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The Space of Radon Measures: TV Norm and BL norm

There are two norms we associate with M(R+), the space of finite
Radon measures on R+ := [0,∞). The first is the total variation
norm given by

∥µ∥TV = sup
f ∈Cc (R+), ∥f ∥∞≤1

{∫
R+

fdµ

}
= |µ|(R+).

The second is the Bounded-Lipschitz norm:

∥µ∥BL = sup
ϕ∈W 1,∞(R+), ∥ϕ∥W 1,∞≤1

{∫
R+

ϕdµ

}
where ∥ϕ∥W 1,∞ = ∥ϕ∥∞ + ∥ϕ′∥∞ and W 1,∞(R+) is the space of
Bounded-Lipschitz functions.

For µ ∈ M+(R+), ∥µ∥TV = ∥µ∥BL. However for a general
µ ∈ M(R+), ∥µ∥BL ≤ ∥µ∥TV .
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Comparison Between TV and BL

∥ · ∥TV ∥ · ∥BL
xn −→ x ⇒ δxn −→ δx × ✓

M(R+) Banach ✓ ×
M+(R+) Complete ✓ ✓
MR(R+) Complete ✓ ✓

Where
MR(R+) := {µ ∈ M(R+) : ∥µ∥TV ≤ R}.
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Description of the Coagulation Process

Coagulation is the process of particles “clumping together”. This
is described mathematically by particles of size x and y colliding at
rate κ(x , y) to form a particle of size x + y . It is assumed
κ(x , y) = κ(y , x).
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Description of Binary Fragmentation

Binary fragmentation is the the process of which a cohort of
particles of size y splinters off into two separate particles of sizes s
and y − s at rate γ(y − s, s).
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Multiple Fragmentation

Multiple fragmentation allows particles of size y to fracture into a
distribution of particles given by b(y , dx) at rate a(y).
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History: Coagulation Equations

Figure: Marian Smoluchowski, Polish physicist born 28 May, 1872.

In 1916, Smoluchowski introduced the discrete coagulation
equation:

∂

∂t
u(t, xi ) =

1

2

i−1∑
j=1

κ(xi−xj , xj)u(t, xi−xj)u(t, xj)−
∞∑
j=1

κ(xi , xj)u(t, xi )u(t, xj).

In 1928, this was extended by Müller to a continuous setting:

∂

∂t
u(t, x) =

1

2

∫ x

0

κ(x−y , y)u(t, x−y)u(t, y)dy−
∫ ∞

0

κ(x , y)u(t, x)u(t, y)dy .
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Important Properties: Diminishing Total Population

Through coagulation, the total number of particles decreases over
time. This can be seen by integrating both sides of the coagulation
equation and using the substitution z = x − y :

d

dt

∫ ∞

0
u(t, x)dx =

1

2

∫ ∞

0

∫ x

0
κ(x − y , y)u(t, x − y)u(t, y)dydx

−
∫ ∞

0

∫ ∞

0
κ(x , y)u(t, x)u(t, y)dydx

=
1

2

∫ ∞

0

∫ ∞

y
κ(x − y , y)u(t, x − y)u(t, y)dxdy

−
∫ ∞

0

∫ ∞

0
κ(x , y)u(t, x)u(t, y)dydx

= −1

2

∫ ∞

0

∫ ∞

0
κ(x , y)u(t, x)u(t, y)dydx
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Important Properties: Conservation of Mass

Coagulation equations also conserve mass (
∫
xu(t, x)dx).

d

dt

∫ ∞

0
xu(t, x)dx =

1

2

∫ ∞

0

∫ x

0
xκ(x − y , y)u(t, x − y)u(t, y)dydx

−
∫ ∞

0

∫ ∞

0
xκ(x , y)u(t, x)u(t, y)dydx

=
1

2

∫ ∞

0

∫ ∞

y
xκ(x − y , y)u(t, x − y)u(t, y)dxdy

−
∫ ∞

0

∫ ∞

0
xκ(x , y)u(t, x)u(t, y)dydx

=
1

2

∫ ∞

0

∫ ∞

0
(z + y)κ(z , y)u(t, z)u(t, y)dxdy

−
∫ ∞

0

∫ ∞

0
xκ(x , y)u(t, x)u(t, y)dydx = 0
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History: Fragmentation Equations

Later Blatz and Tobolsky (1945) introduced discrete fragmentation
terms:

∂

∂t
u(t, xi ) = Coagulation+

∞∑
j=i+1

a(xj)b(xj , xi )u(t, xj)−a(xi )u(t, xi ).

Which were extended to a continuous setting by Melzak (1957):

∂

∂t
u(t, x) = Coagulation+

∫ ∞

x
a(y)b(y , x)u(t, y)dy − a(x)u(t, x).

Binary fragmentation:

a(y) =
1

2

∫ y

0
γ(y − s, s) ds, b(y , x) =

γ(x , y − x)

a(y)
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Some Applications

Coagulation-fragmentation models have many applications
including:

particle collision;

coalescence of aerosols;

polymerization;

flocculation;

hadronization;

onset and progression of Alzheimer’s disease.
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A Particular Example

In Baird and Süli (2019), authors consider a mixed fragmentation
model

∂tu = −aiu +
N∑

j=i+1

ajbj ,i u(xj , t) +

∫ ∞

N
a(y)b(y , x)u(y , t)dy

to account for the phenomenon of “shattering” (i.e. the excessive
creation of zero size dust particles).
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Application to Oceanic Phytoplankton

These equations have been extensively used in mathematical
biology. Jackson (1990), Ackleh et al. (1994) applied such models
to phytoplankton aggregations while Gueron and Levin (1994)
applied such equations to animal group formation.

1

1Photo from the Marine Biological Lab at the University of Chicago.
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Structured Population Model

We consider the structured population model with boundary
∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = 0, (t, x) ∈ (0,T )× (0,∞)

g(t, µ)(0)Ddxµ(0) =

∫ ∞

0
β(t, µ)(y)dµ(y), t ∈ [0,T ]

µ(0) ∈ M+(R+)

,

where

µ : [0,T ] −→ M+(R+),

g , d , β : [0,T ]×M+(R+) −→ W 1,∞(R+).
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Structured Population Model

We consider the structured population model with boundary
∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = 0, (t, x) ∈ (0,T )× (0,∞)

g(t, µ)(0)Ddxµ(0) =

∫ ∞

0
β(t, µ)(y)dµ(y), t ∈ [0,T ]

µ(0) ∈ M+(R+)

,

µ(t)(A) = µt(A) represents the number of individuals with
structure x ∈ A at time t,

Ddxµ(0) denotes the Radon-Nikodym derivative of µ(t) with
respect to the Lebesgue measure, dx , at the point x = 0.
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Structured Population Model

We consider the structured population model with boundary
∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = 0, (t, x) ∈ (0,T )× (0,∞)

g(t, µ)(0)Ddxµ(0) =

∫ ∞

0
β(t, µ)(y)dµ(y), t ∈ [0,T ]

µ(0) ∈ M+(R+)

,

g(t, µ)(x) represents the growth rate of individuals of structure x .
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Structured Population Model

We consider the structured population model with boundary
∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = 0, (t, x) ∈ (0,T )× (0,∞)

g(t, µ)(0)Ddxµ(0) =

∫ ∞

0
β(t, µ)(y)dµ(y), t ∈ [0,T ]

µ(0) ∈ M+(R+)

,

β(t, µ)(x) represents the birth rate of individuals of structure x .
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Structured Population Model

We consider the structured population model with boundary
∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = 0, (t, x) ∈ (0,T )× (0,∞)

g(t, µ)(0)Ddxµ(0) =

∫ ∞

0
β(t, µ)(y)dµ(y), t ∈ [0,T ]

µ(0) ∈ M+(R+)

,

d(t, µ)(x) represents the death rate of individuals of structure x .
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Our Model


∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = K [µ] + F [µ],

g(t, µ)(0)Ddxµ(0) =

∫
R+

β(t, µ)(y)µ(dy),

µ(0) ∈ M+(R+),

(1)

where

µ : [0,T ] −→ M+(R+),

g , d , β : [0,T ]×M+(R+) −→ W 1,∞(R+),

K := K+ − K− : M+(R+) −→ M(R+),

F := F+ − F− : M+(R+) −→ M(R+)
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Our Model


∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = K [µ] + F [µ],

g(t, µ)(0)Ddxµ(0) =

∫
R+

β(t, µ)(y)µ(dy),

µ(0) ∈ M+(R+),

(1)

Through single-cell division, aggregates can grow in size or shed off
single cells. This is captured by the transport term and the
boundary condition.
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Reformulation into a Measure Setting: Coagulation

We reformulate these terms as measures by writing them as
distributions. Taking

K+(u)(x) =
1

2

∫ x

0
κ(y , x − y)u(x − y)u(y)dy ,

we can multiply by a test function ϕ and integrate over R+ to see

(K+[u], ϕ) =
1

2

∫ ∞

0

∫ x

0
κ(y , x − y)u(x − y)u(y)dyϕ(x) dx

=
1

2

∫ ∞

0

∫ ∞

0
κ(y , x)ϕ(x + y)u(x)dx u(y)dy .

Letting µ = u(x)dx we have

(K+[µ], ϕ) =
1

2

∫ ∞

0

∫ ∞

0
κ(y , x)ϕ(x + y)µ(dx)µ(dy)
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Reformulation into a Measure Setting

Similarly,

(K−[µ], ϕ) =

∫ ∞

0

∫ ∞

0
κ(y , x)ϕ(x)µ(dy)µ(dx).

Using kernel symmetry, we arrive at the following formulations:

(K [µ], ϕ) =
1

2

∫ ∞

0

∫ ∞

0
κ(y , x)[ϕ(x+y)−ϕ(x)−ϕ(y)]µ(dx)µ(dy)

Using similar ideas we obtain this formulation for F .

(F [µ], ϕ) =

∫
R+

(b(y , ·), ϕ)a(y)µ(dy)−
∫
R+

a(y)ϕ(y)µ(dy),

where (b(y , ·), ϕ) =
∫ y
0 ϕ(x)b(y , dx).
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Our Model: Assumptions on Growth, Birth, and Death

We apply the following assumptions to our model functions. Let
f = g , d , β:

(A1) For any R > 0, there exists LR > 0 such that for all
∥µi∥TV ≤ R and ti ∈ [0,∞) (i = 1, 2) the following hold

∥f (t1, µ1)− f (t2, µ2)∥∞ ≤ LR(|t1 − t2|+ ∥µ1 − µ2∥BL),

(A2) There exists ζ > 0 such that for all T > 0

sup
t∈[0,T ]

sup
µ∈M+(R+)

∥f (t, µ)∥W 1,∞ < ζ,

(A3) For all (t, µ) ∈ [0,∞)×M+(R+),

g(t, µ)(0) > 0.
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Our Model: Assumptions on Coagulation and
Fragmentation

We assume the coagulation kernel κ satisfies the following
assumption:

(K) κ is symmetric, nonnegative, bounded by a constant Cκ, and
globally Lipschitz with Lipschitz constant Lκ.

We assume the fragmentation kernel satisfies the following
assumptions:

(F1) a ∈ W 1,∞(R+) is non-negative,

(F2) for any y ≥ 0, b(y , dx) is a measure such that

(i) b(y , dx) is non-negative and supported in [0, y ] so that for all
y > 0 there exist a Cb > 0 such that b(y ,R+) < Cb,

(ii) there exists Lb such that

∥b(y , ·)− b(ȳ , ·)∥BL ≤ Lb|y − ȳ |

(iii) (b(y , ·), x) = y
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Our Model

Given T ≥ 0, we say a function µ ∈ C ([0,T ],M+(R+)) is a weak
solution to (1) if for all ϕ ∈ (C 1 ∩W 1,∞)([0,T ]× R+), and for all
t ∈ [0,T ] the following holds:∫
R+

ϕ(t, x)µt(dx)−
∫
R+

ϕ(0, x)µ0(dx) =∫ t

0

∫
R+

[∂tϕ(s, x) + g(s, µs)(x)∂xϕ(s, x)− d(s, µs)(x)ϕ(s, x)]µs(dx)ds

+

∫ t

0
(K [µs ] + F [µs ], ϕ(s, ·))ds +

∫ t

0

∫
R+

ϕ(s, 0)β(s, µs)(x)µs(dx)ds.
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Our Model

We can extend this model to all of R by 0 by writing model (1) in
the following way{

∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = K [µ] + F [µ] + S [µt ]δx=0,

µ(0) ∈ M+(R),
.

(2)
where S [µ] =

∫
R+ β(t, µ)(x)µ(dx). This allows us to use recent

well-posedness results for such equations over R.
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Existence-Uniqueness of Solutions

Theorem

Assume that assumptions (A1),(A2),(A3),(K),(F1),(F2) hold.
Given an initial condition µ0 ∈ M+(R+), there exists a unique
global solution µ ∈ C ([0,∞),M+(R+)) of equation (1).
Moreover, if µ0 has finite total mass in the sense that∫
R+ x µ0(dx) < ∞, then for any T ≥ 0 there exists CT > 0 such
that ∫

R+

x µt(dx) ≤ CT t ∈ [0,T ].

In particular, if g = d = β = 0 then mass is conserved in the sense
that

∫
R+ x µt(dx) =

∫
R+ x µ0(dx) for any t ≥ 0.
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Idea of Proof: Existence

For the nonlinear problem

∂tµt + div(v(t, µt)µt) = N(t, µt)

we show for small enough T > 0 (depending only on ∥µ0∥TV ) the
map defined by

Γ(µ)t = T v
t ♯µ0 +

∫ t

0
T v
s,t♯N(s, µs) ds,

has a fixed point, which is a solution to the nonlinear problem, in
the space

X = {µ ∈ C ([0,T ],M(Rd)) : µ|t=0 = µ0, ∥µt∥TV ≤ 2∥µ0∥TV , t ∈ [0,T ]}.

Here, X is endowed with the sup-norm ∥µ∥X = supt∈[0,T ] ∥µt∥BL.
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Idea of Proof: Existence

It then follows as before that this equation has an unique solution
defined on a maximal time interval [0,T∗). Moreover,

T∗ < ∞ if and only if lim
t−→T∗

∥µt∥TV = ∞.

Thus to show the solution is global, it is enough to show there is a
C > 0 such that

∥µt∥TV ≤ ∥µ0∥TV exp(Ct) for any t ∈ [0,T ∗).
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Idea of Proof: Mass Conservation

Let us assume now that
∫∞
0 x µ0(dx) < ∞. After a slight

regularization, we can take ϕR(x) = min{x ,R}, R > 0, in the
weak formulation to arrive at

(µt , ϕR) ≤ (µ0, ϕR) +

∫ t

0

∫
R+

g(s, µs)(y)ϕ
′
R(y)µs(dy)ds

+

∫ t

0

∫
R+

(b(y , ·), ϕR)a(y)µs(dy)ds.

Using that ϕR(x) ≤ x , (b(y , dx), x) = y , and (A2), we have

(µt , ϕR) ≤ (µ0, x) + CT ,ζ +

∫ t

0

∫
R+

ya(y)µs(dy)ds

≤ (µ0, x) + CT ,ζ + ∥a∥∞
∫ t

0
(µs , x) ds.
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Idea of Proof: Mass Conservation

Passing to the limit R → ∞ using the Monotone Convergence
Theorem, we deduce

(µt , x) ≤ (µ0, x) + CT ,ζ + ∥a∥∞
∫ t

0
(µs , x) ds.

The Gronwall inequality then gives

(µt , x) ≤ ((µ0, x) + CT ,ζ)e
∥a∥∞t .

As a consequence we can use any smooth test-function ϕ with
linear growth, i.e. |ϕ(x)| ≤ C (1 + |x |). In particular, we can take
ϕ(x) = x to have

(µt , x) = (µ0, x) +

∫ t

0

∫
R+

g(s, µs)(y)µs(dy)ds

−
∫ t

0

∫
R+

xd(s, µs)(x)µs(dy)ds.
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Interplay of Biological and Physical Processes

Theorem

Assume additionally for each y, b(y , ·) = b(y , x)dx, the family
{b(y , ·) : y ≥ 0} is uniformly equi-integrable, and ,
g(t, µt) ∈ C 1(R+) takes strictly positive values, and let µt be the
solution to (1) for some some initial condition µ0.
Denote l0(t) the solution to{

d
dt l0(t) = g(t, µ(t))(l0(t)),

l0(0) = 0.

Then for any t > 0, µt is absolutely continuous on [0, l0(t)) with
respect to the Lebesgue measure (i.e. µt ≪ dx).
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Unification of Discrete and Continuous Models

It is clear that continuous coagulation-fragmentation models are a
special case of our model by undoing the derivations of the model.
In order to arrive at the discrete coagulation-fragmentation models,
we take for some fixed h > 0

(C1) µ0 =
∑
i∈N0

m0
i δih where for each i , m0

i ∈ R+,

(C2) b(y , ·) =
∑
i∈N

bi (y)δih,

and also that

(C3) g(t, µ) ≡ 0.
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Under all of these assumptions, we have

Lemma

For any t ∈ [0,∞), the solution µt of (1) is supported on hN0:

µt =
∑
l∈N0

ml(t)δlh,

where the ml(t), l ∈ N0, satisfy the discrete
coagulation-fragmentation differential equation system.
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Numerical Methods on Measures

The idea behind numerical methods on this space is to
approximate the solution by a sum of Dirac measures:

µk
∆x =

J∑
j=1

mk
j δxj .

The hope is that your numerical method gives a decent
approximation of the measure on the interval (xj−1, xj ]:

µk∆t((xj−1, xj ]) ≈ mk
j .
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Finite Difference Schemes: Explicit



mk+1
j − mk

j

∆t
+

gkj m
k
j − gkj−1m

k
j−1

∆x
+ dkj m

k
j =

1

2

j−1∑
i=1

κi,j−im
k
i m

k
j−i −

J∑
i=1

κi,jm
k
i m

k
j

+
J∑
i=j

bi,j aim
k
i − ajm

k
j j = 1, .., J,

gk0 m
k
0 = ∆x

J∑
j=1

β
k
j m

k
j

(3)

With CFL condition

∆t
(
Cκ∥µ0∥TV exp((ζ+CbCa)T )+Ca max{1,Cb}+(1+

1

∆x
)ζ
)
≤ 1.
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Finite Difference Schemes: Semi-implicit



mk+1
j − mk

j

∆t
+

gkj m
k
j − gkj−1m

k
j−1

∆x
+ dkj m

k
j =

1

2

j−1∑
i=1

κi,j−im
k+1
i mk

j−i −
J∑

i=1

κi,jm
k
i m

k+1
j

+
J∑
i=j

bi,j aim
k
i − ajm

k
j ,

gk0 m
k
0 = ∆x

J∑
j=1

β
k
j m

k
j

(4)

With CFL Condition:

ζ̄(2∆t +
∆t

∆x
) ≤ 1 where ζ̄ = max{ζ, ∥a∥W 1,∞}.
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Rewriting the Equation as a Conservation Law

We rewrite the scheme in the following form:
∂t(xµ) + x∂x(g(t, µ)µ) + xd(t, µ)µ = ∂xQF [µ]− ∂xQK [µ]

g(t, µ)(0)Ddxµ(0) =

∫ ∞

0
β(t, µ)(x)µ(dx)

µ0 ∈ M+(R+)

,

where

(QK [µ], ϕ) =

∫ ∞

0

∫ ∞

0

[∫ z+y

z
ϕ(x)dx

]
z κ(z , y)µ(dz)µ(dy)

and

(QF [µ], ϕ) =

∫ ∞

0

(
b(y , dx), x

∫ y

x
ϕ(z)dz

)
a(y)µ(dy).

Notice ∂xQK [µ] = −xK [µ] and ∂xQF [µ] = xF [µ] in the sense of
distributions.
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Explicit Scheme on CL


xj

mk+1
j − mk

j

∆t
+ xj

gkj m
k
j − gkj−1m

k
j−1

∆x
+ xjd

k
j m

k
j =

Qk
F,j − Qk

F,j−1 − Qk
K,j + Qk

K,j−1

∆x

gk0
mk

0

∆x
=

J∑
j=1

β
k
j m

k
j

, (5)

where

Qk
K ,j :=

j∑
i=1

J∑
l=j−i

∆x xiκi ,lm
k
l m

k
i

and

Qk
F ,j :=

J∑
i=j+1

j∑
l=1

xl∆x bi ,laim
k
i .

CFL condition:

∆t(Cκ∥µ0∥TV exp(ζ + CbCa) + CbCa + (1 +
1

∆x
)ζ) ≤ 1.
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Comparison: Coagulation Only
Nx Nt

Explicit Semi-Implicit
BL Error Order Time (secs) BL Error Order Time (secs)

50 100 0.046406 0.059118
100 200 0.024121 0.94401 1.2972 0.029972 0.97997 1.9879
200 400 0.012296 0.97209 27.511 0.015119 0.98727 41.505
400 800 0.0062079 0.98605 455.73 0.0075973 0.99281 645.54
800 1600 0.0031190 0.99301 5942.6 0.0038088 0.99616 10370

Nx Nt
Conservation Law

BL Error Order Time (secs)
50 100 0.076986
100 200 0.040102 0.94091 19.83
200 400 0.020535 0.96561 338.35
400 800 0.010408 0.98042 6223.8
800 1600 0.0052438 0.98897 88950
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Comparison: Fragmentation Only

Nx Nt
Explicit/SemiImplicit Conservation Law

BLError Order Time (secs) BLError Order Time (secs)
200 10 0.27759 0.51684
400 20 0.15055 0.88275 2.4223 0.28095 0.87941 23.5
800 40 0.078274 0.94362 49.012 0.14664 0.93804 376.07
1600 80 0.03989 0.97251 765.21 0.074949 0.96829 6957.5
3200 160 0.020133 0.98644 11721 0.037898 0.98379 107980
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On Going/Future Work

Upgrade the finite difference schemes to higher order.

Asymptotic behavior.

Stability of these equations.
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Thank you for your attention!
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