(W_{2}\sigma(W_{1}x+b_{1})+b_{2})[W_{2}^{T}\partial_{x}\sigma(W_{1}x+b_{1})W_{1}]$$

$$\partial_{x}^{2}u_{\theta}(x) = \dots$$

 \rightarrow Derivatives contain the same network parameters $\theta = (W_1, b_1, W_2, b_2)$

Tom Freudenberg, et al.

Faculty 03 Mathematics / Computer science

Parameter Studies

Bealization with PINNs

• Many applications involve solving the same PDE with different parameters $c \in \mathbb{R}^d$:

 $\mathcal{N}[\mathbf{u}_c, \mathbf{c}](\mathbf{x}) = \mathbf{0}, \text{ for } \mathbf{x} \in \Omega,$

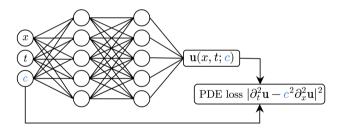
For example:

Parameter-dependent wave equation: $\begin{cases} \partial_t^2 u = c^2 \partial_x^2 u, & \text{ in } I_x \times I_t, \\ u = 0 & \text{ in } \partial I_x \times I_t, \\ \partial_t u(\cdot, 0) = 0 & \text{ in } I_x, \\ u(\cdot, 0) = \sin(x) & \text{ in } I_x, \end{cases}$

Faculty 03 Mathematics / Computer science

Parameter Studies with PINNs

Solving the same PDE for many different choices of c



Method:

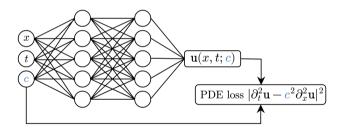
- Include parameter(s) as additional input(s) to the PINN
- Training: Sample parameter range together with function domain

Tom Freudenberg, et al.

Faculty 03 Mathematics / Computer science

Parameter Studies with PINNs

Solving the same PDE for many different choices of c



Result:

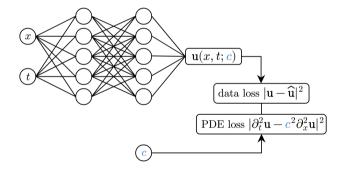
- Inference of solution for new parameter by a forward pass to the trained network
- Very little additional effort in evaluation of the network
- Increased amount of training points necessary

al.

Faculty 03 Mathematics / Computer science

Parameter Identification with PINNs

Finding the *c* that leads to given solution data $\{\hat{u}_i\}$



Method:

- Include parameter(s) as learnable parameter(s)
- Training: Incorporate data
 loss in training
 - \rightsquigarrow Goal: Find a solution that fits data and solves PDE for the optimized parameter

TorchPhysics

Initiation of TORCHPHYSICS

- 2021: Robert Bosch GmbH got interested in PINNs
- Technical applications: Car parts, electronics, injection molding, etc.

Tom Freudenberg, et al.

Faculty 03 Mathematics / Computer science

[©] factum

^aPaszke et al., PyTorch: An Imperative Style [...], 2019

Initiation of TORCHPHYSICS

- 2021: Robert Bosch GmbH got interested in PINNs
- Technical applications: Car parts, electronics, injection molding, etc.
- Student project: Deep Learning library for PDEs
- Main Developers: Nick Heilenkötter & Tom Freudenberg

Tom Freudenberg, et al.

Faculty 03 Mathematics / Computer science

[©] factum

^aPaszke et al., PyTorch: An Imperative Style [...], 2019

Initiation of TORCHPHYSICS

- 2021: Robert Bosch GmbH got interested in PINNs
- Technical applications: Car parts, electronics, injection molding, etc.
- Student project: Deep Learning library for PDEs
- Main Developers: Nick Heilenkötter & Tom Freudenberg
- Open-Source on GitHub
- Build upon O PYTORCH^a

^aPaszke et al., PyTorch: An Imperative Style [...], 2019

Tom Freudenberg, et al.

Faculty 03 Mathematics / Computer science

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

What is needed for a PINN library?

We need...

- to create different types of domains
- a way to sample points in a given domain
- to be able to define different network architectures
- implement the need differential equations and boundary conditions as training conditions

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

What is needed for a PINN library?

We need...

- to create different types of domains
- a way to sample points in a given domain
- to be able to define different network architectures
- implement the need differential equations and boundary conditions as training conditions

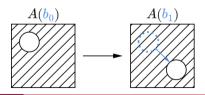
Faculty 03 Mathematics / Computer science

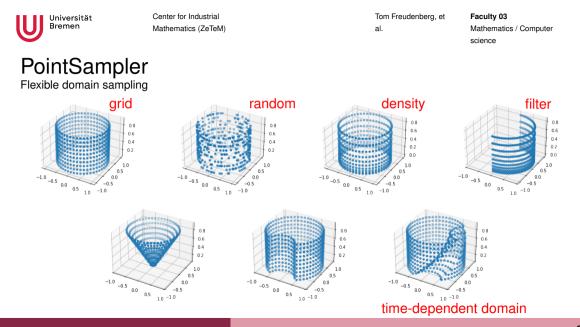
Domains

- Basic geometries implemented:
 - Point, Interval, Parallelogram, Circle, ...
- Complex domains via logical operators:

$$A \quad (B) \qquad A+B \qquad A-B \qquad A\&B \qquad (A+B) \qquad A = B \qquad A \&B \qquad (A+B) \qquad$$

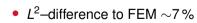
• Domains can depend on variables of other domains (e.g. time-dependent)





Applications Temperature in a drilling process

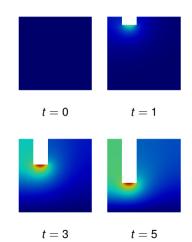
- Drilling problem:
 - $\begin{aligned} \partial_t u(x,t) &- \kappa \Delta u(x,t) = 0, & \text{ in } \Omega(t), \\ u(x,0) &= 0, & \text{ in } \Omega(0), \\ u(x,t) &= 0, & \text{ on } \Gamma_D, \\ \neg & \kappa \nabla u(x,t) \cdot n = f, & \text{ on } \Gamma_N(t). \end{aligned}$



Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science



Applications PINNs for Temperature–Navier–Stokes example

Bar heats up and rotates within some fluid:

$$\partial_t u + (u \cdot \nabla)u = \nu \Delta u - \nabla p,$$

$$\nabla \cdot u = 0,$$

$$\partial_t T + u \cdot \nabla T = \lambda \Delta T,$$

$$u(0, \cdot), p(0, \cdot), T(0, \cdot) = 0, 0, 270$$

$$u, T = (0, 0), 270,$$

$$u, T = u_{in}(t), T_{in}(t),$$

Tom Freudenberg, et

al.

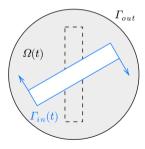
in $\Omega(t)$, in $\Omega(t)$,

in $\Omega(t)$, in $\Omega(0)$,

on Γ_{out} ,

on Γ_{in} .

Faculty 03 Mathematics / Computer science



Tom Freudenberg, et

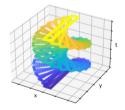
al.

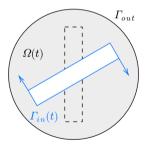
Faculty 03 Mathematics / Computer science

Time-Dependent Domain

Implementation inside TORCHPHYSICS

```
1 def corner1(t):
2    return rotation_matrix(t) * start_position_1
3
4 bar = tp.domains.Parallelogram(X, corner1, corner2, corner3)
5 circle = tp.domains.Circle(X, center, radius)
6
7 omega = circle - bar
```



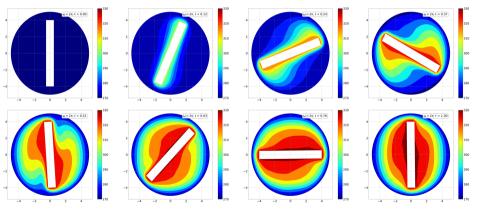


Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Applications Learned Temperature Field



Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Advantages of PINNs

Compared to classical methods

- (usually) Grid/mesh independent, therefore more flexible & saving is usually more memory efficient
- General approach for different kinds of differential equations, especially nonlinear
- · Learning parameter dependencies, useful for parameter studies
- Extension to optimization- & inverse problems easy to implement
- Interpolation and extrapolation of data

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Disadvantages of PINNs

Compared to classical methods

- No convergence theory
- Error not arbitrarily small
- Sometimes optimal minimum difficult to find, poor convergence
- · Much slower for single computation of forward solutions
- · Often trial and error for finding good parameters

Application to Inverse Problems

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Operator Learning

First natural idea

- Many problems include function valued parameters $f : \mathbb{R}^d \to \mathbb{R}^m$
- Goal: Learn operator on function set F

$$\Phi_{\theta}: \mathbb{R}^{n} \times F \longrightarrow \mathbb{R}^{m}$$
$$(x, f) \longmapsto u_{f}(x)$$

• Problem: Inputs of NN has to be discrete

. .

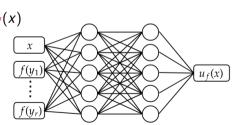
Operator Learning

First natural idea

- Many problems include function valued parameters $f : \mathbb{R}^d \to \mathbb{R}^m$
- Goal: Learn operator on function set F

$$\Phi_{ heta}: \mathbb{R}^n imes F \longrightarrow \mathbb{R}^m$$
 $(x, f) \longmapsto u_f(x)$

- Problem: Inputs of NN has to be discrete
- Idea: Discretize f on $y_1, \ldots, y_r \in \mathbb{R}^d$



Tom Freudenberg, et

al.

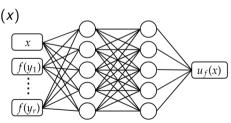
Operator Learning

First natural idea

- Many problems include function valued parameters $f: \mathbb{R}^d \to \mathbb{R}^m$
- Goal: Learn operator on function set F

$$\Phi_{\theta}: \mathbb{R}^{n} \times F \longrightarrow \mathbb{R}^{m}$$
$$(x, f) \longmapsto u_{f}(x)$$

- Problem: Inputs of NN has to be discrete
- Idea: Discretize f on $y_1, \ldots, y_r \in \mathbb{R}^d$
- Many $f(y_i)$ -inputs versus $x \rightarrow$ **Imbalance**



al.

al.

Faculty 03 Mathematics / Computer science

Operator Learning

State of the art

- Keep idea of discrete $f(y_i)$ -inputs, change network architecture:
 - DeepONet [Lu et al. (2019)] Divide and Conquer
 - Fourier Neural Operator (FNO) [Li et al. (2020)] Discrete Fourier transform
 - PCANN [Bhattacharya et al. (2020)] Principle component analysis
- · Generally data-driven, but with physics informed extensions

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Operator Learning

For inverse problems

- Usually the mapping $u \mapsto f$ is unstable under noisy data u^{δ}
- Idea: Learn forward operator Φ_{θ} and use it in Tikhonov scheme

$$\min_{f\in F} \|\Phi_{\theta}(f) - u^{\delta}\|^2 + \alpha R(f)$$

³ Nganyu et al., Deep Learning Methods for Partial Differential Equations [...], 2023

Tom Freudenberg, et

al.

Faculty 03 Mathematics / Computer science

Operator Learning

For inverse problems

- Usually the mapping $u \mapsto f$ is unstable under noisy data u^{δ}
- Idea: Learn forward operator Φ_{θ} and use it in Tikhonov scheme

$$\min_{f\in F} \|\Phi_{\theta}(f) - u^{\delta}\|^2 + \alpha R(f)$$

• We studied³:

- Performance of different methods for forward and inverse problem
- Influence of noise in the inverse problem
- Training: 1000 data pairs (f, u_f) , Testing: 5000 additional data pairs

³ Nganyu et al., Deep Learning Methods for Partial Differential Equations [...], 2023

Forward Problem

Consider Darcy flow equation

$$-\nabla \cdot (f \nabla u) = 1, \quad \text{in } (0,1)^2$$
$$u = 0, \quad \text{on } \partial (0,1)^2$$

Tom Freudenberg, et

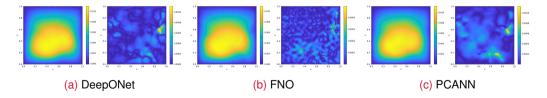
al.

Forward Problem

• Consider Darcy flow equation

$$\begin{aligned} -\nabla \cdot (f \, \nabla u) &= 1, \quad \text{in } (0,1)^2 \\ u &= 0, \quad \text{on } \partial (0,1)^2 \end{aligned}$$

Tom Freudenberg, et al.



Tom Freudenberg, et al.

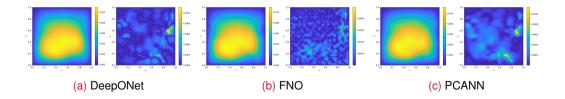
τ.

Faculty 03 Mathematics / Computer science

^ |

Forward Problem

			Rel. L ²	Evaluation	
 Consider Darcy flow equation 		error	time [s]		
		DeepONet	0.029	0.001	
$- abla \cdot (f abla u) = 1,$	in (0,1) ²	FNO	0.011	0.017	
u = 0,	on $\partial(0,1)^2$	PCANN	0.025	0.611	



Without noise

• Consider Darcy flow equation

$$-\nabla \cdot (f \nabla u) = 1, \quad \text{in } (0,1)^2$$
$$u = 0, \quad \text{on } \partial (0,1)^2$$

Tom Freudenberg, et

al.

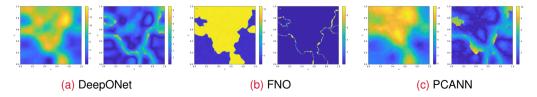
Inverse Problem

Without noise

• Consider Darcy flow equation

$$\begin{aligned} -\nabla\cdot(f\,\nabla u) &= 1, \quad \text{in } (0,1)^2 \\ u &= 0, \quad \text{on } \partial(0,1)^2 \end{aligned}$$

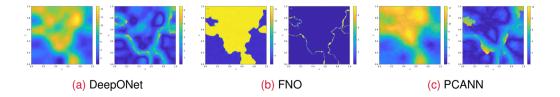
Tom Freudenberg, et al.



Without noise

Consider Darcy flow equation

			Rel. L ²	Evaluation
arcy flow equation			error	time [s]
, , , , , , , , , , , , , , , , , , , ,		DeepONet	0.222	0.001
$-\nabla\cdot(f\nabla u)=1,$	in (0,1) ²	FNO	0.093	0.016
u=0,	on $\partial(0,1)^2$	PCANN	0.098	0.154



With noise

- Three different training strategies:
 - 1) $u \mapsto f$, with noise-free data
 - 2) $u \mapsto f$, with noisy data of the same noise level
 - 3) $f \mapsto u$ and then Tikhonov for the inverse problem
- Always evaluate on noisy data u^{δ}
- Only demonstrate FNO

Tom Freudenberg, et

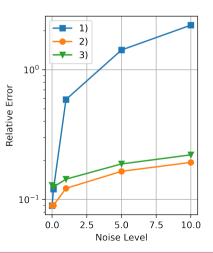
al.

With noise

- Three different training strategies:
 - 1) $u \mapsto f$, with noise-free data
 - 2) $u \mapsto f$, with noisy data of the same noise level
 - 3) $f \mapsto u$ and then Tikhonov for the inverse problem
- Always evaluate on noisy data u^{δ}
- Only demonstrate FNO
 - → Tikhonov helpful if noise level not previously known

Tom Freudenberg, et

al.



Tom Freudenberg, et al.

Faculty 03 Mathematics / Computer science

Summary

- DL for differential equations is useful for parameter studies, control/inverse problems, and data extrapolation
- Disadvantages are sometimes poor convergence and not arbitrarily small error
- TORCHPHYSICS is a open source framework that allows simple implementation of many different problems
- Use of learned forward operator in classical Tikhonov speeds up the computation