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The ”main character” of this talk.

”Supporting characters” much more interesting.

The full story
M. Lind, ”A sharp estimate of the discrepancy of a concatenation
sequence of inversive pseudorandom numbers with consecutive
primes”, Int. J. Number Theory, to appear
(”A sharp estimate of the discrepancy of a certain numerical
sequence”, 2021, arxiv)
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Equidistribution

Definition (H. Weyl, 1916)

The sequence ξ = {ξn}∞n=1 ⊆ [0, 1] is called equidistributed in
[0, 1] if

lim
N→∞

♯({ξ1, ξ2, . . . , ξN} ∩ J)

N
= length(J)

for every interval J ⊆ [0, 1].

Equidistributed ≈ ξ is uniformly spread out in [0, 1].

Equidistributed ≈ deterministic version of ”uniformly distributed”
from probability.
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Equidistribution, some remarks

Equidistribution ⇒ density. Converse false.

Classically, [0, 1] is always used. Can be exchanged for [a, b]

(”Equidistribution modulo 1”/ ”Gleichverteilung mod. Eins”)

Equidistribution as a concept appear in much more general settings
than sequences in [0, 1].

It seems to be one of the fundamental concepts of mathematics.
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Weyl’s Criterion, number theoretic applications

Weyl’s criterion

{ξn}∞n=1 equidistributed in [0, 1] ⇔ lim
N→∞

1

N

N∑
n=1

e2πiξn = 0

Weyl first to use exponential sums
∑
n≤N

e2πiξn in number theory.

Exercise {[nα]}∞n=1 equidistributed in [0, 1] ⇔ α /∈ Q.
([x ] = x − ⌊x⌋ is the fractional part of x .)
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Measure-theoretic formulation

Empirical measure of {ξn}Nn=1

µN =
1

N

N∑
n=1

δξn

ξ = {ξn}∞n=1 equidistributed in [0, 1] ⇔

lim
N→∞

µN(J) = m(J), for every interval J ⊆ [0, 1]

(m = Lebesgue measure on [0, 1]).
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Discrepancy

ξ = {ξn}∞n=1, AN(r) = ♯({ξ1, ξ2, . . . ξN} ∩ [0, r ])

Definition

The discrepancy (or star discrepancy) of ξ is given by

D∗
N(ξ) = sup

0≤r≤1

∣∣∣∣AN(r)

N
− r

∣∣∣∣
Discrepancy measures equidistribution of ξ

ξ is equidistributed ⇔ lim
N→∞

D∗
N(ξ) = 0

Faster convergence rate of D∗
N(ξ) ⇒ ξ ”more equidistributed”.
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Discrepancy

Discrepancy measures how much ξ ”deviates” from being
uniformly spread out (equidistributed).

Another look at discrepancy as a deviation:

D∗
N(ξ) = sup

0≤r≤1
|µN([0, r ])−m([0, r ])|

”Total variation-like” distance between µN and m.

Lind KAAS talk 2022 8 / 29



Discrepancy

Discrepancy measures how much ξ ”deviates” from being
uniformly spread out (equidistributed).

Another look at discrepancy as a deviation:

D∗
N(ξ) = sup

0≤r≤1
|µN([0, r ])−m([0, r ])|

”Total variation-like” distance between µN and m.

Lind KAAS talk 2022 8 / 29



An example

Exercise Construct an easy example of a equidistributed sequence.

Solution: put together (concatenate) blocks of equidistant
rational numbers. Denominators increases from one block to
another.
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An example

ω =

{
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The strategy actually works, ω is equidistributed!
In fact, more can be said.

Exercise (nice) Prove that D∗
N(ω) = O

(
1√
N

)
, and that the

convergence rate N−1/2 is sharp:

lim inf
N→∞

√
ND∗

N(ω) > 0

Shall return to ω later!
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Recall the main character!

The ”main character”:
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We recognize the structure from ω, but in η we only have prime
denominators.

Question Why the numerators?

To answer this, we need randomness!
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Pseudorandom numbers

Random numbers are useful!

Problem: What/how/where is ”random”?

Substitute: pseudorandom numbers.

Numbers generated by some algorithm (so not random in any
meaningful sense) that appears to be random/unpredictable.

Generating good pseudorandom numbers is a serious scientific
problem!

R. R. Coveyou: ”Random number generation is too important to
be left to chance.”

D. E. Knuth: ”Random numbers should not be generated with a
method chosen at random.”
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Pseudorandom numbers

It turns out to be sufficient to generate ”random numbers” from
U[0, 1] (uniform distribution on [0, 1]).

Any other distribution (e.g. normal, Poisson,...) can be obtained
from U[0, 1] by inverse transform sampling.
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Pseudorandom numbers

To generate ”random numbers” from U[0, 1], one often does the
following.

(1) Generate ”uniformly unpredictable” integers m1,m2, . . .mN in
a large interval [0,K ].

(2) Normalize to [0, 1] by setting xn = mn/K for n = 1, 2, . . . ,N

Getting the ”uniformly unpredictable” integers is of course the
hard part.

They are often generated arithmetically.
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Pseudorandom numbers

Simple but powerful example
Let p be a (large) prime and consider the map

ξ 7→ ξ−1 (mod p)

defined on Z∗
p = Zp \ {0}.

1 7→ 1, 2 7→ (p + 1)/2, p − 1 7→ p − 1

Not unpredictable!

Already 3−1 (mod p) is less obvious.
(Two possibilities, which it is depends on p (mod 3).)

Take a ”small chunk” {k , k + 1, . . . , k +m} ⊂ Zp and consider its
image under the inverse map. Will look rather unpredictable!
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Pseudorandom numbers

Practical test

Provide a (pseudo)random sample {x1, x2, . . . , x20} from U[0, 1].

Take p = 1667
Let ζn = (800 + n)−1 (mod 1667) for n = 1, 2, . . . 20

Normalize to [0, 1] by taking xn =
ζn
p

for n = 1, 2, . . . 20

Looks rather random! (Clusters and holes)

Can also perform a statistical test.
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Pseudorandom numbers

Want to test if x = {x1, x2, . . . , xN} is a random sample from
U[0, 1] (null hypothesis).

The Kolmogorov-Smirnov test (nonparametric test).

Empirical distribution function

F̂x(t) =
♯({xn ∈ x : xn ≤ t})

N

Test statistic
T = sup

0≤t≤1
|F̂x(t)− t|

(Observe that F (t) = t (0 ≤ t ≤ 1) is the distribution function of
a random variable X ∼ U[0, 1].)

Reject H0 if T is larger than tabulated critical value.
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Pseudorandom numbers

Interesting (?) observation: the test statistic is the star
discrepancy of the sample:T = D∗

N(x).

Additional testing necessary to guarantee quality of pseudorandom
numbers.
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Back to ω and η

ω =

{
1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
, . . .

}
, D∗

N(ω) = O
(

1√
N

)

Two possible factors that slow down the convergence rate:

1 ω contains many ”duplicates”, e.g. 1/2 = 2/4 = 3/6 etc.;

2 the terms of ω within each block is ordered increasingly, i.e.
1/5, 2/5, 3/5, 4/5.

The first issue is easily solved: only prime denominators in the
blocks. {

1

2
,
1

3
,
2

3
,
1

5
,
2

5
,
3

5
,
4

5
,
1

7
,
2

7
,
3

7
,
4

7
,
5

7
,
6

7︸ ︷︷ ︸, . . .
}

Issue with order within each block remains!
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More about η

The ordering issue: impose within each block of η the inversive
pseudorandom order:

{
1−1

p
,
2−1

p
,
3−1

p
, . . .

(p − 1)−1

p

}
,

where the inverse is (mod p).

The elements (except first and last in the block) ”jump around”!

The result is

η =

{
1

2
,
1

3
,
2

3
,
1

5
,
3

5
,
2

5
,
1

5
,
1

7
,
4

7
,
5

7
,
2

7
,
3

7
,
6

7︸ ︷︷ ︸,
1

11
,
6

11
,
4

11
,
3

11
,
9

11
,
2

11
,
8

11
,
7

11
,
5

11
,
10

11
, . . .

}
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The main problem

Now that we know the construction of η, I formulate the main
problem that I solved

Problem

Compute the exact asymptotic behaviour of D∗
N(η).

Motivation: silly curiosity
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The main result

Theorem (The Skarphyttan Theorem, 2021)

For N ≥ 3

D∗
N(η) ≤

2√
N ln(N)

.

Moreover, the rate is sharp:

lim inf
N→∞

√
N ln(N)D∗

N(η) ≥
1

2

Who/what is Skarphyttan?
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The main result
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Main result, some remarks

The improvement in rate of D∗
N(η) = O

(
1√

N ln(N)

)
compared

to D∗
N(ω) = O(N−1/2) is due to the pseudorandom ordering of the

elements in η.

On the other hand, it is interesting to note the following.

(Law of the iterated logarithm for D∗
N)

If ξ = {ξn}∞n=1 is a random sequence (i.e. ξn ∼ U[0, 1]), then
almost surely

D∗
N(ξ) = O

(√
ln(ln(N))

N

)
.

So our notion of ”pseudorandom” is quite far away from ”really
random”!
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Proof technique

If time permits: I want to say something about the proof.

Mainly to illustrate the last ingredient of the argument:
asymptotics for prime numbers.
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Proof technique

Want to estimate D∗
N(η). Here, pn is the n-th prime.

1 Writing N ≈
m∑

n=1

pn for some m and using the ”triangle

inequality for discrepancy”, I get

ND∗
N(η) ≤ I + II ;

2 the first term can be estimated as I ≤
m−1∑
n=1

pn;

3 using general discrepancy estimates due to Niederreiter for
inversive congruential generators (i.e. for the map ζ 7→ ζ−1 on
Z∗
p for fixed p), the second term can be estimated as

II ≤ C
√
pm ln2(pm).
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Proof technique

I thus arrive (essentially) at

ND∗
N(η) ≤

m−1∑
n=1

pn + C
√
pm ln2(pm)

The above can be massaged into the desired estimate if I have
some knowledge of the asymptotics of primes.
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Last ingredient: size of primes

π(x) = ♯({primes ≤ x})

The PNT (Hadamard, de la Vallée Poussin 1896)

π(x) ∼ x

ln(x)
.

Equivalently

m-th prime pm = m ln(m)(1 + o(1)).

I also need the asymptotic behaviour of
m∑

n=1

pn.
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Last ingredient: size of primes

Heuristic argument (Skarphyttan has no Internet)

m∑
n=1

pn ≈
m∑

n=1

n ln(n) ≈
∫ m

1
x ln(x)dx

=
m2

2
ln(m)−

∫ m

1

x

2
dx

=
m2

2
ln(m)

(
1− C1

ln(m)
+

C2

m2 ln(m)

)
Fantastically, the above heuristic actually works!

m∑
n=1

pn =
m2

2
ln(m)(1 + o(1))

(see e.g. Landau’s ”Handbuch”)
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