Design of 3D printable thin composite panels featuring an extension-bending coupling

Filippo AGNELLI

Department of Mechanical Engineering, McGill University, Montreal, QC, Canada

September 14, 2022 – KAAS seminar series – Talk no. 113

Acknowledgement

Work conducted at Laboratoire de Mécanique des Solides, CNRS, Ecole polytechnique, France Funding: a SN (ENS) doctoral fellowship, French Ministry of Higher Education, Research and Innovations

- Special thanks to
 - Andrei Constantinescu and Grigor Nika
 - Grégoire Allaire, and Charles Dapogny CMAP, École polytechnique, France
 - Chiara Daraio and Paolo Celli, Caltech, USA

Shape-shifting panels in engineering application

- Panel: Compound (cellular and/or laminate) & Slender (plate or shell) structure
 - High strength-to-weight ratio
 - Simple manufacturing
 - Efficient storage and transportation
- Shape-shifting structure
 - Self-deployable (flat to 3d and converse)
 - Reconfigurable
 - Possible actuation / locomotion

=> Shape-shifting panel

- Wider design space
- Multifunctionality

(Guseinov et al. Nat. Commun. 2020)

(Chen et al. Phys. Rev. Appl. 2019)

Shape-shifting structures: origins of the mechanism

(van Manen, Janbaz & Zadpoor, Mater. Today 2018)

Shape-shifting structures: origins of the mechanism

Shape-shifting structures: origins of the mechanism

Design of 3D printable architectured sheets

Method:

- Impart a material gradient in the panel
 - Single material
 - Controlled material distribution

• Periodic structure

$$\epsilon = \frac{\ell}{L}$$

r =

• Cellular aspect ratio

$$\frac{h}{\ell}$$
 • $r \ll 1$: 2D plane stress state
• $r \approx 1$: 3D unit cell

Outline

« Manual pinching »

• Mechanical characterization of periodic panels

- Analysis of a ribbon-based periodic panel
 - Asymptotic homogenization theory
 - Generalized Kirchhoff-Love model
- Topology optimization using a level set method
 - Finding an elementary form associated to a target elastic stiffness
 - Shape derivative in the sense of Hadamard
 - Classical level set method

(A., Tricarico & Constantinescu Extreme Mech. Lett. 2021)

Families of auxetic lattices

Programmable Poisson's ratio over large deformations up to 20% •

0.06

(C)

B-spline curves

funct, Average 0 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Poisson's ratio, v

(Clausen et al. Adv. Mater 2015)

From 2D wire-based network to 3D ribbon-based lattice

B-spline surface: $\mathbf{S}(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} N_{i,p}(u) N_{j,q}(v) \mathbf{P}_{i,j}$

Architectured panel with a ribbon based structure

Mechanics of ribbons

Elastic panels with a periodic micro-structure

Equivalent homogeneous panel

Microscopic behavior

Linear elastic, isotropic, heterogeneous but periodic

 $oldsymbol{\sigma}^{h\epsilon} = \mathsf{C}^{h\epsilon}(\mathbf{y})$: $arepsilon(\mathbf{u}^{h\epsilon})$

Macroscopic behavior

Linear elastic, **orthotropic**, homogeneous Generalized Kirchhoff–Love thin plate model

$$\begin{bmatrix} \mathbf{N} \\ \mathbf{M} \end{bmatrix} = \begin{bmatrix} \mathsf{A}^* & \mathsf{B}^* \\ {}^{\mathsf{T}}\mathsf{B}^* & \mathsf{D}^* \end{bmatrix} : \begin{bmatrix} \boldsymbol{\varepsilon}_{\mathsf{x}}(\mathsf{U}_{\alpha}) \\ \boldsymbol{\chi}_{\mathsf{x}}(U_3) \end{bmatrix}$$

Homogenization for thin periodic plates

• Thin plate elastic stiffness tensor

• Effective stiffness coefficients

$$\begin{bmatrix} A^{*}_{B^{\top *}} & B^{*}_{D^{*}} \\ B^{\top *} & D^{*} \end{bmatrix}_{(h^{*}, t^{*})} = \begin{bmatrix} A^{*}_{1111} & A^{*}_{1122} & A^{*}_{1121} \\ A^{*}_{1122} & A^{*}_{2222} & A^{*}_{2212} \\ A^{*}_{1122} & A^{*}_{2212} & A^{*}_{1212} \\ B^{*}_{1111} & B^{*}_{2211} & B^{*}_{1222} & B^{*}_{1212} \\ B^{*}_{1111} & B^{*}_{2211} & B^{*}_{1212} \\ B^{*}_{1112} & B^{*}_{2222} & B^{*}_{2212} \\ B^{*}_{1111} & B^{*}_{2211} & B^{*}_{1212} \\ B^{*}_{1122} & B^{*}_{2222} & B^{*}_{2212} \\ B^{*}_{1112} & B^{*}_{2212} & B^{*}_{1212} \\ B^{*}_{1112} & B^{*}_{1212} & B^{*}_{1212} \\ B^{*}_{1112} & B^{*$$

(Caillerie & Nedelec Math. Methods Appl. Sci. 1984)

Cell problems

 $\mathbf{w}^{\gamma\delta}\in ilde{\mathcal{V}}(Y)$ satisfy:

$$\int_{Y} \mathsf{C}(\mathbf{y}) : \left(\mathbf{\mathcal{E}}^{\gamma \delta} + \boldsymbol{\varepsilon}_{\mathbf{y}}(\mathbf{w}^{\gamma \delta}) \right) : \boldsymbol{\varepsilon}_{\mathbf{y}}(\mathbf{v}) \, d\mathbf{y} = 0 \qquad \forall \mathbf{v} \in \tilde{\mathcal{V}}(Y)$$

 $\mathbf{p}^{\gamma\delta}\in ilde{\mathcal{V}}(Y)$ satisfy:

$$\int_{Y} \mathsf{C}(\mathbf{y}) : \left(\mathbf{y}_{\mathbf{3}} \, \boldsymbol{\boldsymbol{\mathcal{E}}}^{\gamma \delta} + \boldsymbol{\varepsilon}_{\mathbf{y}}(\mathbf{p}^{\gamma \delta}) \right) : \boldsymbol{\varepsilon}_{\mathbf{y}}(\mathbf{v}) \, d\mathbf{y} = 0 \qquad \forall \mathbf{v} \in \tilde{\mathcal{V}}(Y)$$

September 14, 2022 – Presentation Filippo Agnelli

Results interpretation: stiffness C* vs. compliance S*

• Hooke's law

 $\begin{bmatrix} \mathbf{N} \\ \mathbf{M} \end{bmatrix} = [\mathsf{C}^*] : \begin{bmatrix} \varepsilon_{\mathsf{x}}(\mathsf{U}_{\alpha}) \\ \chi_{\mathsf{x}}(U_3) \end{bmatrix}$

$$C^* = \begin{bmatrix} A^* & B^* \\ \top B^* & D^* \end{bmatrix} = \begin{bmatrix} A^*_{1111} & A^*_{1122} & 0 & B^*_{1111} & B^*_{1122} & 0 \\ A^*_{1122} & A^*_{2222} & 0 & B^*_{2211} & B^*_{2222} & 0 \\ 0 & 0 & A^*_{1212} & 0 & 0 & B^*_{1212} \\ \hline B^*_{1111} & B^*_{2211} & 0 & D^*_{1111} & D^*_{1122} & 0 \\ B^*_{1122} & B^*_{2222} & 0 & D^*_{1122} & D^*_{2222} & 0 \\ 0 & 0 & B^*_{1212} & 0 & 0 & D^*_{1212} \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{\varepsilon}_{\mathbf{x}}(\mathbf{U}_{\alpha}) \\ \boldsymbol{\chi}_{\mathbf{x}}(U_{3}) \end{bmatrix} = [\mathsf{S}^{*}] : \begin{bmatrix} \mathbf{N} \\ \mathbf{M} \end{bmatrix}$$

$$\mathsf{S}^{*} = (\mathsf{C}^{*})^{-1} = \begin{bmatrix} S_{1111}^{*} & S_{1122}^{*} & 0 & S_{1144}^{*} & S_{1155}^{*} & 0 \\ S_{1122}^{*} & S_{2222}^{*} & 0 & S_{2244}^{*} & S_{2255}^{*} & 0 \\ 0 & 0 & S_{1212}^{*} & 0 & 0 & S_{1245}^{*} \\ \hline S_{1144}^{*} & S_{2244}^{*} & 0 & S_{4444}^{*} & S_{4455}^{*} & 0 \\ S_{1155}^{*} & S_{2255}^{*} & 0 & S_{4455}^{*} & S_{5555}^{*} & 0 \\ 0 & 0 & S_{1245}^{*} & 0 & 0 & S_{4545}^{*} \end{bmatrix}$$

Material coefficients (stiffness)

$$E^* = rac{1}{h} A^*_{1111} \left(1 - \left(rac{A^*_{1122}}{A^*_{1111}}
ight)
ight)$$

 $\nu^* = \frac{A^*_{1122}}{A^*_{1111}}$

• Material coefficients (compliance)

$$E^* = \frac{1}{h^* S_{1111}} \qquad \gamma^* = \frac{S_{1155}}{S_{1111}}$$

$$\nu^* = -\frac{S^*_{1122}}{S^*_{1111}}$$

Parametric analysis using compliance tensor S

Parametric analysis using compliance tensor S

Characterization at finite strain

Experimental characterization – Tensile testing

Experimental characterization – Pinching testing

Out of the plane displacement

Ribbon-based panels: summary

Mechanics of ribbon-based networks

- Architecture for extension-bending coupling
- Parametric analysis at small strain and finite strain
- Testing conditions

Future developments

- Gradient of material properties, break the periodicity
- Actuation through multi-physics coupling

F. Agnelli, M. Tricarico, A. Constantinescu. "Shape-shifting panel from 3D printed undulated ribbon lattice". Extreme Mech. Lett. 42 (2021)

Perspectives

Variable pattern along the height

• Continuous or discontinuous design along the height

Loss of periodicity:

• vary the design along the unit cells

Embedding responsive materials to the design

Internship project: Jianzhou MA (ENSTA)

Outline

- Mechanical characterization of periodic panels
 - Analysis of a ribbon-based periodic panel
 - Asymptotic homogenization theory
 - Generalized Kirchhoff-Love model
- Topology optimization using a level set method
 - Finding an elementary form associated to a target elastic stiffness
 - Shape derivative in the sense of Hadamard
 - Classical level set method

"The art of structure is where to put the holes" Robert Le Ricolais, 1894-1977

Tailoring elastic response

- Representative unit cell
- A*, B* and D* obtained by asymptotic homogenization
- Generalized Kirchhoff-Love behavior for thin plates

$$\boldsymbol{C}^{\text{target}} = \begin{bmatrix} A_{1111}^{*} & A_{1122}^{*} & \star & B_{1111}^{*} & B_{1122}^{*} & \star \\ A_{1122}^{*} & A_{2222}^{*} & \star & B_{2211}^{*} & B_{2222}^{*} & \star \\ \hline \boldsymbol{\star} & \boldsymbol{\star} & \boldsymbol{\star} & \boldsymbol{\star} & \boldsymbol{\star} & \boldsymbol{\star} \\ \hline B_{1111}^{*} & B_{2211}^{*} & \star & b_{1111}^{*} & D_{1122}^{*} & \star \\ B_{1122}^{*} & B_{2222}^{*} & \star & b_{1122}^{*} & D_{2222}^{*} & \star \\ \hline \boldsymbol{\star} & \star \\ \end{bmatrix}$$

•

Optimization problem

The shape $S \subset Y$ is a smooth, open, bounded subset

$$\mathcal{J}(S) = \frac{1}{2} ||\mathbf{A}^* - \mathbf{A}^{\text{target}}||_{\eta_A}^2 + \frac{1}{2} ||\mathbf{B}^* - \mathbf{B}^{\text{target}}||_{\eta_B}^2 + \frac{1}{2} ||\mathbf{D}^* - \mathbf{D}^{\text{target}}||_{\eta_D}^2$$

- $\| \|$: weighted Euclidean norm η : weights coefficients
- A^{target}, B^{target} and D^{target}: target elastic tensor values

Optimization problem

$$\begin{split} &\inf_{S \subset \mathcal{U}_{ad}} \mathcal{J}(S) \\ &\mathbf{w}^{\gamma \delta} \in \tilde{\mathcal{V}}(Y) \text{ satisfy: } \int_{Y} C_{ijpq} \left(\delta_{p\gamma} \delta_{q\delta} + \varepsilon_{\mathbf{y}pq} (\mathbf{w}^{\gamma \delta}) \right) \varepsilon_{\mathbf{y}ij}(\mathbf{v}) \, d\mathbf{y} = 0 \qquad \forall \mathbf{v} \in \tilde{\mathcal{V}}(Y) \\ &\mathbf{p}^{\gamma \delta} \in \tilde{\mathcal{V}}(Y) \text{ satisfy: } \int_{Y} C_{ijpq} \left(y_3 \delta_{p\gamma} \delta_{q\delta} + \varepsilon_{\mathbf{y}pq} (\mathbf{p}^{\gamma \delta}) \right) \varepsilon_{\mathbf{y}ij}(\mathbf{v}) \, d\mathbf{y} = 0 \qquad \forall \mathbf{v} \in \tilde{\mathcal{V}}(Y) \end{split}$$

Topology optimization

- **Density based methods** •
 - Homogenization method ۲
 - Pioneering work in (Bendsøe & Kikuchi CMAME 1988) •
 - Solid Isotropic Material with Penalization (SIMP) • algorithm
 - (Bendsøe Struct. Opt. 1989) •

- Implicit method ٠
 - Level set method •
 - (Allaire *C. R. Math.* 2002)
 - (Wang, Mei & Wang JMPS 2003)
 - Phase-field •
 - (Takezawa et al. J. Comp. Phys. 2010)

(Allaire et al. J. Comp. Phys. 2004)

(Allaire et al. J. Comp. Phys. 2004)

Topology optimization for panels

- Density based methods
 - Solid Isotropic Material with Penalization (SIMP) algorithm

(Nishi et al. Int. J. Numer. Methods Eng. 2017)

- Implicit method
 - Level set method

(a) Total density, iteration 0

(b) Total density, iteration 20

(c) Total density, iteration 50

(d) Final total density (iteration 62)

(Allaire & Delgado J. Mech. Phys. Solids 2016)

Topology optimization using a level set method

 $\mathcal{H}_e(t) = egin{cases} 0 & ext{if } t < -e \ rac{1}{2} \left(1 + rac{t}{e} + rac{1}{\pi} \sin\left(rac{\pi t}{e}
ight)
ight) & ext{if } |t| \leq e \ 1 & ext{if } t > e \end{cases}$

• Level set function representing the material distribution

 $\begin{cases} \phi(\mathbf{y}) < 0 & \text{if } \mathbf{y} \in S \\ \phi(\mathbf{y}) = 0 & \text{if } \mathbf{y} \in \partial S \\ \phi(\mathbf{y}) > 0 & \text{if } \mathbf{y} \in Y \backslash S \end{cases} \quad (boundary)$

- Boundary evolution
 - Introduce a pseudo time $t \in \mathbb{R}^+$ to characterize the evolution of S(t)
 - Differentiating $\phi(\mathbf{y}(t), t) = 0$ $\forall \mathbf{y}(t) \in \partial S(t)$

 $\frac{\partial \phi}{\partial t}(\mathbf{y}, t) + V(\mathbf{y}, t) |\nabla \phi(\mathbf{y}, t)| = 0$ $\forall t, \forall \mathbf{y} \in Y$ known as a *Hamilton-Jacobi equation*

• Smooth inter-phase approach

 $\mathsf{C}^{e}(\mathbf{x}) = \mathcal{H}_{e}(\phi)(\mathsf{C}^{\bar{\mathsf{S}}} - \mathsf{C}^{\mathsf{S}}) + \mathsf{C}^{\mathsf{S}}$

(Allaire, Dapogny, Delgado & Michailidis ESAIM: COCV 2014)

(Osher & Sethian J. Comp. Phy. 1988)

The shape derivative in the sense of Hadamard

• The objective function is shape differentiable and admits a derivative at $\theta = 0$ which is

$$\mathcal{J}'(S)(\mathbf{\Theta}) = -\int_{\Gamma^S} \mathbf{\Theta} \cdot \mathbf{n} \left(f_A(\mathbf{s}) + f_B(\mathbf{s}) + f_D(\mathbf{s}) \right) \, d\mathbf{s}$$

where

$$f_{A}(\mathbf{s}) = \frac{r}{|Y|} \eta^{A}_{\alpha\beta\gamma\delta} \left(A^{*}_{\alpha\beta\gamma\delta}(d_{S}) - A^{\text{target}}_{\alpha\beta\gamma\delta} \right) \left(\mathbf{E}^{\gamma\delta} + \varepsilon_{\mathbf{y}}(\mathbf{w}^{\gamma\delta}) \right) : \left(\mathbf{C}^{\bar{S}} - \mathbf{C}^{S} \right) : \left(\mathbf{E}^{\alpha\beta} + \varepsilon_{\mathbf{y}}(\mathbf{w}^{\alpha\beta}) \right)$$

$$f_{B}(\mathbf{s}) = \frac{r}{|Y|} \eta^{B}_{\alpha\beta\gamma\delta} \left(B^{*}_{\alpha\beta\gamma\delta}(d_{S}) - B^{\text{target}}_{\alpha\beta\gamma\delta} \right) \left(\mathbf{E}^{\gamma\delta} + \varepsilon_{\mathbf{y}}(\mathbf{w}^{\gamma\delta}) \right) : \left(\mathbf{C}^{\bar{S}} - \mathbf{C}^{S} \right) : \left(\mathbf{P}^{\alpha\beta} + \varepsilon_{\mathbf{y}}(\mathbf{p}^{\alpha\beta}) \right)$$

$$f_{D}(\mathbf{s}) = \frac{r}{|Y|} \eta^{D}_{\alpha\beta\gamma\delta} \left(D^{*}_{\alpha\beta\gamma\delta}(d_{S}) - D^{\text{target}}_{\alpha\beta\gamma\delta} \right) \left(\mathbf{P}^{\gamma\delta} + \varepsilon_{\mathbf{y}}(\mathbf{p}^{\gamma\delta}) \right) : \left(\mathbf{C}^{\bar{S}} - \mathbf{C}^{S} \right) : \left(\mathbf{P}^{\alpha\beta} + \varepsilon_{\mathbf{y}}(\mathbf{p}^{\alpha\beta}) \right)$$

Hence, a descent direction can always be selected by choosing

$$\boldsymbol{\theta} = (f_{A}(\mathbf{s}) + f_{B}(\mathbf{s}) + f_{D}(\mathbf{s})) \, \mathbf{n}.$$

(Allaire, Dapogny, Delgado & Michailidis ESAIM: COCV 2014)

Numerical algorithm

- Initialize the level set ϕ_0 corresponding to the initial shape S_0
- Iterate until convergence for $k \ge 0$
 - Re-initialize ϕ_0 into the signed distance function d_{S_0}
 - Calculate the local solutions $w^{\gamma\delta}$ and $p^{\gamma\delta}$ by solving the cell problems in Y
 - Compute the shape gradient $J(S^k)(\mathbf{0}^k)$ for the domain S^k
 - Deform the domain S_k by solving the above Hamilton-Jacobi equation.

// The volume fraction should remain bounded in a given set // S_{k+1} is characterized by the level set ϕ_{k+1} after a time step Δt_k // The time step t is chosen so that $J(S_{k+1}) \leq J(S_k)$

- Algorithm adapted from (Allaire et al. J. Comp. Phys. 2004)
- In-house programming in Cast3m (http://www-cast3m.cea.fr/)
- Redistancing performed using mshdist (Dapogny & Frey Calcolo 2012)
- Hamilton-Jacobi eq. solved using advect (Bui et al. Int. J. Numer. Methods Fluids 2011)

Numerical results

C^*							
ſ	0.097	-0.033	0	2.9e ⁻⁴	2.2 e ⁻⁴	0]	
	-0.033	0.098	0	2.7e ⁻⁴	2.8 e ⁻⁴	0	
	0	0	0.023	0	0	1.8e ⁻⁴	
	2.9e ⁻⁴	2.7e ⁻⁴	0	2.7e ⁻⁴	6.2 e ⁻⁵	0	
	2.2e ⁻⁴	2.8e ⁻⁴	0	6.2e ⁻⁵	2.7e ⁻⁴	0	
	0	0	$1.8 e^{-4}$	0	0	2.0e ⁻⁴	

Final

₹...¥

Response under uniaxial tensile test

Cast3M

Numerical results

	C ^{target}						
Γ	0.12	-0.06	*	*	2.3e ⁻³	* -	
	-0.06	0.12	*	2.3e ⁻³	*	*	
	*	*	*	*	*	*	
	*	2.3e ⁻³	*	6.3e ⁻⁴	*	*	
	2.3 e ⁻³	*	*	*	6.3e ⁻⁴	*	
L	*	*	*	*	*	*	

	C^*						
[0.120	-0.059	0	$ -1.5e^{-3}$	$1.8e^{-3}$	0 7	
	-0.059	0.119	0	1.7e ⁻³	$1.0e^{-4}$	0	
	0	0	0.03	0	0	$-2.7e^{-4}$	
	$-1.5e^{-3}$	$1.7e^{-3}$	0	6.1e ⁻⁴	$-3.2e^{-5}$	0	
	$1.8e^{-3}$	$1.0e^{-4}$	0	$-3.2e^{-5}$	$6.0e^{-4}$	0	
	0	0	$-2.7e^{-4}$	0	0	1.7e ⁻⁴	

Final

×.

Response under uniaxial tensile test (direction X1)

Response under uniaxial tensile test (direction X2)

Designed 3D lattices for thin panels: summary

Optimization of microstructure for shape-shifting panels

- Small strains
- Linear elasticity

Results

- Extensions of classical auxetic structures
- Novel organic shapes
- Good match of elastic moduli to targets

F. Agnelli, G. Nika, A. Constantinescu. "Design of thin micro-architectured panels with extension-bending coupling effects using topology optimization" *Comput. Meth. Appl. Mech. Eng.* 391 (2022)

Perspectives & Future works

- Adapt the design methods to multimaterial framework
 - Wider possibilities for the design of panels

(Agnelli et al. 2022, in preparation)

- Characterize & optimize multiphysics properties
 - Mechanical & Thermal properties
 - Mechanical & Magnetic properties

(Nika & Constantinescu CMAME 2018)

Thank you

filippo.Agnelli@mcgill.ca

https://filippoagnelli.wordpress.com