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I. Motivations and problem setting
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The problem
Problem: Consider the one-dimensional nonlinear stochastic heat equation
on [0, 1]:

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + f(t, x, u(t, x)) + σ(t, x, u(t, x))

∂2

∂t∂x
W (t, x),

u(t, 0) = u(t, 1) = 0 for t ∈ (0, T ),

u(0, x) = u0(x) for x ∈ [0, 1],

where W is a Brownian sheet on [0, T ]× [0, 1] defined on some probability
space (Ω,F ,P) and the solution u(t, x) is a random field (see next slides).

Illustration (S. Cox): Model for population of micro-organisms in a closed tube
filled with motionless water. Motion in water only by diffusion. Here, u(t, x)
would give the concentration of micro-organisms at time t and position x in
the tube. At a random moment a micro-organism may divide itself ("birth"). At
random moment it may die. ∂2

∂t∂xW (t, x) models randomness of births and
deaths.

Applications: In biology, material science, neurophysiology, fluid dynamics,
etc. see for instance the book by Lord, Powell, Shardlow.



Motivations

1 SPDE in Walsh/Dalang framework and not in the Hilbert-space setting.

2 Gyöngy, Lattice approximations for stochastic quasi-linear parabolic
partial differential equations driven by space-time white noise I & II
1998− 1999:
For globally Lipschitz coefficients, u0 ∈ C([0, 1]), every 0 < α < 1/4,
0 < β < 1/2, p ≥ 1, one has:

sup
x∈[0,1]

E[|uM,N (t, x)− u(t, x)|2p] ≤ C(p, α, t)
(
N−αp +M−βp

)
,

where uM,N numerical solution given by finite differences with
∆x = 1/M and semi-implicit Euler-Maruyama with ∆t = T/N .
Additional result for u0 ∈ C3([0, 1]) and almost-sure convergence results.
Convergence in probability for non-globally Lipschitz continuous
coefficients.

3 C., Quer-Sardanyons, A fully discrete approximation of the
one-dimensional stochastic wave equation 2016:
Convergence results for an explicit time integrator (glob. Lip. coeff.).



Problem setting (I)
Recall: ∂

∂tu(t, x) =
∂2

∂x2u(t, x) + f(u(t, x)) + σ(u(t, x)) ∂2

∂t∂xW (t, x).

Definition: G(t, x) is a Gaussian random field if

the vector (G(t1, x1), . . . , G(tM , xM )) is a Gaussian random variable

for any (t1, x1), . . . , (tM , xM ) and M ∈ N.
Furthermore, µ(t, x) := E[G(t, x)] is the mean function and
Σ(t, x) := Cov(G(t, x), G(s, y)) is the covariance function.

A Brownian sheet (multi-parameter version of Brownian mot. β(t) ∼ N(0, t))
{W (t, x) : (t, x) ∈ R+ × [0, 1]} is a Gaussian random field with mean zero
(µ = 0) and covariance function

E[W (t, x)W (s, y)] = (s ∧ t)(x ∧ y).

A space-time white noise Ẇ (t, x) ∼ ∂2W (t,x)
∂t∂x is (formally) a mean zero

Gaussian noise with

E[Ẇ (t, x)Ẇ (s, y)] = δ0(t− s)δ0(x− y),

where δ0 is a Dirac delta function at the origin.



Problem setting (II)

Green function: The linear deterministic heat equation ∂u
∂t = ∂2u

∂x2 with
homogeneous Dirichlet b.c. has the Green function (i. e. Lu = f has solution
u = G ∗ f )

G(t, x, y) =

∞∑
j=1

e−j2π2tφj(x)φj(y),

where
(
φj(x)

)
j≥1

:=
(√

2 sin(jπx)
)
j≥1

forms a complete orthonormal
system of L2(0, 1).

Mild solution: Unique solution to the stochastic heat equation
∂
∂tu(t, x) =

∂2

∂x2u(t, x) + f(u(t, x)) + σ(u(t, x)) ∂2

∂t∂xW (t, x) (Duhamel’s
formula/ variation-of-const.):

u(t, x) =

∫ 1

0

G(t, x, y)u0(y) dy +

∫ t

0

∫ 1

0

G(t− s, x, y)f(u(s, y)) dy ds

+

∫ t

0

∫ 1

0

G(t− s, x, y)σ(u(s, y))W (ds,dy).



Problem setting (III)

Hilbert-space setting (Da Prato’s school): Another interpretation of the
random forcing term is given by

W (t, x) =

∞∑
j=1

φj(x)βj(t),

where
(
φj

)
j≥1

is a complete orthonormal basis of L2(0, 1), and βj(t) are
i.i.d. standard Brownian motion, i. e. βj(t) ∼ N(0, t) for all j.

In this setting, solutions to SPDEs u(t) are seen as function-valued process
with a single parameter, time t.

Walsh and Da Prato theories are essentially equivalant, see
Gyöngy, Krylov: On stochastic equations with respect to semimartingales,
1980
or
Dalang, Quer-Sardanyons: Stochastic integrals for spde’s: a comparison,
2011.



II. Finite difference approximation in space
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Finite difference (I) (from Gyöngy, Lattice approximations for . . . 1998)

Recall: ∂
∂tu(t, x) =

∂2

∂x2u(t, x) + f(u(t, x)) + σ(u(t, x)) ∂2

∂t∂xW (t, x).

Uniform grid: Let an integer M ≥ 1 and the partition xm = m/M , for
m = 1, . . . ,M − 1, of the unit interval (0, 1) with equidistant (spatial) mesh
size ∆x = 1/M .

A discretisation of the SPDE by standard FD gives the system of SDEs:

duM (t, xm) =M2
(
uM (t, xm+1)− 2uM (t, xm) + uM (t, xm−1)

)
dt

+ f(uM (t, xm)) dt

+Mσ(uM (t, xm)) d(W (t, xm+1)−W (t, xm))

with Dirichlet boundary conditions uM (t, 0) = uM (t, 1) = 0, and initial value
uM (0, xm) = u0(xm), for m = 1, . . . ,M − 1.
For x ∈ [xm, xm+1), define

uM (t, x) := uM (t, xm) + (Mx−m)(uM (t, xm+1)− uM (t, xm)).

Set notations uMm (t) := uM (t, xm) and
WM

m (t) :=
√
M(W (t, xm+1)−W (t, xm)), for m = 1, . . . ,M − 1.



Finite difference (II)
Reformulation of the FD problem in a more compact notation:

duMm (t) =M2
M−1∑
i=1

Dmiu
M
i (t) dt+ f(uMm (t)) dt+

√
Mσ(uMm (t)) dWM

m (t),

with initial value uMm (0) = u0(xm), for m = 1, . . . ,M − 1.

Here D = (Dmi)m,i square tridiagonal matrix of size M − 1,
WM (t) := (WM

m (t))M−1
m=1 is an M − 1 dimensional Wiener process.

(Not essential for the rest) The matrix M2D has eigenvalues

λM
j := −4 sin2

(
jπ

2M

)
M2 = −j2π2cMj ,

where

4

π2
≤ cMj :=

sin2
(

jπ
2M

)
(

jπ
2M

)2
≤ 1,

for j = 1, 2, . . . ,M − 1 and every M ≥ 1.



Finite difference (III)

Recall: The FD problem is given by the system of SDEs (m = 1, . . . ,M − 1)

duMm (t) =M2
M−1∑
i=1

Dmiu
M
i (t) dt+ f(uMm (t)) dt+

√
Mσ(uMm (t)) dWM

m (t).

Mild solution of the FD problem: Variation-of-constants formula gives:

uM (t, xm) =
1

M

M−1∑
l=1

M−1∑
j=1

exp(λM
j t)φj(xm)φj(xl)u0(xl)

+

∫ t

0

1

M

M−1∑
l=1

M−1∑
j=1

exp(λM
j (t− s))φj(xm)φj(xl)f(u

M (s, xl)) ds

+

∫ t

0

1√
M

M−1∑
l=1

M−1∑
j=1

exp(λM
j (t− s))φj(xm)φj(xl)σ(u

M (s, xl)) dW
M
l (s),

where φj(x) :=
√
2 sin(jxπ) for j = 1, . . . ,M − 1.



Finite difference (IV)
Continuous version of the FD solution: Written now with a discrete Green
function

uM (t, x) =

∫ 1

0

GM (t, x, y)uM (0, κM (y)) dy

+

∫ t

0

∫ 1

0

GM (t− s, x, y)f(uM (s, κM (y))) dy ds

+

∫ t

0

∫ 1

0

GM (t− s, x, y)σ(uM (s, κM (y)))W (ds,dy)

for x ∈ (0, 1) and t ∈ (0, T ].

Here, we use the notation κM (y) = [My]/M and the discrete Green function
GM (t, x, y) (see next slide).

Recall: Mild formulation of exact solution

u(t, x) =

∫ 1

0

G(t, x, y)u0(y) dy +

∫ t

0

∫ 1

0

G(t− s, x, y)f(u(s, y)) dy ds+ . . .



Finite difference (V)
Discrete Green function: For the mild solution of the FD problem one uses
the discrete Green function

GM (t, x, y) :=

M−1∑
j=1

exp(λMj t)φ
M
j (x)φM

j (κM (y)),

where κM (y) := [My]
M , φM

j (x) := φj(xl) for x = xl and
φM
j (x) := φj(xl) + (Mx− l) (φj(xl+1)− φj(xl)) for x ∈ (xl, xl+1].

Precise form of GM not essential for the rest of the presentation



III. Time discretisation: Stochastic exponential integrator
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Intermezzo on exponential methods for deterministic problems
Stiff systems of deterministic differential equations: u̇(t) +Au(t) = f(u(t)).

Exponential integrators: Numerical methods that integrates the linear part of
the problem exactly.

Examples of results:
Stiff order of convergence (|error| ≤ C∆tp, with C indep. of stiffness and ∆t)
for ODEs and PDEs.

Longtime conservation properties for the numerical solutions of ODEs (HOP)
and PDEs (semi-linear wave, Schrödinger, Hamiltonian PDE).

Applications: Reaction-advection-diffusion, mathematical finance, molecular
dynamics, Maxwell’s equations, etc.

Hochbruck, Ostermann 2010, Minchev, Wright 2005, C., Certaine, Deuflhard, Gauckler, Gautschi, Grimm,

Hersch, Hairer, Hochbruck, Lawson, Lubich, . . . , Jentzen, Lord, Wang, . . .



Time integration
Recall: The FD problem is given by (m = 1, . . . ,M − 1)

duMm (t) =M2
M−1∑
i=1

Dmiu
M
i (t) dt+ f(uMm (t)) dt+

√
Mσ(uMm (t)) dWM

m (t).

For an integer N ≥ 1 and some fixed final time T > 0, let ∆t = T
N and define

the discrete times tn = n∆t for n = 0, 1, . . . , N . Set A :=M2D,

Mild sol. of the FD problem: Variation-of-constants formula on [tn, tn+1]

uM (tn+1) = eA∆tuM (tn) +

∫ tn+1

tn

eA(tn+1−s)F (uM (s)) ds

+

∫ tn+1

tn

eA(tn+1−s)Σ(uM (s)) dWM (s).

Stochastic exponential integrator in time: With ∆Wn Wiener incr.

U0 := uM (0),

Un+1 := eA∆t
(
Un + F (Un)∆t+Σ(Un)∆Wn

)
.



Fully-discrete solution

Recall: ∂
∂tu(t, x) =

∂2

∂x2u(t, x) + f(u(t, x)) + σ(u(t, x)) ∂2

∂t∂xW (t, x).

Discretisation: FD in space and exponential integrator in time.

As for the exact and semi-discrete solutions, one can find a continuous
version of the fully-discrete solution uM,N (t, x) to the stochastic heat
equation.

Mild solution of the fully-discrete problem: The process
{uM,N (t, x), (t, x) ∈ [0, T ]× [0, 1]} satisfies the following integral equation:

uM,N (t, x) :=

∫ 1

0

GM (t, x, y)u0(κM (y)) dy

+

∫ t

0

∫ 1

0

GM (t− κT
N (s), x, y)f(uM,N (κT

N (s), κM (y))) dy ds

+

∫ t

0

∫ 1

0

GM (t− κT
N (s), x, y)σ(uM,N (κT

N (s), κM (y)))W (ds,dy),

where κT
N (s) := TκN ( s

T
) (recall κN (z) = [Nz]/N ).



Quick recap
Problem:

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + f(u(t, x)) + σ(u(t, x))

∂2

∂t∂x
W (t, x)

with, for the first results, the assumption that
|f(u)− f(v)|+ |σ(u)− σ(v)| ≤ C

(
|u− v|

)
and |f(u)|+ |σ(u)| ≤ C(1 + |u|)

for all u, v ∈ R.

Mild solution:

u(t, x) =

∫ 1

0

G(t, x, y)u0(y) dy +

∫ t

0

∫ 1

0

G(t− s, x, y)f(u(s, y)) dy ds+ . . .

Fully-discrete numerical solution:

uM,N (t, x) =

∫ 1

0

GM (t, x, y)u0(κM (y)) dy +

∫ t

0

∫ 1

0

GM (t− κT
N (s), x, y) . . .

For β ≥ 0, define Hβ([0, 1]) as the set of measurable functions g : [0, 1] → R
such that

∥g∥β =

(
∞∑
j=1

(1 + j2)β | ⟨g, φj⟩ |2
)1/2

< ∞,

where φj(x) =
√
2 sin(jxπ), for j = 1, 2, . . ., ON basis of L2([0, 1]).



Main results (I)
Theorem (Anton, C., Quer-Sardanyons 2017∗ − 2018).

1 Assume f and σ satisfy a globally Lipschitz and linear growth condition and
u0 ∈ C([0, 1]). Then, for every p ≥ 1, t ∈ (0, T ], 0 < α1 < 1

4
and 0 < α2 < 1

4
,

there are constants Ci = Ci(t), i = 1, 2, such that

sup
x∈[0,1]

(
E[|uM,N (t, x)− u(t, x)|2p]

) 1
2p ≤ C1(∆x)α1 + C2(∆t)α2 .

2 Let β > 1
2

and assume that u0 ∈ Hβ([0, 1]) with u0(0) = u0(1) = 0. Assume f
and σ satisfy a globally Lipschitz and linear growth condition. Then, for every
p ≥ 1, t ∈ (0, T ], 0 < α1 < 1

4
, there are constants C1 = C1(t) and C2 such that

sup
x∈[0,1]

(
E[|uM,N (t, x)− u(t, x)|2p]

) 1
2p ≤ C1(∆x)α1 + C2(∆t)τ ,

where τ = 1
4
∧ (β

2
− 1

4
).

If u0 is sufficiently smooth (e.g. u0 ∈ C3([0, 1])), then the estimates above hold with
α1 = 1 and uniformly in t ∈ [0, T ].

Moreover, uM,N (t, x) converges to u(t, x) P-a.s., as M and N tend to infinity,
uniformly with respect to (t, x) ∈ [0, T ]× [0, 1].

The spatial error estimates are results from Gyöngy, Lattice approx. . . . 1998.



Main results (II)

Problem:

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + f(u(t, x)) + σ(u(t, x))

∂2

∂t∂x
W (t, x).

Assumptions:
• Pathwise uniqueness of solutions to the stochastic heat equation.
• f and σ are continuous.
• f and σ satisfy a linear growth condition.
• Initial value u0 ∈ Hβ([0, 1]) for some β > 1

2 .

Theorem (Anton, C., Quer-Sardanyons 2017∗ − 2018). Convergence in
probability: For every ε > 0, one has

lim
k→∞

P
(

sup
t∈[0,T ]

sup
x∈[0,1]

|uMk,Nk(t, x)− u(t, x)| ≥ ε
)
= 0

for all sequences of positive integers (Mk, Nk)k≥1 such that Mk, Nk → ∞ as
k → ∞.



Results on time discretisations from the literature
• Gyöngy, Nualart 1995: Convergence in probability of semi-implicit EM

(SPDE with additive noise)
• Gyöngy, Nualart 1997: Strong conv. of semi-implicit EM with rate (add.

results for non-smooth coeff.)
• Shardlow 1999*: Strong conv. of θ-scheme with rate (additive noise)
• Gyöngy 1999: Strong conv. of semi-implicit EM with rate (add. results for

non-smooth coeff.)
• Printems 2001*: Strong conv. of θ-scheme with rate (add. results for

non-smooth coeff.)
• Hausenblas 2003*: Strong conv. with rates for EM, semi-implicit EM and

Crank-Nicolson
• Walsh 2005: Strong conv. of θ-scheme with rate
• Jentzen 2009*: Pathwise estimates (additive noise, non-smooth coeff.)
• Lord, Tambue 2013*: Strong conv. of exponential methods
• Davie, Gaines, Pettersson, Signahl, Millet, Morian, Müller-Gronbach,

Ritter, Jentzen, Kloeden, Cox, Van Neerven, Wang, Barth, Lang,
Röckner, Prohl, Bréhier, Cui, Hong, Liu, Qiao, etc.

References* deal with convergence in Lp(0, 1), i. e. E[∥error∥2Lp ]1/2.



Main ingredients of the proofs (glob. Lipschitz case)

Recall:

uM,N (t, x) :=

∫ 1

0

GM (t, x, y)u0(κM (y)) dy

+

∫ t

0

∫ 1

0

GM (t− κT
N (s), x, y)f(uM,N (κT

N (s), κM (y))) dy ds

+

∫ t

0

∫ 1

0

GM (t− κT
N (s), x, y)σ(uM,N (κT

N (s), κM (y)))W (ds,dy).

1 Write the error as
uM,N (t, x)− u(t, x) = uM,N (t, x)−uM (t, x) + uM (t, x)− u(t, x) and use
the spatial error estimate from Gyöngy, Lattice approximations . . . 1998.

2 Analyse uM,N (t, x)− uM (t, x) and use a Gronwall-type argument.

3 To do this: Use properties of GM (t, x, y), of uM (t, x), of uM,N (t, x),
assumptions on f and σ, Hölder’s inequality, Burkholder–Davis–Gundy’s
inequality and finally Gronwall-type inequality to bound the error of the
fully-discrete solution.



Main steps for the proofs (I)

Using mild forms of uM and uM,N , one obtains

uM,N (t, x)− uM (t, x) =

∫ t

0

∫ 1

0

{
GM (t− κTN (s), x, y)f

(
uM,N (κTN (s), κM (y))

)
−GM (t− s, x, y)f

(
uM (s, κM (y))

)}
dy ds

+

∫ t

0

∫ 1

0

{
GM (t− κTN (s), x, y)σ

(
uM,N (κTN (s), κM (y))

)
−GM (t− s, x, y)σ

(
uM (s, κM (y))

)}
W (ds,dy).

Next, add and subtract some terms in order to be able to use properties of f
and σ.



Main steps for the proofs (II)

The stochastic integral in

uM,N (t, x)− uM (t, x) =

∫ t

0

∫ 1

0

{
GM (t− κT

N (s), x, y)σ
(
uM,N (κT

N (s), κM (y))
)

−GM (t− s, x, y)σ
(
uM (s, κM (y))

)}
W (ds, dy) +

∫ t

0

∫ 1

0

blabla terms

can be decomposed as the sum of 2 terms:

B1 =

∫ t

0

∫ 1

0

(GM (t− κT
N (s), x, y)−GM (t− s, x, y))σ(uM,N (κT

N (s), κM (y)))W (ds,dy)

B2 =

∫ t

0

∫ 1

0

GM (t− s, x, y)(σ(uM,N (κT
N (s), κM (y)))− σ(uM (s, κM (y))))W (ds,dy).

Similarly for the deterministic integral.



Main steps for the proofs (III)
Estimates for B1: By Burkholder’s and Minkowski’s inequality one has

(E[|B1|2p])1/p =

(
E
[∣∣∣∣∫ t

0

∫ 1

0

(G
M

(t − κ
T
N (s)) − G

M
(t − s))σ(u

M,N
(·)W (ds, dy)

∣∣∣∣2p])1/p

≤ C

(
E
[(∫ t

0

∫ 1

0

|GM
(t − κ

T
N (s)) − G

M
(t − s)|2|σ(uM,N

(·))|2 dyds

)p])1/p

=: C|||
∫ t

0

∫ 1

0

|GM
(t − κ

T
N (s)) − G

M
(t − s)|2|σ(uM,N

(·))|2 dyds|||p

≤ C

∫ t

0

∫ 1

0

|GM
(t − κ

T
N (s)) − G

M
(t − s)|2|||σ(uM,N

(·))|||22p dyds.

Use linear growth assumption for σ, boundedness of the numerical solution,
and estimates for GM * to get

(E[|B1|2p])1/p ≤ sup
(s,y)∈[0,T ]×[0,1]

|||σ(uM,N (s, y))|||22p

×
∫ t

0

∫ 1

0

|GM (t− κT
N (s), x, y)−GM (t− s, x, y)|2 dy ds

≤ C(∆t)1/2.

∗ sup
M≥1

sup
x∈[0,1]

∫ t

0

∫ 1

0

|GM
(t − κ

T
N (s), x, y) − G

M
(t − s, x, y)|2 dy ds ≤ C(∆t)

1/2



Main steps for the proofs (IV)

Estimates for B2: Similarly, one gets

(E[|B2|2p])1/p ≤ C

∫ t

0

∫ 1

0

|GM (t− s, x, y)|2 dy

× sup
y∈[0,1]

|||σ(uM,N (κTN (s), y))− σ(uM (s, y))|||22p ds.

Use Lipschitz assumption on σ and estimates for GM to get

(E[|B2|2p])1/p ≤ C

∫ t

0

∫ 1

0

|GM (t− s)|2 dy sup
x∈[0,1]

|||uM,N (κT
N (s), x)− uM (s, x)|||22p ds

≤ C

∫ t

0

1√
t− s

(
sup

x∈[0,1]

|||uM,N (κT
N (s), x)−uM,N (s, x)|||22p

+ sup
x∈[0,1]

|||uM,N (s, x)− uM (s, x)|||22p

)
ds.

Now distinguish between the two different cases for the initial value u0.



Main steps for the proofs (V)
Recall:

(E[|B2|2p])1/p ≤ C

∫ t

0

∫ 1

0

|GM (t− s)|2 dy sup
x∈[0,1]

|||uM,N (κT
N (s), x)− uM (s, x)|||22p ds

≤ C

∫ t

0

1√
t− s

(
sup

x∈[0,1]

|||uM,N (κT
N (s), x)− uM,N (s, x)|||22p

+ sup
x∈[0,1]

|||uM,N (s, x)− uM (s, x)|||22p

)
ds.

If u0 ∈ Hβ([0, 1]) for some β > 1
2 , use regularity estimates for uM,N (t, x) to

get

(E[|B2|2p])1/p ≤ C(∆t)τ + C

∫ t

0

1√
t− s

z(s) ds,

where τ = 1
2 ∧ (β − 1

2 ) and

z(s) := sup
(r,x)∈[0,s]×[0,1]

|||uM,N (r, x)− uM (r, x)|||22p.

If u0 ∈ C([0, 1]): more technical.



Main steps for the proofs (VI)

Recall: uM,N (t, x)− uM (t, x) = B1 +B2 +A1 +A2, where A1 and A2 come
from the deterministic integral.

If u0 ∈ Hβ([0, 1]) for some β > 1
2 , we end up with (recall

z(s) := sup(r,x)∈[0,s]×[0,1]|||uM,N (r, x)− uM (r, x)|||22p):

z(t) ≤ C
(
E[|A1|2p] + E[|A2|2p] + E[|B1|2p] + E[|B2|2p]

)
≤ C1(∆t)

τ + C2

∫ t

0

1√
t− s

z(s) ds,

for τ = 1
2 ∧ (β − 1

2 ).

A version of Gronwall’s lemma concludes the proof of the mean-square error
estimates:

sup
t∈[0,T ]

sup
x∈[0,1]

(
E[|uM,N (t, x)− uM (t, x)|2p]

) 1
2p ≤ C(∆t)

τ
2 .

A similar analysis provides the result for u0 ∈ C([0, 1]).



(Skip?) Almost sure convergence: main ideas (I)

Recall: Mean-square error estimates for the time discretisation

sup
t∈[0,T ]

sup
x∈[0,1]

(
E
[
|uM,N (t, x)− uM (t, x)|2p

]) 1
2p ≤ C(∆t)1/4.

Let N > 0 and use Markov’s inequality (after some work)

P

(
sup
M≥1

sup
(t,x)∈[0,T ]×[0,1]

|uM,N (t, x)− uM (t, x)|2p >

(
1

N

)2
)

≤ C

(
1

N

)2pmin(δ,µ)−4

for δ ∈ (0, 1/4) and µ ∈ (0, 1/4).

This is summable if p is large enough.

Use Borel–Cantelli to get

sup
M≥1

sup
(t,x)∈[0,T ]×[0,1]

|wM,N (t, x)− wM (t, x)|2p ≤ 1

N2

with probability one.



(Skip?) Almost sure convergence: main ideas (II)

Recall: Borel–Cantelli gave us (P-a.s.)

sup
M≥1

sup
(t,x)∈[0,T ]×[0,1]

|wM,N (t, x)− wM (t, x)|2p ≤ 1

N2
for all large enough N.

This provides almost sure convergence of the numerical solution

sup
x∈[0,1]

sup
t∈[0,T ]

|uM,N (t, x)− u(t, x)| −→
a.s.

0 as M,N → ∞

using a result by Gyöngy for the a.s. convergence of the spatial
approximation uM (t, x).



Conv. in probability for non-glob. Lip. coeff. (I)

1 Show that {uM,N (t, x)}M,N≥1 is tight in C([0, T ]× [0, 1]):

To do so:
Use Hölder regularity results for the numerical solutions: For
0 ≤ s, t ≤ T , 0 ≤ x, y ≤ 1 and any p ≥ 1 one has

E[|uM,N (t, x)− uM,N (s, y)|2p] ≤ C
(
|t− s|

τp
2 + |x− y|τp

)
,

where τ = 1 ∧ (2β − 1) with a constant C independent of M and N .
Use a tightness criterium on the plane from Bardina, Jolis,
Quer-Sardanyons 2010.
Need: Linear growth condition.

2 Prokhorov’s theorem implies that {uM,N (t, x)}M,N≥1 is relatively
compact in C([0, T ]× [0, 1]).

3 Now, fix any pair of sequences (Mk, Nk)k≥1 such that Mk, Nk → ∞, as
k → ∞. Then, the laws of vk := uMk,Nk , k ≥ 1, form a tight family in the
space C([0, T ]× [0, 1]).



Conv. in probability for non-glob. Lip. coeff. (II)

4 Switch from weak convergence to a.s. convergence:

Consider two subsequences (v1j )j≥1 and (v2ℓ )ℓ≥1 of (vk)k≥1.
By Skorokhod’s Representation Theorem, there exists subsequences of
positive integers (jr)r≥1 and (ℓr)r≥1 of the indices j and ℓ, a prob. space
(Ω̂, F̂ , (F̂t)t≥1, P̂), and a sequence of cont. rdm fields (zr)r≥1 with
zr :=

(
ũr, ur, Ŵr

)
, r ≥ 1, such that

zr −→
r→∞

z := (ũ, u, Ŵ ) a.s. in C([0, T ]× [0, 1],R3)

and the finite dimensional distributions of zr and ζr :=
(
v1jr , v

2
ℓr
,W

)
are

the same for r = 1, 2, . . ..
5 Show that ũ and u are mild solutions to the heat equation:

Since law(zr) = law(ζr), for r = 1, 2, . . ., and components of ζr satisfy
weak form, so do the components of zr for r = 1, 2, . . ..
Take r → ∞ in the weak forms for ũr and ur to show that ũ and u are
solutions to the stochastic heat eq.
Need: Continuity of f and σ and results from Gyöngy 1998.



Conv. in probability for non-glob. Lip. coeff. (III)

5 Show that ũ = u:

One gets ũ = u P̂-a.s.
Need: Pathwise uniqueness.

6 Show uniform convergence in probability of {uMk,Nk}k≥1 to u, solution to
the stochastic heat equation.

Need: Result from Gyöngy 1998 for a criterium for convergence in
probability.



IV. Numerical experiments
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Settings (I)

Problem: Stochastic heat equation

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + f(u(t, x)) + σ(u(t, x))

∂2

∂t∂x
W (t, x)

u(t, 0) = u(t, 1) = 0

u(0, x) = u0(x) for x ∈ [0, 1].

Spatial discretisation: Finite difference on a uniform grid (m = 1, . . . ,M − 1)

duMm (t) =M2
M−1∑
i=1

Dmiu
M
i (t) dt+ f(uMm (t)) dt+

√
Mσ(uMm (t)) dWM

m (t)

or in the more compact form

uM (t) = eA∆tuM (0) +

∫ t

0

eA(t−s)F (uM (s)) ds+

∫ t

0

eA(t−s)Σ(uM (s)) dWM (s),

with the finite difference matrix A :=M2D.



Settings (II)
Recall: System resulting from spatial discretisation:

uM (t) = eA∆tuM (0) +

∫ t

0

eA(t−s)F (uM (s)) ds+

∫ t

0

eA(t−s)Σ(uM (s)) dWM (s).

Time discretisations: Done with the following numerical schemes:

Stochastic exponential integrator (SEXP)

U0 := uM (0),

Un+1 := eA∆t
(
Un + F (Un)∆t+Σ(Un)∆Wn

)
,

with the (M − 1)-dimensional Wiener increments
∆Wn :=WM (tn+1)−WM (tn).

Semi-implicit Euler-Maruyama scheme (SEM)

Un+1 = Un +∆tAUn+1 +∆tF (Un) + Σ(Un)∆Wn.

Semi-implicit Crank-Nicolson-Maruyama scheme (CNM)

Un+1 = Un +
∆t

2
A
(
Un+1 + Un

)
+∆tF (Un) + Σ(Un)∆Wn.



Profile of the numerical solutions

Problem: Consider

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + f(u(t, x)) + σ(u(t, x))

∂2

∂t∂x
W (t, x)

u(t, 0) = u(t, 1) = 0

u(0, x) = u0 for x ∈ [0, 1],

with u0(x) = sin(πx), f(u) = sin(u), σ(u) = 3− 0.1u, and T = 0.2.
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Temporal rates of convergence
Temporal rates of convergence (∆xref = 2−9 and ∆tref = 2−16)

sup
(t,x)∈[0,0.5]×[0,1]

E[|uM,N (t, x)− uM (t, x)|2]

10
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10
0

Error

Error SEXP

Error SEM

Error CNM

Slope 1/2

Data u0(x) = cos(π(x− 1/2)), f(u) = u/2, σ(u) = 1− u.



Almost sure convergence
Reference solution in red computed with ∆xref = 2−9 and ∆tref = 2−20.
Numerical solutions with ∆t = 2−10 to ∆t = 2−20 from light to dark grey plots.
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Data u0(x) = cos(π(x− 1/2)), f(u) = 1− u, σ(u) = sin(u), ∆x = 2−9, and
T = 0.5.



Computational cost
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Data u0(x) = cos(π(x− 1/2)), f(u) = 1− u, σ(u) = sin(u), ∆x = 2−9,
∆tref = 2−16 and T = 1.



V. Ongoing work
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Stoch. heat equations in higher dimension
With Lluís Quer-Sardanyons (UAB) and Johan Ulander (Chalmers), we are
extending the presented results to the SHE in higher dimension:

Let d ≥ 1 be an integer and set Q = [0, 1]d. Let α =∈ (0, 2 ∧ d). The noise F
is defined by means of a family of centered Gaussian random variables
F = {F (φ), φ ∈ D(R+ ×Q)} with covariance structure

E [F (φ)F (ψ)] =

∫ ∞

0

∫
Q

∫
Q

φ(t, x)|x− y|−αψ(t, y)dxdy dt.

The SPDE is then given by

∂u

∂t
(t, x) = ∆u(t, x) + b(u(t, x)) + σ(u(t, x))

∂2F

∂t∂x
(t, x)

u(t, x) = 0 for x on the boundary of Q.

Difficulties: The noise has some covariance structure in space. This adds
technical difficulties in the theoretical analysis as well as implementation
issues.



Thanks for your attention!!

Rikard Anton, David Cohen, Lluis Quer-Sardanyons A fully discrete
approximation of the one-dimensional stochastic heat equation, arXiv (2017),
IMAJNA (2018).
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