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Bio

• Studied civil engineering in Stuttgart

• PhD student at the institute for structural mechanics in Stuttgart (since 2018)

• Supervised by Prof. Bischoff (Head of the institute)
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Motivation

Toy problem, Problem statement

Cost function:

Constraints:

Solution:

„Constrained optimization on an unconstrained space“
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Motivation

Toy problem: Lagrange multiplier approach 

Cost function:

Solution:

• Dimension increase of the search space

• Minimization problem → Saddle-point problem

• Allows general constraints

• Simple linearization



University of Stuttgart, Institute for Structural Mechanics 5

Motivation

Toy problem: Penalty

Cost function:

Solution:

• Dependence on artificial parameter

• Simple linearization

• General constraints

• Problem structure retained
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Motivation

Toy problem, Parametrization of the manifold

Cost function:

Solution:

First order conditions:

…lengthy…

• Involved linearization

• Possibility of introducing singularities

• Problem structure retained

• Solves the problem on the „correct“ design space

WIKIPEDIA: N-SPHERE

WIKIPEDIA: HAIRY_BALL_THEOREM

https://en.wikipedia.org/wiki/N-sphere
https://en.wikipedia.org/wiki/Hairy_ball_theorem


University of Stuttgart, Institute for Structural Mechanics 7

Motivation

Toy problem
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Motivation

Toy problem: Newton’s method
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Motivation

Toy problem: iterations of the Lagrange multiplier approach
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Motivation

Toy problem: iterations of the penalty approach
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Motivation

Toy problem: iterations of the coordinate approach
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Motivation

Toy problem: number of iterations vs. gradient norm comparison

#iteration
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Motivation

Toy problem: Presented method

Cost function:

Solution:

• Not appropriate for all constraints

• More theory, but nice theory

„Unconstrained optimization on a constrained space“

LAM Penalty Coordinates This talk

Linearization

Singularities

Search space

Minimization

Iterations
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Optimization on Manifolds

Literature

ABSIL PA, MAHONY R, SEPULCHRE R (2008) OPTIMIZATION

ALGORITHMS ON MATRIX MANIFOLDS. PRINCETON UNIVERSITY PRESS, 

DOI:10.1515/9781400830244

BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS. AVAILABLE ONLINE, LINK

https://doi.org/10.1515/9781400830244
http://www.nicolasboumal.net/book
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Update of design variables

Riemannian gradient / Hessian

Riemannian Newton

Simulations

Other manifolds

Optimization on manifolds
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Optimization on Manifolds

Problem statement
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Optimization on Manifolds

Steepest descent in vector spaces
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Optimization on Manifolds

Steepest descent on manifolds

1. How to obtain ?

2. How to update      ?

3. How to obtain ?



Update of 
design variables
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Optimization on Manifolds

Update of design variables in vector spaces
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Optimization on Manifolds

Update of design variables

Geodesics generalize the concept of straight lines

The exponential map creates the unique geodesic curve starting at      in direction         with constant speed  
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Optimization on Manifolds

Update of design variables

ABSIL PA , "OPTIMIZATION ON MANIFOLDS: METHODS AND APPLICATIONS", LEUVEN, 18 SEP 2009.

Luenberger (1973), Introduction to linear and nonlinear programming. 

Luenberger mentions the idea of performing line search along geodesics, “which 

we would use if it were computationally feasible (which it definitely is not)”. 

Generalize the concept of the exponential map → Retractions
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Optimization on Manifolds

Update of design variables

Retraction

Minimal requirements
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Optimization on Manifolds

Update of design variables

Retractions for the unit sphere
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Optimization on Manifolds

Update of design variables

Retractions for the unit sphere

Taylor expansions coincide up to 2nd order 
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Riemannian 

gradient
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Optimization on Manifolds

Riemannian Gradient

Introduce chart

• Chart necessary

• Possibility for singularities

• Involved linearization

Example:
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Optimization on Manifolds

Riemannian Gradient

Definition of the Riemannian gradient

Exploit retraction to lift the function

BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS.

ABSIL PA, MAHONY R, SEPULCHRE R (2008) OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS
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Optimization on Manifolds

Optimization on Riemannian submanifolds

Exploit embedding of the manifold

Decompose using projections
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Optimization on Manifolds

Riemannian Gradient: submanifolds

Exploit embedding of the manifold

Details: Metric of embedding space
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Optimization on Manifolds

Riemannian Gradient: submanifolds

• No charts

• No artificial singularities

• Simple linearization

“For Riemannian submanifolds, the Riemannian 

gradient is the orthogonal projection of the “classical” 

gradient to the tangent spaces.”
BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS.
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Optimization on Manifolds

Toy problem: gradient and Riemannian gradient
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Optimization on Manifolds

Toy problem: gradient and Riemannian gradient
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Riemannian 

Hessian
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Optimization on Manifolds

Riemannian Hessian: submanifolds

Introduce chart

• Chart necessary

• Potential for singularities

• Involved linearization

• Bad conditioning of the Hessian

Example:

Christoffel symbols
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Optimization on Manifolds

Riemannian Hessian: submanifolds

Definition of the Riemannian Hessian

Exploit retraction to lift the function

BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS.

ABSIL PA, MAHONY R, SEPULCHRE R (2008) OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS
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Optimization on Manifolds

Riemannian Hessian: submanifolds

1. Exploit embedding of the manifold to lift function

2. Taylor expansion 

3. Equating terms

Details: Connection, Levi-Civita-Connection, Parallel transport, vector transport, Weingarten map, shape operator, second order retractions,…

“[…] This shows that, for Riemannian submanifolds of 

Euclidean spaces, the Riemannian Hessian is the 

projected Euclidean Hessian plus a correction term 

which depends only on the normal part of the Euclidean 

gradient.” 
BOUMAL N (2020) AN INTRODUCTION TO OPTIMIZATION ON SMOOTH MANIFOLDS.



University of Stuttgart, Institute for Structural Mechanics 38

Optimization on Manifolds

Toy problem: Hessian and Riemannian Hessian

• Simple linearization

• No artificial singularities
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Riemannian

Newton
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Motivation

Riemannian Newton

Classic optimization Optimization on Riemannian submanifolds

Update

Gradient

Hessian

Ingredients:
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Optimization on Manifolds

Toy problem: Exponential map
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Optimization on Manifolds

Toy problem: Radial return
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Optimization on Manifolds

Toy problem: Newton’s method, iteration count vs. gradient norm

#iteration

Spherical Coordinates method == Using Exponential map

Radial return normalization superior to exponential map
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Simulations
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Simulation of Reissner-Mindlin shells

Simulation elastic deformation of shells

AM, BISCHOFF (2022): A CONSISTENT FINITE ELEMENT FORMULATION OF THE

GEOMETRICALLY NON-LINEAR REISSNER-MINDLIN SHELL MODEL, DOI

http://dx.doi.org/10.1007/s11831-021-09702-7
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Simulation of Reissner-Mindlin shells

Simulation elastic deformation of shells

Riemannian Trust-Region method

Minimizers for cylinder buckling
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Simulation of magnetic vorticies

Experiments

WACHOWIAK ET AL (2002): DIRECT OBSERVATION OF INTERNAL SPIN

STRUCTURE OF MAGNETIC VORTEX CORES
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Simulation of magnetic vortices

Simulation micromagnetostatics
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Other manifolds
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Optimization on Manifolds

Other manifolds

Manifold Exponential map Other retractions Tangent space

Unit sphere

Special linear group

Symmetric Special 

linear manifold

Special orthogonal 

group

QR decomposition
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Optimization on Manifolds

Retractions, Symmetric positive definite matrices

Exponential map:

Second order: 

First order:   

Stays always on SPD!

Stays not always on SPD!

HUANG, W. (2017). INTRODUCTION TO RIEMANNIAN BFGS METHODS. LINK

https://www.math.fsu.edu/~whuang2/pdf/SIAM_OP17_slides.pdf
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Optimization on Manifolds

Other manifolds

Manifold Definition

Symmetric positive semidefinite fixed-rank

Generalized sphere

Fixed rank

Manifold defined by some function …

BOUMAL, N. AND MISHRA, B. AND ABSIL, P.-A. 

AND SEPULCHRE, R., MANOPT, A MATLAB

TOOLBOX FOR OPTIMIZATION ON MANIFOLDS, 

2014

https://www.manopt.org/

https://www.manopt.org/


University of Stuttgart, Institute for Structural Mechanics 53

Optimization on Manifolds

Summary

• Optimization of cost functions with constraints can be interpreted as optimization on manifolds

• Lots of customization points exist, e.g., retractions

• May be superior to classical optimization techniques

• Many manifolds can be found in literature

Lots of pitfalls!

Examples:

The important Sobolev space                    does not even always possess the structure of a Banach manifold

Interpolation has to stay on the manifold

Geodesics for interpolation are not always unique

Not mentioned: Finite Elements
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