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Outline

• What are grid cells?

• What is so special about them?

• Derivation of a PDE model for grid cells.

• Response to noise?
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Neurons

• Neurons are electrical excitable cells.

• They communicate via action potentials and synapses.

• A neuron is said to fire when it generates an action potential.
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Grid cells

• Discovered (in rats) by Hafting, Fyhn,
Molden, Moser and Moser at NTNU
in 2005.

• A grid cell fires in a hexagonal pat-
tern as a rat (or mammal) traverses
an open space. (GIF)

• Play a pivotal role in spatial represen-
tation.

Figure: Khardcastle 2017
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Set-up1

1Based on Burak and Fiete 2009, Couey et al. 2013
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SDE system

Assume neurons are stacked in N columns at locations xi on the torus,
with M neurons each. The kth neuron of type β at location xi has
the activity level sβik described by

τdsβik + sβikdt = Φ(xi)dt+
√

2σdWβ
ik − d`

β
ik,

`βik(t) = −
∣∣`βik∣∣(t), ∣∣`βik∣∣(t) =

∫ t

0
1{sβik(r)=0}d

∣∣`βik∣∣(r),
β = 1, 2, 3, 4, where

Φ(xi) = Φ

 1

4NM

4∑
β′=1

N∑
j=1

M∑
m=1

W β′(xi − xj)sβ
′

jm +Bβ(t)

.
The reflection term `βik prevents sβik from becoming negative.
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Let the number of grid cells go to ∞.2

2Heuristic: Carrillo, Holden, S., to appear in JOMB 2022
Rigorous: Carrillo, Clini, S., arXiv 2021
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The PDE model

For all β ∈ {1, 2, 3, 4}, x ∈ T2, s > 0,

τ
∂ρβ

∂t
= − ∂

∂s

([
Φβ(x)− s

]
ρβ

)
+ σ

∂2ρβ

∂s2
,

where Φβ(x) is given by

Φβ(x) = Φ

1

4

4∑
β′=1

∫
T2

W β′(x− y)ρ̄β
′
(t,y) dy +Bβ(t)

 ,

with ρ̄β(t, x) =
∫∞

0 sρβ(t, x, s) ds, and

Φβ(x)ρβ(t, x, 0)− σ∂ρ
β

∂s
(t, x, 0) = 0.

ρ(t, x, s) is the probability density at time t of
finding a neuron at x with activity level s.

(GIF)
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Idea: vary the noise parameter in the model
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Local bifurcation analysis of the homogeneous in x
stationary states ρ∞.

8/17



A one population model

τ
∂ρ

∂t
= − ∂

∂s

([
Φρ̄(x)− s

]
ρ

)
+ σ

∂2ρ

∂s2
,

where Φβ(x) is given by

Φρ̄(x) = Φ (W ∗ ρ̄ (t, x) +B),

where B is constant and

ρ̄(t, x) =

∫ ∞
0

sρ(t, x, s) ds, Φρ̄(x)ρ(t, x, 0)− σ∂ρ
∂s

(t, x, 0) = 0.
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Stationary states

Stationary states satisfy

σ∂sρ(x, s) = − (s− Φρ̄) ρ(x, s).

Hence, they solve

G(ρ, σ) = 0, where G(ρ, σ) = ρ− 1

Z
e−

(s−Φρ̄)2

2σ .

With conservation of unit mass we have

Z =

∫ +∞

0
e−

(s−Φρ̄)2

2σ ds.

If B > 0 and W0 =
∫
TdW (x) dx < 0 (and some assumptions on Φ),

the homogeneous in space stationary states ρ∞ are unique.3

3Carrillo, Holden, S., to appear in JOMB 2022
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Procedure4

Step 1: Simplify. Let κ = 1
σ . The average in s stationary states satisfy

Ḡ(ρ̄, κ) = 0, where

Ḡ(ρ̄, κ) = ρ̄− 1

Z

∫ +∞

0
s e−κ

(s−Φρ̄)2

2 ds.

Step 2: Define the functional setting: L2
S(Td), with Hilbert basis

ωk(x) = Θ(k)

d∏
i=1

cos (2πkixi) , k ∈ Nd.

4Based on techniques from Carrillo, Gvalani, Pavliotis, Schlichting, ARMA 2020
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Procedure4

Step 3: Utilise the Crandall–Rabinowitz theorem:

Grant some technical assumptions. Assume that

ker
(
Dρ̄H(0, κ0)

)
= span(ω0), ‖ω0‖ = 1,

and
D2
ρ̄κH(0, κ0)[ω0] /∈ range

(
Dρ̄H(0, κ0)

)
.

Then (0, κ0) is a bifurcation point.

Step 4: Painfully compute the needed Fréchet derivatives of the functional

H(ρ̄, κ) = Ḡ(ρ̄+ ρ̄κ∞, κ).

4Based on techniques from Carrillo, Gvalani, Pavliotis, Schlichting, ARMA 2020
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Result5

Theorem (Carrillo, Roux, S.)

Let κ0 >
2|W0|2
πB2 , and assume Φ′′ > −Cκ0 and ∃! k∗ ∈ Nd s.t.

W̃ (k∗)

Θ(k∗)
=
[
Φ′
(
W0ρ̄∞ +B

) (
1− ρ̄∞

(
ρ̄∞ − Φ

(
W0ρ̄∞ +B

))
κ0

) ]−1
.

Then, in a neighbourhood of (ρ̄κ0
∞ , κ0) in L2

S(Td)×R∗+, the stationary
states are either of the form (ρ̄κ∞, κ) or on the curve{

(ρ̄κ(z), κ(z)) | z ∈ (−δ, δ), (ρ̄κ(0), κ(0)) = (ρκ0
∞ , κ0), δ > 0

}
,

defined by,

ρ̄κ(z)(x) = ρ̄κ(z)
∞ + zωk∗(x) + o(z), x ∈ Td.

5Carrillo, Roux, S., arXiv 2022
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Illustration of the bifurcation condition

B = 3, Φ(x) = 0.5x
(

1 + x√
x2+0.1

)+

W (x, y) = −0.005 · 214
(

1 + tanh
(

10− 50
√
x2 + y2

))
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Patterns at the first three bifurcation points

Left to right (first to third bifurcation point):

k∗ = (0, 4) and (4, 0),
k∗ = (1, 4) and (4, 1), and
k∗ = (3, 3).
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What about the hexagonal pattern?

Top left to bottom right: A time transient pattern for a specific σ.
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Thank you!
I appreciate that you used your neurons on this presentation.


