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Heterogeneous Catalysis



Catalysis

Hastens chemical reactions by lowering the activation energy through

alternative mechanisms/pathways

• Homogeneous, e.g., acid-catalyzed reactions

• Heterogeneous, e.g., use of solid catalysts in liquid solutions

Figure 1: Potential energy diagram for X + Y → Z
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Heterogeneous Catalysis

• Catalyst is of a different phase than reactants or products

Figure 2: Model for heterogeneous catalysis
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Related literature

• Hornung and Jäger (1991): Stokes equations coupled with

reaction-diffusion-advection-adsorption equations, reaction occurs on

the surface of the catalyst

• Gahn, Neuss-Radu, Knaber (2016): reaction-diffusion systems in

two-component porous media with nonlinear flux conditions

• Gahn, Neuss-Radu, Pop (2021): reaction-diffusion-advection

equation in evolving microdomains
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Problem Formulation



Model

• Catalysts are uniform and have smooth boundary

• Catalysts are not fixed, i.e., they move together with the fluid

• Movement of fluid and catalyst is assumed to be known a priori

• At time t = 0, the catalysts are arranged periodically

• Moving domain is described by a diffeomorphism that assumed to be

as smooth as necessary, e.g., smooth enough to justify change of

variables, necessary regularity of coefficients in PDEs, etc.
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Figure 3: Model of a reactor with catalyst particles at time t=0
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Model

∂tvε − DF∆vε + uε · ∇vε = 0, in Fε(t)

∂nvε = 0, on ∂Ω

DF∂nvε = DS∂nwε, on Γε(t)

DF∂nvε + αε (vε − wε) = 0, on Γε(t)

∂twε − DS∆wε + rwε = 0, in Sε(t)

vε(0) = vε,0, in Fε(0)

wε(0) = wε,0, in Sε(0)
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Fixed domain problem

The diffeomorphism between the Ω(t) to Ω(0), is obtained by solving:

∂tXε(t, y) = bε (t,Xε(t, y)) , t ∈ (0,T )

Xε(0, y) = y , y ∈ Ω,

where bε is:

• equal to the solid velocities in Sε(t)

• equal to 0 outside a neighborhood of Sε,i (t)

• smooth and divergence-free

bε(t, x) := ηε(t, x)
∑
i

[
h′
ε,i (t) + Mε,i (t)(x − hε,i (t))

]
−
∑
i

Bε
Ki (t)

(
∇εη(t, ·) ·

(
h′
ε,i (t) + Mε,i (t) (· − hε,i (t))

))
(x).
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Roughly, Xε is

• the identity away from the solid catalysts

• a rigid transformation in the solid domain

• a smooth-volume preserving ”glue” in between

Remark
Observe that, one can instead use the known velocity, uε, to construct

the mapping, i.e., we solve

∂tXε(t, y) = uε (t,Xε(t, y)) , t ∈ (0,T )

Xε(0, y) = y , y ∈ Ω.

However, to guarantee that Xε has the necessary regularity, requires that

uε must also be regular. We found it more reasonable to assume that the

solid velocities instead satisfy this.
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Using the diffeomorphsim, we can map the problem to a fixed domain.

∂tvε − div (Aε
F∇vε) + U1

ε · ∇vε = 0, (0,T )× Fε

Aε
F∇vε · n = 0, (0,T )× ∂Ω

Aε
F∇vε · n = Aε

S∇wε · n, (0,T )× Γε

Aε
F∇vε · n + αε (vε − wε) = 0, (0,T )× Γε

∂twε − div (Aε
S∇wε)− U2

ε · ∇wε + rwε = 0, (0,T )× Sε

vε(0) = vε,0, in Fε

wε(0) = wε,0, in Sε,

where

Aε
F (t, x) := DF∇X−1

ε (t, x)∇X−T
ε (t, x)1Fε(x),

Aε
S(t, x) := DS∇X−1

ε (t, x)∇X−T
ε (t, x)1Sε

(x)

U1
ε := (∇Xε)

−1 (uε ◦ Xε − ∂tXε)

U2
ε := (∇Xε)

−1
∂tXε
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We say that (vε,wε) are weak solutions to the fixed domain problem if,

for every test function (φ,ψ), we have∫ T

0

∫
Fε

(
∂tvε + U1

ε · ∇vε
)
φ+

∫ T

0

∫
Sε

(
∂twε − U2

ε · ∇wε

)
ψ

+

∫ T

0

∫
Fε

Aε
F∇vε · ∇φ+

∫ T

0

∫
Sε

Aε
S∇wε · ∇ψ +

∫ T

0

∫
Sε

rwεψ

=

∫ T

0

∫
Γε

αε (wε − vε) (φ− ψ) ,

and vε(0) = vε,0 and vε(0) = vε,0.
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We have the following result:

Proposition

Let (vε,wε) be the weak solutions of the fixed domain problem. Then if

Xε has sufficient regularity, the functions ṽε := vε ◦ Xε and w̃ε := w ◦ Xε

are solutions to our problem in the noncylindrical domain.

Remark
Note that it is important that the time derivatives of the solutions are in

L2x rather than in the dual of a Sobolev space. This allows us to do a

straightforward change of variables between the fixed and moving

domains.
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Well-posedness



To establish existence, we construct approximate solutions by solving

successively a sequence of steady-state problems.

Indeed, we let N ∈ N and k := T
N . We set v0

ε := vε,0 and w0
ε := wε,0.

We then solve:

vm
ε − vm−1

ε

k
− div (Aε,m

F ∇vm
ε ) + U1,m

ε · ∇vm
ε = 0, in Fε

Aε,m
F ∇vm

ε · n = 0, on ∂Ω

Aε,m
F ∇vm

ε · n = Aε,m
S ∇wm

ε · n, on Γε

Aε,m
F ∇vm

ε · n + αε (v
m
ε − wm

ε ) = 0, on Γε

wm
ε − wm−1

ε

k
− div (Aε

S∇wm
ε )− U2,m

ε · ∇wm
ε + rwm

ε = 0, in Sε,

where

Aε,m
F (x) := Aε

F (mk , x), Aε,m
S (x) := Aε

S(mk , x),

and

U i,m
ε :=

1

k

∫ mk

(m−1)k

U i
ε dt, i = 1, 2.
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The approximate solutions are then defined as:

vε,k(t, x) :=
N∑

m=1

vm
ε (x)1[(m−1)k,mk)(t)

wε,k(t, x) :=
N∑

m=1

wm
ε (x)1[(m−1)k,mk)(t)

v̄ε,k(t, x) :=
N∑

m=1

(
vm−1
ε (x) +

vm
ε (x)− vm−1

ε (x)

k
(t −mk)

)
1[(m−1)k,mk)(t)

w̄ε,k(t, x) :=
N∑

m=1

(
wm−1
ε (x) +

wm
ε (x)− wm−1

ε (x)

k
(t −mk)

)
1[(m−1)k,mk)(t)

14



From estimates on the approximate solutions, we have that, up to a

subsequence, the following convergences hold:

vε,k ⇀ vε, wk − L2
(
0,T ;H1 (Fε)

)
wε,k ⇀ wε, wk − L2

(
0,T ;H1 (Sε)

)
∂t v̄ε,k ⇀ ∂vε, wk − L2

(
0,T ;H1 (Fε)

∗)
∂tw̄ε,k ⇀ ∂twε, wk − L2

(
0,T ;H1 (Sε)

∗)
.

One can then show that (vε,wε) are our desired solution. Indeed, we have

Theorem

There exists a unique weak solution (vε,wε) to the fixed domain problem.
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As mentioned previously, in order to have the correspondence between

fixed and moving domain solutions, we need the time derivatives to be in

L2x . Indeed, we have shown

Theorem
Suppose that (vε,0,wε,0) ∈ H1(Fε)× H1(Sε). Then

∂tvε ∈ L2
(
0,T ;H1(Fε)

)
and ∂tvε ∈ L2

(
0,T ;H1(Fε)

)
.

Remark
Uniqueness and stability follow from the estimates.
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Homogenization



Motivation

• Heterogeneous behavior can be very complex.

• Is it possible if there is a simpler model that solutions tend to?

Figure 4: Illustration of fixed bed and fluidized bed reactors
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Classical example

Suppose A is a bounded Y− periodic function, f ∈ L2(Ω). Consider,

div
(
A
( ·
ϵ

)
∇uϵ

)
= f , in Ω

uϵ = 0, on ∂Ω

Its weak formulation is given by:∫
Ω

A
(x
ϵ

)
∇uϵ(x) · ∇φ(x) dx =

∫
Ω

f (x)φ(x) dx,

for all φ ∈ H1
0 (Ω).
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Classical example

We know that

uϵ ⇀ u0 weakly in H1(Ω)

Aϵ(·) := A
( ·
ϵ

)
⇀MY (A) weakly inL2(Ω)

However, it is not true that

Aϵ∇uϵ ⇀MY (A)∇u0 weakly in L2(Ω).

In fact, u0 is the unique weak solution of

−div (A0∇u0) = f , in Ω

u0 = 0, on ∂Ω,

where aij0 =
∑N

k=1 |Y |−1
∫
Y

(
aij − aik∂ykχj

)
dy and χj ’s are solutions to a

unit cell problem.
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Two-scale convergence

Definition

Let Ω and Y be bounded open sets in Rn, and T > 0. A sequence {uϵ}
in L2 ((0,T )× Ω) is said to two-scale converge to a limit

u ∈ L2 ((0,T )× Ω× Y ) if

lim
ϵ→0

∫ T

0

∫
Ω

uϵ(t, x)ϕ
(
t, x ,

x

ϵ

)
dx dt

=
1

|Y |

∫ T

0

∫
Ω

∫
Y

u(t, x , y)ϕ(t, x , y) dy dx dt,

for all ϕ ∈ L2 ((0,T )× Ω;Cper (Y )).
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Two-scale convergence

Proposition

1. Every bounded sequence {uϵ} in L2 ((0,T )× Ω) has a two-scale

convergent subsequence.

2. Let {uϵ} be a bounded sequence in L2
(
(0,T );H1(Ω)

)
. Then there

exists u0 ∈ L2
(
(0,T );H1(Ω)

)
and u1 ∈ L2

(
(0,T )× Ω;H1

per (Y )
)

and a subsequence, still denoted by uϵ, such that

uϵ → u0 in the two-scale sense,

∇uϵ → ∇xu0 +∇yu1 in the two-scale sense.
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Two-scale convergence

Definition
Let {uϵ} be a sequence such that uϵ ∈ L2 ((0,T )× Γϵ) for each ϵ > 0.

We say that uϵ converges in the two-scale sense on the surface Γϵ to a

limit u0 ∈ L2 ((0,T )× Ω× Γ) if

lim
ϵ→0

ϵ

∫ T

0

∫
Γϵ

uϵ(t, x)ϕ
(
t, x ,

x

ϵ

)
dSx dt

=

∫ T

0

∫
Ω

∫
Γ

u0(t, x , y)ϕ(t, x , y) dSy dx dt,

for all ϕ ∈ L2 ((0,T )× Ω;Cper (Γ)).
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Two-scale convergence

Proposition

Let {uϵ} be a sequence of functions such that uϵ ∈ L2 ((0,T )× Γϵ) for

each ϵ > 0. Suppose
√
ϵ∥uϵ∥L2((0,T )×Γϵ) ≤ C for some constant C > 0,

independent of ϵ. Then a subsequence exists that converges in the

two-scale sense on Γϵ.
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Two-scale convergence results-fluid part

Theorem

Let v ϵ be the fluid solution and v̄ ϵ be its zero extension. Then, there

exist v0 ∈ L2
(
0,T ;H1(Ω)

)
and v1 ∈ L2((0,T )× Ω;H1

per(Y )) such that,

up to a subsequence, the following holds

v̄ ϵ → v0
1YF

in the two-scale sense

∇v ϵ → ∇xv
0 +∇yv

1 in the two-scale sense

v ϵ|Γϵ → v0 strongly in the two-scale sense on Γϵ

∂t v̄
ϵ ⇀ |YF |∂tv0 weakly in L2(0,T ;

(
H1(Ω)

)∗
)
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Two-scale convergence results-solid part

Theorem

Let w ϵ be the solid solution and w̄ ϵ be its zero extension. Then, there

exists w0 ∈ L2 ((0,T )× Ω) such that, up to a subsequence, the following

holds

w̄ ϵ → χYS
w0 strongly in the two-scale sense

∇w ϵ → 0 in the two-scale sense

w ϵ|Γϵ → w0 strongly in the two-scale sense on Γϵ

∂tw̄
ϵ ⇀ |YS |∂tw0 weakly in L2(0,T ;

(
H1(Ω)

)∗
)
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Key points

We make the assumption∫ T

0

∫
Ω

∣∣∣AF (/S)
ϵ (t, x)− A

F (/S)
0

(
t, x ,

x

ϵ

)∣∣∣2 dx dt → 0, as ϵ→ 0,

This is crucial because two-scale convergence requires the use of special

test functions.

In the classical example, periodicity and boundedness assumptions on the

coefficient matrix allow us to use directly two-scale convergence to take

limits.

26



Key points

As a demonstration of the use of this assumption, we have∫ T

0

∫
Fε

(
AF
ε (t, x)∇vε(t, x) · ∇ (φε(x)) ζ(t) dx dt

=

∫ T

0

∫
Ω

∇vε · AF
0

(
t, x ,

x

ε

)
∇ (φε(x))ζ(t)χYF

(x
ε

)
dx dt \frametitle–Catalysis˝

+

∫ T

0

∫
Ω

∇vε ·
(
AF
ε (t, x)− AF

0

(
t, x ,

x

ε

))
∇ (φε(x)) ζ(t)χYF

(x
ε

)
dx dt

ϵ→0−−−→
∫ T

0

∫
Ω

∫
YF

AF
0 (t, x , y)

(
∇xv

0(t, x) +∇yv
1(t, x , y)

)
·(

∇φ(x) +∇yφ
1(x , y)

)
ζ(t) dy dx dt.
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Key points

Another key point is, because YS is compactly contained in Y , one can

show that

∇wε → 0 in the two-scale sense.

This, then leads us to conclude that the limit function w0 solves an ODE.
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Key points

We summarize these results, together with the results for the fluid

solution in the following theorem:

Theorem

v0, v1, and w0 are the the unique weak solutions of

divy
(
A0
F (t, x , y)

(
∇xv

0(t, x) +∇yv
1(t, x , y)

))
= 0, in (0,T )× Ω× Y

|YF | ∂tv0 − divx

(∫
YF

A0
F (t, x , y)

(
∇xv

0(t, x) +∇yv
1(t, x , y)

)
dy

)
= |Γ|

(
αv0(t, x)− βw0(t, x)

)
in (0,T )× Ω

∂tw
0 + rw0(t, x) =

|Γ|
|YS |

(
βw0(t, x)− αv0(t, x)

)
in (0,T )× Ω
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Other results

We also have a corrector result.

Theorem

The following holds:∫ T

0

∫
Fε

|vε − v0|2 +
∫ T

0

∫
Sε

|wε − w0|2

+

∫ T

0

∫
F ϵ

∣∣∣∇vε(t, x)−∇v0(t, x)−∇yv
1
(
t, x ,

x

ϵ

)∣∣∣2
→ 0, as ε→ 0.
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• Note that the Sobolev compactness theorem does not hold for {v̄ε}
since they are not in H1(Ω).

• Alternatives:

• Sobolev extensions (Gahn, Neuss-Radu, Knaber 2016), (Cioranescu,

Saint Jean Paulin 1979)

• Extensions of the Rellich theorem in perforated domains (Allaire,

Murat 1993)

• In our result, we used the fact that (vε,wε) are solutions to a PDE

to give us the strong convergence.

error ∼ products of two-scale convergent sequences

∼ terms that go to zero

+ terms that are asymptotically nonpositive
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Examples

We consider the case when the solid velocities satisfy ∥US,ε∥∞ ∼ εα for

some α > 1.

In this case, one can show that ∥bε∥∞ ∼ εα and ∥∇bε∥∞ ∼ εα−1.

Thus,

∇Xε(t, y) = e
∫ t
0
∇bε(s,Xε(s,y)) ds .

And hence,

∇Xε → I , in L∞ ((0,T )× Ω) .

.
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The limit problem then reads as

divy
((
∇xv

0(t, x) +∇yv
1(t, x , y)

))
= 0, in (0,T )× Ω× YF

|YF | ∂tv0 − divx

(∫
YF

DF

(
∇xv

0(t, x) +∇yv
1(t, x , y)

)
dy

)
= |Γ|

(
αv0(t, x)− βw0(t, x)

)
in (0,T )× Ω

∂tw
0 + rw0(t, x) =

|Γ|
|YS |

(
βw0(t, x)− αv0(t, x)

)
in (0,T )× Ω
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We consider the case a similar case as previously but now with α = 1 and

the solid velocities are assumed to be periodic in space, i.e., the motion is

the same for each cell but are not necessarily periodic in time.

In this case, one can show that

bε(t, x) = εb
(
t,
x

ε

)
Xε(t, x) = εX

(
t,
x

ε

)
,

where b is the extension of the solid velocity in the unit cell to the whole

cell and X is the diffeomorphism obtained from b.
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So that the coefficient matrices satisfy

AF
ε (t, x) = A0

F

(
t,
x

ε

)
:= DF1YF

(x
ε

)
(∇X )−T

(
t,
x

ε

)
(∇X )−1

(
t,
x

ε

)
AS
ε (t, x) = A0

S

(
t,
x

ε

)
:= DS1YS

(x
ε

)
(∇X )−T

(
t,
x

ε

)
(∇X )−1

(
t,
x

ε

)
.

. Here, the limit problem reads as

divy
(
A0
F (t, y)

(
∇xv

0(t, x) +∇yv
1(t, x , y)

))
= 0, in (0,T )× Ω× YF

|YF | ∂tv0 − divx

(∫
YF

A0
F (t, y)

(
∇xv

0(t, x) +∇yv
1(t, x , y)

)
dy

)
= |Γ|

(
αv0(t, x)− βw0(t, x)

)
in (0,T )× Ω

∂tw
0 + rw0(t, x) =

|Γ|
|YS |

(
βw0(t, x)− αv0(t, x)

)
in (0,T )× Ω.

Note that A0
F is not the identity matrix since ∇X is not an orthogonal

matrix nor the identity matrix.
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Future Work



Future work

Figure 5: Model for heterogeneous catalysis
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