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A selective history

[Einstein, 1905] introduces the Brownian motion as model of the irregular
movement of particles suspended in a fluid: increasing the coordinates of the
particle at successive times by mutually independent increments results in a
trajectory of the diffusion process.

— Ité integral

[Chorin, 1973, Chorin, 1978] introduces a random vortex method to solve the
Navier-Stokes equation: the diffusive part of the equation is solved by
decomposing the vorticity into a sum of blobs moving along trajectories of
diffusion processes.

— particle tracking (PT)

[Pope, 1981] solves equations for the probability density functions used in
combustion theory by a Monte Carlo method: the solution is represented by
ensembles of “elements” at each grid point which are redistributed according to
the coefficients of the the equation, e.g., half to the right and half to the left (in
the mean) to simulate one-dimensional diffusion.

< random walk (RW)
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Global Random Walk

m solutions for advection-diffusion problems based on the equivalence
Otp+V Oy (p) = DOxxp (Fokker-Planck Eq.) < dX = Vdt+v2DdW (Ité Eq.)

where p(x,t) is the probability density of the It6 process X(t),
m weak solutions as RW on lattices: X;yar — X = (v + £d)Ax

. P(€=+1)= 5, P(E=0)=(1- 1)

m integer d and v = | Y&!| (= integer Courant number Cr > 1)
(3%%;2 (= dimensionless diffusion coefficient)
m = p(iAx, kAt) ~ nj g
B0k =00kt 0nipy_qjik+ ONiLyid]ik

r =

m counting the number of particles at lattice sites (binomially distributed
random variable n; x) = global random walk (GRW) - sequential
computation of individual PT trajectories is no longer necessary

m weak solutions as biased RW on lattices: Xpinr — X; = EAx
m P(E=+1)=3(rtv), P(E=0)=(1—r); r=228L v = V&L
W0k =00+ 0n_1)ik + 0Ny
m = biased global random walk (BGRW)
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Global Random Walk

GRW simulations of Gaussian diffusion

® 0Ny = (1= )ik, ONjyy+d)ik = %r Nik = unbiased GRW

s

moni = (1—r)NiKk, Onit1ik = %(r +v)nix = biased GRW (BGRW)

unbiased GRW: BGRW:
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Note: v < r implies Pé = VAx/D < 2 in BGRW codes.
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Global Random Walk

GRW approximations of continuous diffusion process

A diffusion process is defined if the following limits exist for all € > 0
[Kloeden and Platen, 1992, Sect. 4.6],

i) AIim0P1rob{|Xt+At — X¢| > 0} = 0 (continity with probability 1)
t—

P : .

i) Alimo EE{XHAt — Xi} = V (drift coefficient)

1 1
i) = lim —E{(Xtyar — X¢)*} = D (diffusion coefficient)

2 At—0 At
GRW:
m i) max |Xerar — Xe| = (Jv| + d)Ax < € holds with probability 1 if
At = r(dzADX)z < 2DE(\cvl\efd)2 = At =

if At < At*
PI'Ob{|Xt+At - Xt| > E} =1- PrOb{lXt+At - Xt| S E} =0.
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Global Random Walk

GRW approximations of continuous diffusion process

m ii) for all e > 0 and At < At*,

. 1
AllgoA E{Xiinr — Xt}:Alirﬂo—E{VAt+AvAx+§dAx}

Vi fm, glve

where Av = v — VA; is the truncation error of the advective displacement.

m jii) for all e > 0 and At < At*,

1 0y _ 1 2
EAIItmoA E{(Xixar — X)°} = EAlwlmeA E{(VAt+ AvAx + {dAx)7}
=D+ P lim (Av)?

rd? At—0
= X; approximates, up to truncation errors, a continuous diffusion process and
the distribution of the computational particles on the GRW lattice approximates
the solution of the Fokker-Planck equation.
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Global Random Walk

GRW approximations of continuous diffusion process

BGRW:

m /) Since in BRGW algorithms only jumps to neighbor lattice sites are
allowed, the continuity condition is verified for all e = Ax > 0.

m i)
lim iE{Xkﬂ X} = lim 1 [1(r + v)Ax + 1(r - v)(—Ax)]
At—0 A At—0 At |2 2
= lim LVAX: 4
At—0 At ’
m i)
L 5~ g e B
2
= A0 2~

= BGRW fulfils exactly the conditions ii) and iii).
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Global Random Walk

Numerical diffusion

c(x,t) = (4nDt) Y2 exp [—(x — Vt)?/(4Dt)] (Gaussian diffusion)

w(t) = [ xc(x, t)dx = Ve, s(t) = [[x — p(t)]?c(x, t)dx = 2Dt = D = s(t)/(2t)
m straightforward quantification of numerical diffusion: ep = |D™™ — D|/D,
with D™™ computed from the solution ¢"™™ of the numerical scheme.

B GRW: Yiiar = Xepnr — X = (v + Ed)Ax, E{£} =0, E{&}=r
u(t + At) = E{Ynr} = vAx + (dAX)E{{} = vAX
s(t + At) = E{(Yesar — vAX)?} = (dAX)?E{€?} = r(dAx)?
= s(t+ At)/(2At) = r(dAx)?/(2At) = D
m BGRW: Yiinr = Xeonr — Xe = EAx, E{¢}=v, E{&}=r
p(t+ At) = E{Yiiar} = AxE{{} = vAx
s(t + At) = E{(Yiznar — vAX)?} = AXPE{? — 2vE + v} = (r — v?)(Ax)?
= [s(t+ At) + (VAL)?]/(2AL) = r(Ax)?/(2At) = D
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Global Random Walk

Numerical diffusion

Numerical diffusion quantified by ep, = |Dx — D|/D and ep, = |D, — D|/D, with
D, and D, computed from numerical solutions (2-dim. advection-diffusion with
constant D and velocity (0, V), unbounded domain and final time t = T):

Ax=Az T/At Pé €D, €D,

0.1 2 3.31 7.55e-02 2.60e-01

BGRW 0.05 9 1.65 1.90e-16 1.48e-15
0.01 239 0.33 4.16e-16 1.02e-15

0.005 960 0.17 2.93e-15 3.63e-15

0.1 4 3.31 1.94e-16 6.14e-16

GRW 0.05 4 1.65 6.60e-17 8.05e-16
0.01 19 0.33 1.94e-16 4.79e-16

0.005 39 0.17 2.10e-15 8.92e-16

TPFA- 0.1 5 3.31 9.16e-03 1.99e-01
Finite 0.05 10 1.65 4.69e-03 9.94e-02
Volume 0.01 50 0.33 9.58e-04 1.99e-02

0.005 100 0.17 5.38e-04 9.89%e-03
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0
D o0, ) ~ V- K(OW. V(W + 2] = 0. a =K (O, V(e + 2)
& w.c)d - v -[DVe ~ ad = R(e)

m Richards and transport Egs. fully coupled through 6(v, ¢) and 6(v, ¢)c
m degenerate parabolic-elliptic Richards Eq.(6 = f(%, ¢) <> 0(¢) > 0) = const)
m strongly nonlinear K(0(4. ¢) (e.g., van Genuchten-Mualem model)

m Solution approach:

m FD schemes + L(wfj,i ?j.k)» iterations until [[¢°T — o < e
m & c=xnf; /N, N =10 random walkers = GRW

® jump probab|I|t|es rp(K) <1/(2d), re(D,q) < 1/(2d), d =1,2

= GRW algorithms for both flow and transport are free of numerical diffusion

[S, lliano, Prechtel, Radu, 2021]
[S, Radu, 2022]

https://github.com/PMFlow/RichardsEquation (Matlab codes)
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Coupled flow and transport in porous media

Explicit schemes for one-dimensional Richards equation: finite difference L-scheme

W) 2 [KOW) (W +2)] =0

m staggered finite difference scheme with backward discretization in time

9(¢: ) = 0(vik-1)
= RE{K(Wis1/2.6) Wis1k — Vi) — K(Wi—12.6) Wik — Vie1,i)]
+ (K(Yig1/2,6) — K($i—1/2,4)) Az}

m addition of a stabilization term L(1/)5+1 ?.), L= const

+1
i = = (Frrjan + a2 W0k + Feajanivin T a2 i1k

H(rFi1jon = Fo1j2x)B2 = (005 ) — 0(¥in-1))/L

where s, = K(w;ﬂ/M)At/(LAz?)
m iterations s = 1,2, ... of the L-scheme until |[v§ — 5 || < e, + &/ |||
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Coupled flow and transport in porous media

Explicit schemes for one-dimensional Richards equation: GRW L-scheme

m ¢ | is represented by A\ particles at distributed over lattice sites,
V7 = na/N, where ais unit length
1
n == (r Pt jo ket i1y Ikt o kMt g o kM- e+ (NP
where £ = (r? 1 5 = 1712 )z = [0(nf ) — 0(nik-1)]/L

m imposing rﬂ/2 L <1/2= ns = on; +6njs'71|j,k +n3 1)k BGRW with

Nj)j k
5"|Jk (L= (Fvjon + Fea I o 02y o = 126k

m in particular, for saturated regime, 6 = const, with space-variable hydraulic
conductivity K and a given source term f, after setting L = 1/a and
disregarding the time index k = a transient scheme to solve the equation
for the hydraulic head h=1v + z

1o K=
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Coupled flow and transport in porous media

Explicit BGRW scheme for reactive transport

%[9(¢a C)C] [D c— qC] - (C)a
m finite difference scheme with backward time discretization
O(Wi K, Cik)Cik — O(Vik—1, Ci k—1)Ci k-1
= —%(Qiﬂ,kqﬂ,k — Gi-1,kCi—1,k) + %(Cﬂrl k — 2Cik + ci—1k) + R(cik)

= _2£ZAthi,k + (2§§ - mq,ﬂ K)Ci1k + (gﬁf + 2qu,71 k)Ci—1,k + R(cik)

= with L( s+1 C/s,k)v r= igézt’ Vi k = %qisil,k and (o ”?,k/N:>
1
nit = (l—r) i+ 5(r— is+1k)”7+1,k+1( + V7 gk INg* AL,
where g° = R(nf )/L — [0(47 k> 07 )07 o — O(i k-1, Nik—1)ni k—1]/L
m imposing r <1, |vj,| < r, the contributions to nerl <+ BGRW algorithm

S _ S S S
Ny g =00y 4+ 0m7_qyy 4+ 074 q)

50 = (L= 1) . omey = 2 vi ),
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Validation tests for explicit 1-dim L-schemes

m unsaturated 1-dim flows (Richards equation in pressure formulation):

o, GRW, HydrusiD, and experiments! data
% R On,
% s

GRW (1)

GRW (2)
77777 MFEM (1)
MFEM (2)

GRW (1)

GRW (2)
77777 MFEM (1)
MFEM (2)

08 06 -04 02 0 02 04 06 005 01 015 02 025 03 035 04
(1) 0(z1)

Left panel: comparison between measured water content in a free drainage
experiment, Hydrus 1D solutions, and GRW solutions.

Middle panel: pressure profiles computed with the GRW solver and Richy
MFEM for saturated/unsaturated flow in a soil column with constant
pressure at the bottom and variable flux at the top, for constant

K = Ksaturated (scenario 1) and K = Kgaturated(z) with finite jump at the
half height of the domain (scenario 2).

Right panel: water content for the same scenarios as in the middle panel.

m solutions z(6, t) and 6(z, t) (obtained with a BGRW for the diffusion-like
Richards equation in #-formulation) are close to analytical solutions within a
relative precision ~ 1072 [S, lliano, Prechtel, Radu, 2021, Tables 2 and 3].
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Convergence of the 1-dim flow L-scheme

scenario (1) scenario (2)
10 10°
—O6— 22000 —6—t=2000
——+— 124000 ——+—1=4000

t=6000
—k—t=8000
t=10000

t=6000
—k—t=8000
t=10000

0 10 20 30 40 50 60 70 700

0.85
0.8
0.75
_ 07
0.65 —O—1=2000 0.74 —O— t=2000
% ——+—1=4000 ‘ ——+— t=4000
0.6 1=6000 1=6000
—%—1=8000 06 —%— t=8000
055 1=10000 t=10000
0 10 20 30 40 50 60 0 100 200 300 400 500 600 700

s s

testing linear convergence [Catinas, 2021]: Q1 = lims—yoo |[¢5F — 4%||/||0° — 45~ 1||<1
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Convergence of the solution (coupled 1D flow & transport)

Transition from unsaturated to saturated regime:

m manufactured solutions of the 1-dimensional problem,
Ym(z,t) = —tz(z — 1)+ z/4, cm(z,t)=tz(z—1)+1

m degenerate parabolic-elliptic Richards equation, van Genuchten-Mualem
parameterizations (1) and K(©(v)) for a loam-soil model,

@(¢) _ {gl + (—Oﬂ/})")_m K(@(w)) — Ksat@(d})% {1 - (1 - @(w)%) } ¢ <0
’ Ksat P >0,

where © = (9 - Hresidual)/(esaturated - eresidual)
m L-schemes converge with L, = 10, L. = 1, e = 102 after ~ 10* iterations

m by successively refining the mesh = estimated orders of convergence (EOC)
of the numerical solution twoards the analytical solution:

Az ¢ —¢ml EOC [[g—gml| EOC |lc—cm|| EOC
1.00e-1 585e02 -  3.60e03 - 172002 -
5.00e2 142e-02 205 1.09e03 173 5.05e-03 1.77
250e-2 3.27e-03 211 2.92e04 190 134e-03 1.92
1.05e-2  3.27e03 201 1.07e-04 145 3.45e04 1.95
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Comparison with TPFA-finite volume approach (2-dim flow)

unsaturated flow:

Um(x z,t) = —tx(x = 1)z(z = 1) = 1, 0(v) = 1/(1 = ¥), K(0(v)) = v*:

BGRW TPFA
Az | —¢m| EOC [[¢ —¢m|| EOC
1.00e1 3.71e03 -  8.14e03 -
5.00e2 9.18e-04 202 4.27e03 0.93
2.50e2 2.40e-04 1.94 220e03 0.95
1.25e2  8.78e-05 145 11203  0.97

explicit BGRW - higher EOC and one order of magnitude faster than implicit TPFA

saturated flow: random K(x, z) with Gaussian correlated In K of variance 0.1:

BGRW TPFA
Az v vml EOC [ — dml EOC
1.00e-1  7.37e-02 - 9.22e-02 —
5.00e-2 1.87e-02 1.98 2.30e-02 2.00
2.50e-2  6.03e-03 1.63 5.75e-03 2.00
1.25e-2 2.73e-03 1.14 1.44e-03 2.00

explicit BGRW - lower EOC and up to two orders of magnitude slower than implicit TPFA
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Reactive transport with biodegradation

The water flow and the fate of electron donor, electron acceptor, and biomass
concentrations, ¢, ¢, c3, are governed by the system of coupled equations

J 0() = V- [KOW)V(Y+2)] =0, a=(U,V)=-K(O0))V(¢ + 2)

ot
% (ecu) -V (Dl/vcu - qCu) =R, v=12
1o} C3
Za=Ry(1-y——)—k
8tC3 3( Y 3max> dC3

C1 C

= —— __* ¢
2 MmaxM1+C1 My + ¢ 3

Ry = —6aqp, Ry = —Banu, Rz = Ypu, a1, ap are stoichiometric constants, fimax
is the maximum growth rate, M;, M, are Monod constants, Y is the microbial
yield coefficient, k4 is the decay rate, and the factor of R3 with v = 1 accounts
for the growth limitation of the biomass.

m flow & transport solved with BGRW/GRW algorithms

m reaction step performed deterministically with each moll of reactant
represented by N/ = 10%* ~ Avogadro's number
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Reactive transport with biodegradation

Code verification and convergence tests - constant transport parameters

mU=0,V=-1,D0,=D,=D=01,0=1
m nonlinear reaction terms R; = —c1c22 and R, = —2C1C22
m domain Q = (0,2) x (0,3) and final simulation time T = 1.
m manufactured analytical solutions
cim(x, 2, t) = x(2 — x)z> exp(—0.1t) /27
X

Com(x, 2, t) = (x — 1)?2? exp(—0.1t) /9

Ax=Az |jcg—cm| EOC | — cm| EOC
2.00e-1 3.563e-03 - 4.91e-03 -
1.00e-1 8.64e-04 2.03 1.12e-03 2.13
5.00e-2 2.12e-04 2.02 2.67e-04 2.07
2.50e-2 5.30e-05 2.00 6.50e-05 2.04
1.25e-2 1.32e-05 2.00 1.60e-05 2.02
6.25e-2 3.30e-06 2.00 3.99e-06 2.01
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Reactive transport with biodegradation

Code verification and convergence tests - coupled flow and transport (with Monod)

m manufactured solution of parabolic-elliptic degenerate Richards equation
Ym(x,z,t) = —tx(2 — x)z(3 —z) + x/4 + z /4
m with nontrivial parameterizations 6(1)) and K(6(¢))

o) = {éﬁ3.3333—¢) K(O()) = {8:82[1—(0.3—9(1/;))] Zig

Ax || —tml EOC [[Vi— Vimll EOC [V;—Vu|| EOC
2.00e-1  6.62e-01 - 1.85e-02 - 9.17e-03 -
1.00e-1  1.69e-01 1.97 6.87e-03 1.43 2.86e-03 1.68
5.00e-:2  4.22e-02  2.00 2.40e-03 1.52 9.36e-04 1.61
2.50e-2  1.06e-02  2.00 8.15e-04 1.56 3.06e-04 161
Ax llco — aaml| EOC |l — com|| EOC

2.00e-1  3.14e-02 - 5.84e-02 -

1.00e-1 1.02e-02 1.62 1.88e-02 1.64

5.00e-2 2.86e-03 1.83 5.23e-03 1.84

2.50e-2 7.32e-04 1.97 1.34e-03 1.97
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Reactive transport with biodegradation

Biodegradation in heterogeneous saturated aquifers

m random K (Gaussian correlation and variance 0.1), continuous injection of
benzene (c;) at the inflow boundary, uniform initial concentrations of
oxygen (c2) and biomass (c3 = 1) in Q = (0, 80) x (0.20):

c(z,y,t) 2

cs(z,y,t) 0.02
i o
0

Reference BGRW solutions: good agree- Unbiased GRW solutions: reproduce the
ment with results of [Cirpka et al., 1999;  shape of the reference solutions but are af-

Bause & Knabner, 2004]. fected by overshooting.
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Reactive transport with biodegradation

Biodegradation in variably saturates soils

T 30
¢ (z,2,t) 2 ey, 2,1) 5 c3(w, 2,t) 05 (z,2,1) 0(x, z,t) 0,305
0.4 0.5 ~w 1 0392
1 03 0:393
4 ° i
0 0 ’ 0.5 ’
T =60
¢z, z,1) oz, z,t) cs(z, z,t) P(z, z,t) 0(z,z,t)
2 5 95 : 0.3955
03 : 0.395
1 83 - 0.3945
0.1 b2 0.394
0 0 -0. 0.3935
=120
¢ (@, z,t) 2 oz, z,1) 5 c;(a"zt 05 Y(x, z,t) 0(z,2,t)
04 E% 0.3955
1 g - 0.395
K] ' 0.3945
0 0 0.2

Concentrations of the electron donor (c1), electron acceptor (c2), and biomass (c3), pressure
head (), and water content (0) computed by the BGRW L-scheme coupled with the GRW flow
solver for loam soil parameters in Q = (0,2) x (0, 3).
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Modelling adapted to measurement space-time scale

[Vamos, Georgescu, S, Turcu, 1996]: coarse-grained space-time (CGST) aver.
[S, Radu, Pop, 2022]: CGST averaging over RW microscopical descriptions

If a microscopic description of a system of N particles is given by piecewise
analytic time functions ¢;(t) : [0, T] — R, then

1) there exists a macroscopic description given by a.e. continuous fields

d
()0 t:3,7) 2ad2 / () T] xalras)t’
a=1

’1t‘r

where r;(t) is the trajectory of the ith particle, and Hi:l Xa(rai(t)) is the
characteristic function of the cube C, = {y € R? | |ys — ra| < a,a=1,...,d},
2) (@) has continuous partial derivatives a.e. in R® x (7, T — ) and satisfies the

identity
d
at<<)0> + 6a<90§a> = <dt > + 0y,
where ;o = dra;/dt, are the velocity components of the ith particle and §¢

accounts for discontinuous variations of ¢ produced when a particle is created or
consumed in chemical reactions.
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Modelling adapted to measurement space-time scale

The continuous concentration field c*(x, t) at the scale of the mathematical
continuum (fine-grained concentration) is an average M over the ensemble of
realizations X;(t,w) of the transport process,

(%, t) 1= M [é S(Xi(t,w) — x)} .

Writing the characteristic function of the cube as a Dirac functional,

H Xa al = XC(x, a)(xh t) /XC(x,a)(X/)(S(Xi(t:w) - X/)dxl,
Rd
= the stochastic average of the CGST average for ¢; = 1 is a space-time
average of the fine-grained concentration,
t+7
MI(1 t; dt’ *(x', t")dx'.
(0 £27) = 375 / / (. ¢
-7 C(x,a)
MI[(1)](x, t; a,7) = c(x, t) defines the continuous concentration field observed at
the spatio-temporal scale (a,7) --+ ST averaging local balance equations and

T-averaged homogenization solutions.
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Modelling adapted to measurement space-time scale

Verification of the averaging procedure (1-dim. case)

¢ = 1: (1)(x, t) = c(x, t) = concentration field
%(f)( t) = u(x t) = velocity defined as hydrodynamic mean
d¢ = 0 = continuity equation, 0:c + Ox(cu) =0
m cu= (€)= () = 0e(r) + 0x(r) = e + 00 (r) = B (~(r€))
m assuming steady-state conditions, 9;c = 0, 9;(r) = 0,
= 02(Dc) = 0 (stationary diffusion with diffusion coefficient D = —(r¢)/c)

BGRW & GRW simulations of advection-diffusion with D = 10~%, u =1 and
CGST averages with a = 0.05, 7 = 0.1:

D u
Ax BGRW GRW BGRW GRW
5.00e-03 1e-04+ 2.25e-19 1le-04+ 2.51e-19 | 1+ 0.00 1+ 0.00
2.50e-03 1e-04+ 5.07e-19 1e-04+£ 6.21e-19 | 1+ 0.00 1+ 0.00
1.25e-03 1le-04=+ 1.16e-18 1le-04+ 1.30e-18 | 1+ 2.36e-16 1+ 0.00
6.25e-04 1e-04+ 1.42e-18 1le-04+ 1.78e-18 | 1+ 2.36e-16 1+ 0.00
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Modelling adapted to measurement space-time scale

Bimolecular reaction with conservation of the total mass (1-dim. case)

m one species is consumed and another is augmented at the same rate

drct 4 udy(c}) — DO*c: = R,(cf,¢3), v=1,2

2 .
B Ry =—K,cic;, Ro=—R; = the total mass is conserved
-3 -3
x10 2.4937677° 20
2.4937656 —oe—1t=0.1
e —+—1=05
g 2.4937654 g =0.9
= 2.4937652 -3 24937665
= =
A 2.493765 A
V 2.4937648 \
s S 2.493766
2.4937646
2.4937644
— 2.4937655
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x T

Moving averages over points in (—a, a) and the time interval (—7, 7), fine-grained
concentrations (full lines) and half total concentration (¢ + ¢5)/2 (squares).
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Modelling adapted to measurement space-time scale

Bimolecular reaction with conservation of the total mass (1-dim. case)

m CGST averages of the two molecular species satisfy a.e. identities having
the general form the advection-diffusion equation

8:(1y) + Ox(1,€) = 61, v =1,2
m J1; + 01, = 0 and the sum ({11) + (1)) is conserved

0.9725686 0.9725691
0.9725685 0.972569
_ 0.9725684 _ 0.9725689
= =
2 N
A\ 0.9725683 1\ 0.9725688
A\ %
0.9725682 0.9725687
0.9725681 0.9725686
0.972568 0.9725685
0 02 04 06 08 1 0 02 04 06 08 1
x xT

CGST average concentrations (a = 0.05, 7 = 0.1) compared to volume
averages (full lines) and half total concentration ({(11) + (12))/2 (squares).
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Modelling adapted to measurement space-time scale

Biodegradation in aquifers (1-dim. case)

m aerobic biodegradation processes: electron donor contaminant (e.g.,
benzene) with concentration ¢y, electron acceptor (oxygen) with
concentration ¢, biomass with ¢3 = 1 uniformly distributed in Q2 = (0, 1),

m mobile species are transported by dispersion in realizations of a random
velocity field modeling heterogeneous aquifers (BGRW simulation):

-3
0.04 prl
—e—1t=0.2
—+—1=06
003 <
% 2
Z <
A 0.02 A
vV Vv
< i
“o.01 o
0
1
x x

Moving averages and fine-grained concentrations (full lines).
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Modelling adapted to measurement space-time scale

Biodegradation in aquifers (1-dim. case)

14

12

10

<L >/N

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x x

CGST concentrations (a = 0.05, 7 = 0.2) and volume averages c;; (full lines).
ge, = max(|(1) — ¢Z[)/ (1) (arg(max(|(L.) — c;1))), v =1,2.

realization ensemble
t €cq €ca €cy €ca
0.2 0.2561 0.2976 0.2155 0.6988
0.6 0.5112 0.4264 0.5898 0.4449
1.0 0.5400 0.4706 0.4926 0.3529
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Modelling adapted to measurement space-time scale

Biodegradation in variably saturated soils (1-dim. case)

m aerobic biodegradation process in Q = (0, 3), driven by a continuous
injection of the contaminant on the top of the column in conditions of free
drainage at the bottom, modeled by an iterative BGRW scheme:

3 3
25
2
w15
1
05
0

0 2 4 6 8 10 12 0 02 0.4 0.6 0.8

<li>/N <l>/N
CGST concentrations (a = 0.05, 7 = 0.6) and volume averages (full lines).
t = €ca

2 0.9895 0.5867
4 0.6950 0.6057
6 0.7702 0.6576
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Modelling adapted to measurement space-time scale

Biodegradation in variably saturated soils

(2-dim. case)

of

10

12 14

8 0 0.1 0.2 03 0.4
<1li>/N <ly>/N
CGST averaged concentrations (a = 0.05, 7 = 12) compared to volume
averaged concentrations (full lines), sampled on a vertical line at x = 1.75.
centered decentered
t €y Eca Ecy €c
40 0.8041  0.1389 0.7670 0.5471
80 0.1636  0.3479 0.1737 0.1354
120 0.0880  0.0462 0.1062 0.2204
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Particle tracking versus random walk

e both PT and RW can be used to solve parabolic and elliptic PDEs

e unlike PT, RW avoid the computation of individual trajectories: counting the
number of particles at lattice sites = GRW

e GRW schemes < either equivalence of It6 and Fokker-Planck descriptions of
diffusion or by randomization of explicit finite difference schemes

GRW versus BGRW

e GRW is faster than BGRW but prone of discretization and overshooting errors
e BGRW is slower (restricted by Pé< 2) but more accurate: it is a better
approximation of the diffusion process and is free of overshooting errors

Are computational particles always necessary?

e not for flow schemes: they are basically explicit finite difference L-schemes,
randomization does not bring any improvement

e important in transport schemes: reactive transport represented by the actual
number of molecules involved in reactions provides a “microscopic description”
Measurements and space-time upscaling

e CGST averages over microscopic descriptions simulate measurements

e In conditions of non-stationary reactive transport processes, volume averages
alone may significantly differ from space-time averages.
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