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Short introduction followed by 3 selected topics:
Optimal prevention

Herd immunity

Generation times




Introduction to epidemic models
Optimizing prevention

Herd immunity Stockholm
The generation time University

Consider a fixed population of size n (assumed large)

The Markovian SIR epidemic model:

Qo

Qo

(*]

Individuals are classified as Susceptible, Infectious and Recovered
S(t), I(t), R(t) denote correspondning numbers at time t
(5(0),1(0), R(0)) = (n—1,1,0). S(t)+ I(t) + R(t) = nfor all ¢
An infectious individuals has "infectious contacts” at rate 3, each
time with a uniformly at random selected individual

Infectious contacts with susceptibles imply infection — other contacts
have no effect

Infectious individuals recover (and become immune) at rate =y

Model parameters: 3 and v (n = population size)

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Model properties (proven 20-50 years ago):

a) As n — oco: R(c0)/n (= final fraction getting infected) converges to a
2-point distribution: 0 or, if Ry = /7 > 1,

T = the positive solution to the equation 1 — x = e~ X

b) If instead /(0)/n = € > 0 fixed, then (S(-)/n, I(-)/n, R(-)/n)
converges in probability to the deterministic ODE-system ("the
deterministic SIR epidemic”)

s'(t) = —PBs(t)i(t)
i'(t) = Bs(t)i(t) — yi(t)
r'(t) = vi(t)

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19



lllustration of a): Ry = 0.8

Histogram of final sizes from 10 000 simulations in a population with
n = 1000 individuals
When Ry < 1 no positive solution
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lllustration of a): Ry = 1.5

Histogram of final sizes from 10 000 simulations in a population with
n = 1000 individuals
When Ry = 1.5 positive solution of 1 — x = e~ X equals 0.583
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lllustration of b) Plots of deterministic and simulated
stochastic curve
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Extensions

Many solved as well as open problems for various extentions

Qo

Qo

Considering different types of individual (Multitype epidemic)
Including vaccination and other preventive measures

Including social structures: network epidemics, household epidemics,

SEIR, SIRS, ,,,

Dynamic population and dynamic behaviour
Spatial aspects and mobility

Effects of individual preventive measures
Estimation!!!

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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A natural optimizing problem (joint with Lasse Leskela)

The determinstic SIR epidemic with intervention
Assume no vaccine is available (or expected to arrive) + no seasonality

Introduce a (non-pharmaceutical) prevention strategy
P = {p(t);0 < t < oco}: contacts reduced by fraction p(t) at t:

sp(t) = —B(1 — p(t))sp(t)ir(t)
ip(t) = B(1 — p(t))sp(t)ip(t) — vir(t)
rp(t) = vip(t)

(

Final size: zp = rp(c0) = 1 — sp(0)
Total cost of prevention strategy: fooo p(t)dt

Optimization problem' Which preventive strategy P, with cost
satisfying fo t)dt < ¢, minimizes final size zp?

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Comments on model

Of course many simplifications. Most crucial for conclusions:
— No vaccine available (or expected to arrive in near future)
— No seasonality

— Linear cost function [° p(t)dt

Here Aim is to minimize total number of infeced.

Alternative: minimize peak prevalence (see later)
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Uncontrolled incidence (top), some prevention
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Optimizing prevention in time and siz_

Solution is presented at end of talk - come up with suggestions during
the talk!!
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Herd immunity in a heterogeneous community

(Britton, Ball, Trapman, 2020)

Consider an epidemic where individuals have different social activity,
susceptibility and infectivity: multitype epidemic

Ry = average # infections caused by a "typical” infected in beginning of
outbreak (= largest eigenvalue to "next generation matrix")

If a uniformly selected fraction v of individuals are vaccinated with a
perfect vaccine: new reproduction number R, = Ry(1 — v)

R <l<=v>1-1/Ry
Critical vaccination coverage: v. =1 — 1/R; (Classical result)
If more than v, vaccinated: Herd immunity

First wave in Sweden: Ry = 2.5 "Herd immunity when 60% infected”

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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What if we instead vaccinate socially active and highly susceptible? (n.b.
not elderly — varying severity is a different problem not considered here)

= We should be able to reach herd immunity when vaccinating less
than 1 —1/R!! (also known result)

So: Uniform vaccination has v. = 1 — 1/Ry, but if vaccinating socially
active and highly susceptible then v, <1 —1/Ry

Without vaccination: When an epidemic without vaccination and
preventive measures is over, then herd immunity is reached (also known)

But what if the epidemic is stopped earlier thanks to preventive
measures? What fraction infected is required for Herd immunity? A
question never addressed before!

How is immunity distributed when immunity comes from infection in an
epidemic outbreak?

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Herd immunity cont'd

What if we instead vaccinate socially active and highly susceptible? (n.b.
not elderly — varying severity is a different problem not considered here)

= We should be able to reach herd immunity when vaccinating less
than 1 —1/R!! (also known result)

So: Uniform vaccination has v. = 1 — 1/Ry, but if vaccinating socially
active and highly susceptible then v, <1 —1/Ry

Without vaccination: When an epidemic without vaccination and
preventive measures is over, then herd immunity is reached (also known)

But what if the epidemic is stopped earlier thanks to preventive
measures? What fraction infected is required for Herd immunity? A
question never addressed before!

How is immunity distributed when immunity comes from infection in an
epidemic outbreak?

Answer: Susceptible and socially active are over-represented! So
immunity level to reach herd immunity is smaller than 1 — 1/Ry!!

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Herd immunity from disease-induced immunity

In Britton, Ball, Trapman (2020) we analysed an epidemic model fitted
to Covid-19 and allowing for heterogeneity due to

1) age (using empirical contact matrix from social studies),

2) varying social activity by assuming 50% "normal" and 25% twice/half
as social

3) varying susceptibility by assuming 50% "normal” and 25% twice/half
as susceptible

Suppose preventive measures (reducing all contacts equally) are put in
place during the outbreak, when will herd immunity be reached if
Ro = 2.57

Answer (for our model!): between 40-45% rather than 60%

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Disease induced immunity is more effectively distributed

Left: Vaccine-induced immunity (assuming uniform vaccination)
Right: Disease-induced immunity in a heterogeneous community

0 0.2 04 06 08 1 0 02 04 06 08 1

immunity level i immunity level i

Example: Ry = 2.5, | = 25%: p{y") = 47% and p{*) = 29%

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Definition of generation time

The generation time G describes the time between getting infected and
infecting others

G is a random variable, affected by: latent period, incubation period,
length of infectious period, infectivity over time, ...

Given an epidemic model, then the generation time distribution (GTD)
pc(t) = P(G = t) can often be computed

Knowledge of GTD is important because it is used when estimating the
daily reproduction number R, from (reported) incidence
1(t)it=1,..., tops:

Based on (reported) incidence (1), /(2), ...I(tops) and knowledge about
GTD pg(+), R: can be estimated from the (Euler-Lotka) equation:

() =R > _I(t = K)pa(k), t=1,..., toss

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Estimating the generation time distribution (GTD)

Britton and Scalia Tomba (2019)

Given an epidemic model, the generation time distribution (GTD)
pc(t) = P(G = t) can often be computed

But how to estimate GTD?
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Estimating the generation time distribution (GTD)

Britton and Scalia Tomba (2019)

Given an epidemic model, the generation time distribution (GTD)
pc(t) = P(G = t) can often be computed

But how to estimate GTD?
Contact tracing (during early stage of outbreak)

Potential problems:

1. In a growing epidemic, short generation times will be over-represented
when sampling backwards in time

2. Times of infections not observed, but onset of symptoms. Both end
points of generation time shifted by random times, so observed gen-times
will have correct mean but larger variance

3. Often there are multiple possible infectors. If these are discarded
remaining gen-times will be systematically shorter

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Suppose that Ry = 2, and each infected infects one individual after 1
week and one individual after 2 weeks (g(1) = g(2) = 0.5)

What is E(G)?




Toy example

Suppose that Ry = 2, and each infected infects one individual after 1
week and one individual after 2 weeks (g(1) = g(2) = 0.5)

What is E(G)? 1.5 weeks, and st.d.(G)? 0.5 weeks (below plot of #
infections each week)
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Looking backwards: contact tracing

Fibonacci numbers and the Golden ratio ...

== The mean generation time when contact tracing will be < 1.5

So if you estimate E(G) (or all of G) from contact tracing you will
under-estimate E(G)
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Serial intervals instead of generation times

(We now "forget” problem of looking backwards)

Infection times are hardly ever observed, but onset of symptoms are
G = time between infection times (unobserved)

S = time between onset of symptoms (observed)

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Generation times vs Serial intervals, cont'd

Generaton times vs Serial intervals
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Generation times vs Serial intervals, cont'd

= S=G6+(D,—Dy) (Dy and D, = incubation periods of
infector and infectee)

So, if incubation times are independent and independent of G, then

E(S) = E(G), and V(S) > V(G)

(The relation holds true for all (?) epidemic models)

So, if we estimate G ~ {g(s)} from observations on Serial intervals we
will over-predict variance of G

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Multiple exposures

Another problem when contact tracing is that sometimes there are
several notential infectors (see illustration on next slide)

Relative infection times of pa'kn"‘-‘a.l infeches
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Multiple exposures

If observations with more than one infected are neglected, remaining
intervals are biased from below.

This will also lead to under-estimation of E(G)

Conclusions: looking backwards and neglecting multiple exposures lead
to under-estimation of E(G) and observing serial intervals rather than
generation intervals lead to over-estimation of V(G)

We now see how this can affect estimates of Ry

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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We analyse the biasing effects of these inference problems

Conclusions:
1 & 3 give shorter mean, and 2) larger variance of GTD
All three lead to R; being under-estimated in the Euler-Lotka equation

For Ebola outbreak we think R was under-estimated by ~ 25%
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GTD also changes when preventive measures are adopted

Favero, Scalia Tomba and Britton (2022)

During covid-19 pandemic preventive measure have been enforced and we
have changed behaviour:

1. Social distancing in general

2. Self-isolation upon symptoms

3. Screening - testing

4. Contact tracing diagnosed cases

All of these reduce the daily reproduction number R; (the average
number of infections made by an infected now)

But some also change the timing when infections happen, so changes the
GTD

We included various preventive measures in an epidemic model and
analyse its effect on the GTD

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Covid example and effect on bias

Combining preventions (added isolation, screening and CT) where we
have "guessed” the amount of preventions

R =3.9 — R =1.45 (reduction by 62%)
E(G)=7.4 — E(G)=5.8 days (reduction by 22%)

Inferring R;

Suppose we observe (increasing) incidence {/(t)} for this situation
(R: = 1.45 and mean gen-time E(G) = 5.8)

If we use this new correct GTD and apply Euler-Lotka estimating
equations we get R; ~ 1.45 as it should

However, if we instead used the original/old GTD with mean 7.4 days (as
most countries do!!!) we would get R; ~ 1.75, so biased from above by
more than 20%

R.-estimates that use early GTD-estimates are biased from above (or
more accurately "biased away from 1")

Tom Britton, Stockholm University Mathematical models for epidemics including Covid-19
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Back to: Optimizing preventions (with Lasse Leskela)

i(t) when no interventions

0.5
0.45 |
0.4 -

0.35

= 0.25

0.05

Which prevention strategy (with [ p(t)dt < c) minimizes final epidemic
size?




Best strategy: complete lockdown starting -
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Minimizing final size vs minimizing maximum peak
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Adding prevention before optimal may increase final size!
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Thanks for your attention!
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