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Ω - Domain
η - Surface
u - Velocity field
p - Pressure
g - Gravity
σ - Surface tension
ρ - Density
d - Depth
Pi - xi-period
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We study the problem under the traveling wave assumption, i.e.
that the waves move with some constant horizontal velocity ν.

That is, we assume η(x′, t) = η(x′ − νt) and u(x, t) = u(x− νt)
and move the problem to the frame traveling with constant
speed ν to obtain the steady equations.
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The velocity and pressure satisfy the steady Euler equations

(u · ∇)u+∇p+ ge3 = 0

∇ · u = 0

in the domain Ω. If no liquid leaves or enters the domain we
also have the kinematic boundary condition

u · n = 0

on ∂Ω.
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for the 2 or 3-dimensional water wave problem we let

Ω = {x ∈ Rn : −d < x3 < η(x′)}

for some unknown function η, which makes this a free boundary
problem. To solve this requires an additional boundary
condition; the dynamic boundary condition

p|xn=η + σ∇

(
∇η√

1 + |∇η|2

)
= 0.

We want periodic waves, so we also require η to be periodic
(with respect to some lattice in three dimensions).
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To get a well posed problem we also add some form of integral
condition depending on the constant(s) c1 or (c1, c2) specifying
the (average) flow in either one or both of the periodic
directions.

1

|Ω̂|

∫
Ω̂
ui dx = ci, i = 1, 2.

Here Ω̂ is one ‘period’ of Ω. Let c = c1 in 2D and c = (c1, c2) in
3D.
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We briefly consider a flow without vorticity, i.e. ω := ∇× u = 0.
In this case we can introduce a potential φ satisfying ∇φ = u.
Furthermore the vector calculus identity

1

2
∇|u|2 = (u · ∇)u+ u× (∇× u)

means that in this case the first of the Euler equations is
satisfied if p = −1

2 |u|
2 − gx3 +Q and the second one is satisfied

if ∆φ = 0.
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This means we can first treat the problem

∆φ = 0 in Ω

n · ∇φ = 0 on ∂Ω

+integral conditions

for any given surface η. Then plug the solution φ[η, c] into the
dynamic boundary condition at the free surface to get

1

2
|∇φ[η, c]|2|xn=η + gη − σ∇ ·

(
∇η√

1 + |∇η|2

)
= Q(c).

For simplicity we now look at the two dimensional problem.
Note that we can simply assume the functions to be
independent of x2 to obtain the two dimensional problem.
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To be find the η dependence of φ = φ[η, c] we solve the problem
in the flattened domain. For small amplitude waves we can
easily find some Φ flattening the domain.

Ω Ω0

Φ

Φ−1
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With φ[η, c] in hand we can solve the dynamic boundary
condition as an equation

F (η, c) = 0,

using the Crandall-Rabinowitz bifurcation theorem. To apply
this the requirements are the following:

F (0, c) = 0 for all c

L : = DηF (0, c∗) is a Fredholm operator

with index 0

kerL = span{η1}
(I − P )DηDcF (0, c∗)[η1, 1] 6= 0. (transversality condition)
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This means we can use a Lyapunov-Schmidt reduction to solve
the problem. Considering

PF (sη1 + η̃, c) = 0

(I − P )F (sη1 + η̃, c) = 0,

where P is the projection onto imL and

η = (I − P )η + Pη = sη1 + η̃.

We can find η̃(s, c) solving the first problem and plugging this
into the second problem to find c(s). This gives a solution
(η(s), c(s)) in some neighbourhood of (0, c∗) for all s close
enough to 0.
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This means we have to study the linearization of

F (η, c) =
1

2
|∇φ[η, c]|2|x3=η + gη − σ∇

(
∇η√

1 + |∇η|2

)
−Q(c).

which is given by

DηF (0, c)[η] = c∂xDηφ(0, c)[η] + gη − σ∂2
xη
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Using the periodicity we express the surface as a Fourier series

η =
∑
m

η̂me
imkx1 .

In the linearization it is sufficient to study the Fourier modes
independently and we obtain

DηF (0, c)[η̂me
imkx1 ] =

(
g + σ(mk)2 − c2mk coth(mkd)

)
η̂me

imkx1 .
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It is not difficult to find c∗ such that m = ±1 are the only
solutions to (

g + σ(mk)2 − (c∗)2mk coth(mkd)
)

= 0

Requiring η to be real and even gives that DηF (0, c∗) is a
Fredholm operator with index 0 and kernel spanned by
cos(kx1).
It also clear that

DcDηF (0, c∗)[cos(kx1), 1] = −2c∗ coth(kd) 6= 0,

that is, the transversality condition is satisfied.
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The same procedure in three dimensions gives the following
linearization

DηF (0, c)[η̂m,ne
i(mkx1+nlx2)] =(

g + σ|km,n|2 −
(c · km,n)2

|km,n|
coth(|km,n|d)

)
η̂m,ne

i(mkx1+nlx2).

where c = (c1, c2) and km,n = (mk, nl).

I If we only have (m,n) = ±(1, 0) in the kernel we will only
recover the two dimensional solutions.

I σ = 0 gives a small divisor problem.
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Some previous results in 3D

I The first rigorous existence result is by Reeder & Shinbrot
’81. Gravity-capillary waves on a diamond lattice.

I Extended to general lattices by Craig & Nicholls ’00.

I Spacial dynamics approach by Groves & Mielke ’01,
Haragus & Kirchgässner ’01, and Groves & Haragus ’03.

I Existence of gravity waves on diamond lattice by Iooss &
Plotnikov ’09, which they later extended to general lattices.

I Non-existence with constant vorticity by Wahlén ’14.

I Existence of internal waves by Nilsson ’19.
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Returning to the vector calculus identity from before

1

2
∇|u|2 = (u · ∇)u+ u× (∇× u)

we see that the first Euler equation can be satisfied with the
same expression for the pressure as long as u× (∇×u) = 0. Not
only if ∇×u = 0. This is true in the case of a Beltrami flow, i.e.

∇× u = αu.
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We reduce this problem to the surface by solving

∇× u = αu in Ω

∇ · u = 0 in Ω

u · n = 0 on ∂Ω

+integral conditions

Solving the remaining equations requires us to find Fréchet
derivatives of u.
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Flattening and solving around a ‘base flow’ turns the problem
into

∇× u− αu = G(u, η) in Ω0

∇ · u = 0 in Ω0

u3 = c1∂x1η + c2∂x2η on x3 = 0

u3 = 0 on x3 = −d
+integral conditions

which has a unique solution u(η, c) that can be plugged into the
dynamic boundary condition

(c1u1 + c2u2)|x3=0 + gη − σ∆η = R(u, η).
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This equation can be solved by applying a Lyapunov-Schmidt
reduction just as in the irrotational case. The difference here is
that we have a two-dimensional kernel and two bifurcation
parameters c1 and c2. This ensures that we find truly
three-dimensional flows.

Theorem (Lokharu, Wahlén, S. ’20)

There exists a sheet of solutions to the three dimensional water
wave problem under the traveling wave assumption, where the
surface is doubly periodic with respect to some lattice and the
water have nonzero vorticity.

20 / 31



This equation can be solved by applying a Lyapunov-Schmidt
reduction just as in the irrotational case. The difference here is
that we have a two-dimensional kernel and two bifurcation
parameters c1 and c2. This ensures that we find truly
three-dimensional flows.

Theorem (Lokharu, Wahlén, S. ’20)

There exists a sheet of solutions to the three dimensional water
wave problem under the traveling wave assumption, where the
surface is doubly periodic with respect to some lattice and the
water have nonzero vorticity.

20 / 31



For a third time we return to the vector calculus identity

1

2
∇|u|2 = (u · ∇)u+ u× (∇× u)

Now we use an ansatz by Lortz from magnetohydrodynamics.
Let

∇× u = β∇h(q)×∇τ,

where

u · ∇τ = 1

τ |x1=0 = 0

and
q = τ(·+ L1e1)− τ

21 / 31



Then we get

u× (∇× u) = β∇h(q),

which means the first euler equation is solved if we set

p = βh(q)− 1

2
|u|2 − gx3 +Q.
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The equations that we have to solve to reduce the problem to
the boundary is

∇× u = β∇h(q)×∇τ in Ω

∇ · u = 0 in Ω

n · u = 0 on ∂Ω

+integral conditions

We find a solution again using the ideas of Lortz. As long as
u1 > δ > 0 we can find τ and q for any given u. Then we can
find v solving the equations above for any given τ and q. This
gives us an operator T (u) = v. A fixed point of T is the
solution we seek.
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I One problem that arises is to preserve the periodicity. This
can be resolved by imposing certain symmetries on u,
which makes ∇h(q)×∇τ periodic. Additionally,
∇h(q)×∇τ will satisfy the symmetries required for v to
satisfy the same symmetries as u.

I Once it is clear that T is well defined in this way it is
possible to turn it into a contraction by choosing β
sufficiently small.
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This analysis is performed in flattened coordinates to obtain
u(η, c) to plug into the dynamic boundary condition as in the
Beltrami case. However in this case there is a complication that
makes it impossible to proceed as before. The mapping
(η, c) 7→ u(η, c) is not differentiable. At least not in the natural
function spaces.
This comes from the fact that

u · ∇τ = 1

τ |x1 = 0

gives a τ [u] ∈ Cs for every u ∈ Cs that is not differentiable with
respect to u as a mapping Cs → Cs.
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If we view u 7→ τ [u] as a a mapping Cs → Cs−2 it is
differentiable and as a mapping Cs → Cs−3 it is twice
differentiable.
Without going into the technical details this eventually leads to
the mapping (η, c) 7→ u(η, c), which actually maps
Cs+1 × R→ Cs, is only twice differentiable as a mapping
Cs+1 × R→ Cs−4.
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Plugging this u(η, c) into the dynamic boundary condition gives
us the surface equation

F (η, c) +R(η, c) = 0

where F (η, c) is the same as in the irrotational case and R(η, c)
consists the ‘problematic’ terms. With some weak conditions
imposed on R we can find a solution by performing a
Lyapunov-Schmidt reduction as long as F satisfies the same
conditions as in the irrotational case.
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The first step is to find the η̃(s, c) solving

PF (sη1 + η̃, c) + PR(sη1 + η̃, c) = 0

This is done by solving the equivalent fixed point equation

G(η̃) := η̃ − L−1PF (sη1 + η̃, c)− L−1PR(sη1 + η̃, c) = η̃.

For sufficiently small |β| the operator G is a contraction
because R→ 0 as |β| → 0.

28 / 31



The second step is to find c(s) solving

H(s, c) := (I−P )F (sη1+η̃(s, c), c)+(I−P )R(sη1+η̃(s, c), c) = 0.

This can be done because even though both R and η̃ are only
differentiable with some loss of regularity H is differentiable
because it is a mapping between finite dimensional spaces.
Moreover the fact that DηDcR[0, c] = 0 (in the sense that it is
differentiable) allows us to use the implicit function theorem in
the same manner as if R ≡ 0.
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The final obstacle is to prove that we indeed get a solution that
is not irrotational. This can be done both implicitly by a
contradiction argument or explicitly by expanding the solutions.
The latter is preferable because it gives more information about
the properties of the solutions.

Theorem (Varholm, Wahlén, S.)

There exists a curve of solutions to the three dimensional water
wave problem under the traveling wave assumption, where the
surface is doubly periodic with respect to some lattice and the
water have nonzero vorticity. Moreover, the velocity field of the
water is not a Beltrami field.
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Thank you for listening!
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