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ABSTRACT. We consider some extensions of the classical discrete Boltzmann
equation to the cases of multicomponent mixtures, polyatomic molecules (with
a finite number of different internal energies), and chemical reactions, but also
general discrete quantum kinetic Boltzmann-like equations; discrete versions
of the Nordheim-Boltzmann (or Uehling-Uhlenbeck) equation for bosons and
fermions and a kinetic equation for excitations in a Bose gas interacting with
a Bose-Einstein condensate. In each case we have an H-theorem and so for the
planar stationary half-space problem, we have convergence to an equilibrium
distribution at infinity (or at least a manifold of equilibrium distributions).
In particular, we consider the nonlinear half-space problem of condensation
and evaporation for these discrete Boltzmann-like equations. We assume that
the flow tends to a stationary point at infinity and that the outgoing flow
is known at the wall, maybe also partly linearly depending on the incoming
flow. We find that the systems we obtain are of similar structures as for the
classical discrete Boltzmann equation (for single species), and that previously
obtained results for the discrete Boltzmann equation can be applied after being
generalized. Then the number of conditions on the assigned data at the wall
needed for existence of a unique solution is found. The number of parameters
to be specified in the boundary conditions depends on if we have subsonic or
supersonic condensation or evaporation. All our results are valid for any finite
number of velocities.

1. Introduction. The Boltzmann equation is a fundamental equation in kinetic
theory [22, 23]. Half-space problems for Boltzmann equation are of great importance
in the study of the asymptotic behavior of the solutions of boundary value problems
of the Boltzmann equation for small Knudsen numbers [40, 41], and have been
extensively studied both for the full Boltzmann equation, see for example [4, 29,
44, 45], and for the discrete Boltzmann equation [3, 7, 32, 33, 43]. The half-space
problems provide the boundary conditions for the fluid-dynamic-type equations and

2010 Mathematics Subject Classification. Primary: 82C40; Secondary: 35Q20,76P05.

Key words and phrases. Nordheim-Boltzmann equation, discrete velocity models, Boltz-
mann equation, mixtures, polyatomic molecules, chemical reactions, boundary layers, half-space
problems.

The first author is supported by NSF grant xx-xxxx.

* Corresponding author: xxxx.


http://dx.doi.org/10.3934/xx.xx.xx.xx

2 N. BERNHOFF

Knudsen-layer corrections to the solution of the fluid-dynamic-type equations in a
neighborhood of the boundary.

The Boltzmann equation can be approximated by discrete velocity models (DVMs)
up to any order [18, 27, 38], and these discrete velocity approximations can be used
for numerical methods [35] (and references therein). The studies in this paper is a
continuation of the studies in the papers [6, 7, 8, 16]. We also want to point out the
reference [9] for the case of a condensing vapor in the presence of a non-condensable
gas.

In the present paper we consider some extensions of the classical discrete Boltz-
mann equation (DBE). We extend the DBE to the cases of multicomponent mix-
tures, using a more efficient approach than the one used for binary mixtures in
[8]. In fact we add to each velocity an index (each corresponding to a different
species) and assume that the set of indexes stays fixed under collisions. By using
a similar approach we also consider DVMs for polyatomic molecules. Here poly-
atomic molecules means that each molecule has one of a finite number of different
internal energies, which can change, or not, during a collision. The approach in-
cludes that we to each velocity also add of the finite number of internal energies, cf.
[20]. Combining these two approaches for multicomponent mixtures and polyatomic
molecules, we obtain DVMs multicomponent mixtures with a finite number of in-
ternal energies. Then we can also include bimolecular chemical reactions. We also
consider some general discrete quantum kinetic Boltzmann-like equations; discrete
versions of the Nordheim-Boltzmann [37] (or Uehling-Uhlenbeck [42]) equation for
bosons and fermions and a kinetic equation for excitations in a Bose gas interacting
with a Bose-Einstein condensate [2], see [10]. In each case we have an H-theorem
and so for the planar stationary half-space problem, we have convergence to an equi-
librium distribution at infinity (or at least a manifold of equilibrium distributions),
by arguments in [30], see also [13].

Existence and uniqueness of solutions of half-space problems for a general dis-
crete kinetic model (DKM) of the Boltzmann equation are studied. The number of
conditions, on the assigned data for the outgoing particles at the boundary, needed
for the existence of a unique (in a neighborhood of an assigned equilibrium dis-
tribution at infinity) solution of the problem are found. The distribution for the
outgoing particles at the boundary might, under some restrictions on the depen-
dence, be partly linearly depending on the distribution of the incoming particles.
We improve previously obtained results for the classical discrete Boltzmann equa-
tion in the degenerate cases, which in the continuous case are corresponding to the
cases when the Mach number of the Maxwellian at infinity is 0 or +1, in the way
that some restrictive conditions on the quadratic part are made superfluous. This
improvement is made possible by some improvements of the proof in [7]. Even if
the proof is similar to the one in [7], we still present it for the sake of completeness
and clarity. To our knowledge no similar results exist in the continuous case (except
for single species [4, 29, 44, 45] or binary mixtures, with equal masses, [5]).

The remaining part of the paper is organized as follows. In Section 2 we present
the general system of partial differential equations (PDEs) of our interest. We also
review a fundamental result [16] for our studies of boundary layers. In Section 3 we
present several examples of specific systems of the type in Section 2: the discrete
quantum Boltzmann equation, including the classical DBE (subsection 3.1); exten-
sions to multicomponent mixtures (subsection 3.2), polyatomic molecules (subsec-
tion 3.3), and bimolecular chemical reactions (subsection 3.4); and a discrete model
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for excitations in a Bose gas interacting with a Bose-Einstein condensate (subsection
3.5).

The main results on the boundary layers are presented in Section 4 (Theorem
4.2). In Section 5 we calculate the characteristic values, where the number of
conditions on the assigned data changes, for the different systems in the particular
case when the discrete sets are symmetric around the axis. The proof of Theorem
4.2 in Section 6, is based on the corresponding proof for the DBE in [7].

2. System of partial differential equations. We study a system of partial dif-
ferential equations

OF;

ot

where py,...,pny € R? are given, Fy = Fi(t,x),...,Fx = Fy(t,x), and F =

(Fy,...,Fy). If we denote by B the matrix where the rows are the transposes

of p1,...,Pn, respectively, and Q (F) = (Q1 (F),...,Qn (F)), then the system (1)
can be rewritten as

oF .

E#—(Bvx)-F:Q(F),w1tht7xER+. (2)

We assume that there exist positive equilibrium points P of the system (2), i.e.
points P such that

+pi - ViFi =Q; (F), witht e R, x eR? fori=1,.., N, (1)

QP)=0and P,>0fori=1,..,N.

Given a positive equilibrium point P we denote

F =P+ Rf, (3)
where R = R(P) is an operator of P, and obtain the new system
0
o+ (BY.)-F4Lf=5(), (@

where L is the linearized collision operator (N x N matrix) and S is the nonlinear
part.

We assume that we can choose R = R(P) such that the matrix L is symmet-
ric and semi-positive, and that dim(N(L)) = p > 0 for the null-space N(L) of
L. Furthermore, the nonlinear part S (f) is assumed to belong to the orthogonal
complement of N(L), i.e.

S(f) e N(L),
and to fulfill N
1S(f) =S (gl < KG(f],1g])|f — gl

for some positive constant K > 0 and differentiable function G : Ry xRy — Ry
with positive partial derivatives and G(0,0) = 0.
In particular, we will consider the planar stationary systems

B% + Lf = S(f), with f = f(z) and B = diag(pi, ..., px), (5)
where
x = (z=2'2% ..., 2% and p; = (p},...,p}),i=1,...,N,
in more details. We will assume below that p} # 0 for i = 1,..., N.
We denote by n*, where nt +n~ = N, and m*, with m™ + m~ = ¢, the
numbers of positive and negative eigenvalues (counted with multiplicity) of the
matrices B and B~!L respectively, and by m® the number of zero eigenvalues of
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B~!'L. Moreover, we denote by k*, k= and [, with k* + k= = k, where k +1 = p,
the numbers of positive, negative and zero eigenvalues of the p x p matrix K, with
entries ki; = (vi,9;) 5 = (¥, By;), such that {y1,...,y,} is a basis of the null-space
of L. Here and below, we denote

<'a '>B = <7B> 5
where (-, -) denote the Euclidean scalar product in RV,
We remind the following result by Bobylev and Bernhoff in [16] (also proved in

[6])-

Theorem 2.1. The numbers of positive, negative and zero eigenvalues of B~'L
are given by

mT = nt—kT -1
m- = n -k —
m® = p+1.

Remark 1. The proof of Theorem 2.1 in [16] is carried out for any real symmetric
matrices L and B, such that L is semi-positive and B is invertible.

In the proof of Theorem 2.1 a Jordan basis of RY, with respect to B~'L,

ULy eees Ugy YLy oeey Yky Z15 +eey 21, W1y o0ny WY, (6)
such that
Yi, zr € N(L), B 'Lw, = z, and B~ 'Lu, = \qua, (7)
and
<ua,u[3>B = )\a[;aﬁa with A1, ..., A\,,+ > 0 and )‘m++la ey )\q <0,
<yiayj>B = 7151]7 with Y1y ooy Vet > 0 and Ve++15 - Vk < Oa
<Uo¢,zr>3 = <ua7wr>B = <ua7yi>3 = <wrayi>3 = <Zr7yi>B =0,
(Wryws)g = (2r,26)5 =0 and (wy, 2s) g = 0Ors, (8)

is constructed.
The Jordan Normal form of B~!L (with respect to the basis (6)) is (see also
[6, 71)
A

o O
O =

0 1
0 0

0 0
the matrix B~'L is diagonalizable, in difference to in the degenerate case as [ > 0.

where there are [ blocks of the type ( 01 ) In the non-degenerate case [ = 0
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3. Discrete kinetic models.

3.1. Nordheim-Boltzmann equation. The discrete Nordheim-Boltzmann equa-
tion (or Uehling-Uhlenbeck equation) reads
oF;
ot
where P = {p1,...,pn} C R? is a finite set and F = (Fy,..., Fy), F; = F; (v,t) =
F (z,t,p;), is the distribution function, with F; > 0 and, if e = -1, F; < 1.

4 piViF = Q(F),i=1,..,N, 9)

Remark 2. For a function g = g(p) (possibly depending on more variables than
p), we will identify g with its restrictions to the points p € P, i.e.

9= "(91,--s9n), with g; = g (p;) fori=1,...,N.
The collision operators Q% (F), i = 1,..., N, in (9) are given by
N
Q(F)= Y THFF(1+eF)(1+eF) - FF;(1+eF) (1+F))

Jik,l=1

n

= > THQ+eFR)(1+eF)(1+eF) (1+cR)

k=1
F. R FF (10)
1+eFyl+cF, 1+cF;1+¢cF;)’

where it is assumed that the collision coefficients Ff}, 1<14,5,k, 1 <N, satisfy the
relations
Kl kl ij
i =15= >0, (11)
with equality unless the conservation laws
2 2 2 2
Pi + P =Pr + P and [ps|” +[p;[” = [Psl” + [P (12)

are satisfied. The collision operators (10) can be obtained from the expression

Q° (F) = Q(F,F) + Q(F,F, F) (13)
where
1 N
Qi(F,G) =3 > TH(GeHy + HyGy) — (GiH, + H;G))
j,k,l=1
and

Qi(F,G, H)

N
g
= 3 > T ((Fi+ Fy) (GeH, + HyGr) — (F + F) (GiHj + H;Gy))

3k, l=1
fori =1,..., N. Here ¢ = 0 corresponds to the classical discrete Boltzmann equation
([21, 28]), and we have € = 1 for bosons and € = —1 for fermions.
The collision invariants, i.e. the functions ¢ = ¢ (), such that
¢i + ¢5 = bk + ¢1, (14)

for all indices 1 < 4,7, k,I < N such that Ffjl # 0, are assumed to be on the form

p=a+b-p+eclp) (15)
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for some constant a,c € R and b € R%. Then the equation

(Q(F),0) =0 (16)
has the general solution (15). In general, discrete models can also have other,
so called spurious (or nonphysical), collision invariants. Models without spurious
collision invariants are called normal and methods of their construction are described
in e.g. [17, 19]. Our restriction to normal models is not necessary in our general
reasoning, but is motivated by the desire to have the same number of collision
invariants as in the continuous case.

One can easily obtain that

N
1
(H,Q° () = ; > THQ+eFR)(1+eF)(1+eF:) (1+cR)
0,7,k =1
F, F F, F;
H;+H; — H,—H - , (A7
(H; + H; k l)<1+5Fk1+5Fl l+eF; 1+¢F; (17)

and so (substituting H = log H%) that

N
1
e _ - kl ) )
<1og1+ F,Q (F)>_4i]%:_lr” (1+eF) (14 eF;) (1 +eFy) (1 +¢F))

lo Fi £ lo L Fi
S\1+cF 1+<F S\1+eF1+R

F F F, F

u L I_)<o0. (18)
1+eFp1+cF 1+eF1+¢€F;

The inequality in Eq.(18) is obtained by using the relation
(z—y)log L <0, (19)
z
with equality if, and only if, y = 2z, which is valid for all y, z € R;. Hence, we have
equality in Eq.(18) if and only if
F F B K
l+eF1+eF; 1+eF1+eF’
for all indices such that I’fjl # 0.

A Maxwellian distribution (or just a Maxwellian) is a function M = M (), such
that (for normal models)

M = e? = KeP el | with K = e® > 0, (21)

(20)

where ¢ is a collision invariant. There is equality in Eq.(18), if and only if log T1eF
€

is a collision invariant (take the logarithms of Eq.(20)), or equivalently, if and only

f T eF is a Maxwellian M. That is, if and only if F' is a Planckian (or if e =0 a
€
Maxwellian)
M
P= . 22
1—eM (22)
We define
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where (cf. [37]), for € € {0, £1}
pu(y) = { ylogy —e(1+ey)log(l +ey) ify >0

0ify=0

For the planar stationary system
BCCZZ—}; = Q° (F), with B = diag(p}, ..., px ), (23)
we obtain
i) = iﬂp}fﬁ log - = <log @ <F>> <0,
with equality if, and only if, F' is a Planckian. Denote by
g1 = (BF)
jiy1 = (Bp',F),i=1,...4d,
java = (Blpf.F). (24)

By Eqgs.(23),(16) the numbers ji, ..., jot2 are independent with respect to x in the
planar stationary case. For some fixed numbers ji, ..., j412, we denote by P the
manifold of all Planckians F' = P (22), such that Eq.(24) is fulfilled. Then we can
prove the following theorem by arguments similar to the ones used for the discrete
Boltzmann equation in [24] (see also [13]).

Theorem 3.1. If F = F(z) is a bounded nonnegative solution to Eq.(23), then
lim dist(F(z),P) = 0,
Tr—r 00

where P is the Planckian manifold associated with the invariants (24) of F. If there

are only finitely many Planckians in P, then then there is a Planckian P in P, such
that lim F(z) = P.
Tr—r0o0

If we denote (cf. Eq.(3))

M
F =P+ RY?f with R=P(1+¢eP)and P = ——, (25)
1—eM
in Eq.(9), we obtain
ofi
where L is the linearized collision operator (N x N matrix) given by
Lf = =R (2Q(P,RV2) + Q(RV2[, P,P) + 2Q(P, RV*[,P)) . (26)

and the nonlinear part S (f, f, f) is given by
S(f.9.h) = B2 (Q(RV21, RV29) + Q(P + RV2, RV2g, RV/*h)+
Q(RYf, P, R'/*) + Q(R*f, R**g, P)) . (27)

In more explicit forms, the operators (26) and (27) read
N K y y
(Lf)i= Y, —(PSfi+ Plf = Pife = Bifi),i=1..N  (28)
gk =1 1Y
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where
PH = (P;(1+ &Py +eP) — P P) R},
and
N
S(rn= 3 1/2 L (SHU D - SHLD) i = LN, (29)
7,k,l=
with

SH(f, 1. 0) = (Pt eP) Ry fifi+ 2 (R i+ B2 )
(Per)2 S+ PR i+ BYPRY ft)

By Egs.(12),(11),(28), and the relations

Kl V1+eF;
for T} # 0, we obtain the equality
;N
(0.Lh) =7 D, THPP(+eP)(l+eR)
ijkl=1
fi+fj7fk7fl 9 o, 9 _ 9 _ O
R RETRE RE)\RETRE T RE R

It is easy to see that the matrix L is symmetric and positive semi-definite, i.e.

(9, Lf) = (Lg, f) and (f,Lf) >0,

for all functions g = ¢g(§) and f = ().
Furthermore, (f, Lf) = 0 if and only if

fi n fio Tt i
1/2 1/2 1/2 1/2
R* R R/ R/

K2

(30)

for all indices satisfying Fle # 0. We denote f = RY?¢ in Eq.(30) and obtain
Eq.(14). Hence, since L is semi-positive,

Lf =0 if and only if f = R'/?¢,

where ¢ is a collision invariant (44). Hence, for normal models the null-space N (L)
is

N(L) = span(Rl/Q,Rl/Qpl,...,R1/2pd,R1/2|p|2)

span{\/P(l +eP), /P(1+¢cP)p, /P(1 +¢eP) \p\z} .

Then also

(S5 B26) = (@° (), 0) + (F.LEV?9) = 0
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for all collision invariants ¢, and for some constant K

1S (£, £.0) = S (b b)) =[R2 (QURV2 (f = ) RY2 (f + 1)
+Q(P,RY2(f —h), RY2(f + 1)
+2 (QURY2(f = h) . P.RY2f) + QR b, PRV (f — ) )
+ QRM2F,RY2 (£ = ) RY2(f + W) + QURY2 (f — ), R/2h, R/21))|
< KU1+ IRD+ 1A+ ) 1f =Bl (31)

The planar stationary system now reads
df _ “h B — di 1 1
B% + Lf - S(fa fa f)) with B = dlag(pb "'apN)a
where
x = (z=2'2% .., 2% and p = (p', ...,p?%).
We assume that the sets P = {p1, ..., px} are chosen in such a way that p} # 0 for
i=1,...,N.

3.2. Multicomponent mixtures. We now consider the case of s different species,
labelled with «j, ..., as, with the masses m®, ..., m®s, respectively. Fixing a set of
velocities

Ve = {gy L, €08, C RY
for each species oy, and assigning the label «; to each velocity in V% we obtain a
set of N = n® + ...+ n% pairs (each pair being composed of a velocity and a label)

Po= " o), (ras o), (€677, ) 5o (Gpae, as)
= {(p1,a(1)),...,(pn,a(N))}, with N =n® + ... +n%.

Note that the same velocity can be repeated many times, but only for different
species.

We consider the system (9) — (10) for € = 0 (even if we in principle don’t need to
restrict ourselves to the case of the discrete Boltzmann equation) with the collision
coefficients

Ll =I5 =T =0
with equality unless

{a(@),a(i)} = {alk),ad)}
*®py +m*Dp,
a(l

mo‘(i)pi + ma(j)pj - m
Vpf.
The collision invariants include, and for normal models are restricted to
e} Qg . Qo oy 0y (e 77 (&7 2
¢ =(¢™,....,0"), with ¢** = ¢"(p) =a™ + m*'b-p + cm™ |p| (32)

for some constant a®,...,a%,c € R and b € R%. For normal models we will have
s + d + 1 linearly independent collision invariants. How to construct such normal
models is considered in [14].

The Maxwellians are

mO |y +m D fp; " = m® |pe* +m

g

M =e¢? ie. M = (M, .. M%), with M* = e®"" (33)
where (for normal models) ¢ is given by Eq.(32).
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The notion of supernormal models was introduced for binary mixtures by Bobylev
and Vinerean in [19], and denotes a normal discrete velocity model, which is normal
also considering the sets of velocities for the different species separately. It was later
extended to the case of mixtures of several species in [14].

Definition 3.2. [14] A DVM {V*,...,V®} for mixtures of s species is called
supernormal if the restriction to each collection
{Vl,...,Vi} - {Vo‘l,...,VO‘S}, 1< < S,

of velocity sets is a normal DVM for mixtures of i species.

Theorem 3.3. [14] A DVM {V* ..., V} for miztures of s species is supernormal
if and only if the restriction to each pair {V®i ,VY} 1 <i < j<s, of velocity sets
is a supernormal DVM for binary miztures.

Theorem 3.4. [14] Let d = 2 or d = 3. For any given number s of species with
given rational masses m1, ..., m® there is a supernormal DVM for the mizture.

3
Assume that d = 2, s = 3, the mass ratios 2, 2 and 3, and let

h
V& = o V,i=1,2,3V={(£1,+1),(3,+1),(1,3),(3,3), (5, 1)},
(623

which is a normal DVM, then we obtain a 27-velocity supernormal DVM (see figure

1)

FIGURE 1. 27-velocity model for a mixture of three species with
mass ratios 2, 3/2, and 3

3.3. Polyatomic molecules. We now assume that we have s different internal
energies E', ..., E*. Fixing a set of velocity vectors V; = {f{, e SZL} C R? for each
internal energy E' we obtain a set of N = nj + ... + n, pairs (each pair being
composed of a velocity vector and an internal energy), cf. [20],

P {(5%7E1) L (gflll’El) )t (givE‘s) 3oy ( ZS7ES)}
= {(p1,E1), ... (PN, En)}, with N =ny + ... + n,.

Obviously, the same velocity can be repeated many times, but only for different
internal energies. We might need to scale the distribution functions (see below, cf.
[26, 36])

fl= fr if B, = E',r =1, ..., N for some numbers g1, ..., s. (34)

gi
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Then we consider the system (9) — (10) (¢ = 0 for the discrete Boltzmann equa-
tion) with the collision coefficients

I =T =T >0 (35)
with equality unless
p;+pP; = Pr+pand
mlpil*  mp,|® mppl* | mp?
5 + 5 +E+E = 5 + 5 + E + B (36)

We assume that we can obtain the symmetry relations (35), possibly after a scaling
(34). Actually assuming a convenient reciprocity relation [26], this will be the case.
The collision invariants include, and for normal models are restricted to

¢ =¢(p) =a+b-p+cmlp|>+2E(p)) (37)

for some constant a,c € R, b € R%. For normal models we will have d + 2 linearly
independent collision invariants. How to construct such normal models is considered
in [12].
The Maxwellians are
M =e?, (38)

where (for normal models) ¢ is given by Eq.(37).

Definition 3.5. [12] A DVM {{Vh El} sy IV, Es}}, with internal energies
{El, - Es}, is called supernormal if the restriction to each collection

{{VTNETI} REES) {V'erri}} g {{V17E1} PREEE) {VS7E5}} ) 1 S Z S S,
is a normal DVM.

Theorem 3.6. [12] A DVM {{Vl,El} ey {VS,ES}}, with internal energies
{E1,...., Es}, is supernormal if and only if the restriction to each pair
{{Vi,Ei} , {Vj,Ej}}, 1 <i<j<s, of velocity sets is a supernormal DVIM.

Theorem 3.7. [12] Let d = 2 or d = 3. For any given set of internal energies
{rE,..rsE}, where ri,...,rs are positive integers, there is a supernormal DVM

{{VTUrlE}v"'a{VTsarsE}}-
Assume that d =2, s =3, and r; =4, for i = 1,2, 3, and let

E
Vz»:iv,z’:m,s,

2ym

where m denotes the mass, and
V= {(ilv il)’ (37 il)’ (17 3)7 (3a 3)} )

which is a normal 8-velocity DVM, then we obtain a supernormal 24-velocity DVM
(see figure 2).

3.4. Bimolecular chemical reactions. We can combine the two different ap-
proaches in the two preceding sections in an obvious way to obtain models for
mixtures with internal energies, see [11]. It is then also possible to add bimolecular
reactive collisions [15] and by that extend to models for bimolecular chemical reac-
tions, cf. [11]. We will below consider an example (cf. [39, 31]), but our method is
not limited to this case in any way.
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FIGURE 2. 24-velocity supernormal DVM for internal energies E,
2E, and 3E

We assume that we have four different species A, ..., A%, with masses mi, ..., ma
and internal energies F1, ..., E4, respectively. We assume that we have all elastic
collisions (as a mixture), but also a reaction

Al 4 A% = A% 4 A7
if

mig' + mot? ms&® + ma&* and
my ‘51’2 +ma ’52‘2 +2E1+2E, = mg ’53‘2 +my ‘54’2 +2E3 + 2Ey4,

which implies one less collision invariant. The collision invariants for normal models
are then

¢ = (¢al,¢az,¢a3’¢a4) , with ¢ai = (bai (f) = Qq; T mOéib &+ CMqy, |£|2

and an, = Aoy + Gay — Gy,

for some constant aq, , Gay, Gas, ¢ € R, b € RY. Furthermore, we still assume (after
some scaling of the distribution functions) that the collision coefficients fulfill

Kl Kl i
I =15 =15 = 0. (39)

Assumption (39) is needed to be able to obtain the same structure as for single
species, which we, in turn, need to be able to apply our results for boundary layers
presented in Section 4 below. However, assuming a convenient reciprocity relation
[26], this assumption (39) is fulfilled after a suitable scaling of the distribution
function.

3.5. Bose condensate with excitations. A general discrete model for excitations
in a Bose gas interacting with a Bose condensate, under the assumption that the
density of the Bose condensate is constant (cf. [2]), first presented in [10], reads

OF;
ot
where P = {p1,...,pn} C R? is a finite set, F = (Fy,...,Fy), F; = F;(z) =
F (z,p;), is the distribution function of the excitations, and I' € R is constant. For

generality, we allow p = (p',...,p?) to be of dimension d, rather than of dimension
3.

—&—pi-VxF,-:Clgi (F)+F0222 (F),i:].,...7N, (40)
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The collision operators Cio; (F') are given by

N
Crai (F) = > (6a— i — ) Ty (14 F) FiFy, — F, (1+ Fy) (1+ Fy)),
4,k,l=1
where 3;; _{ éiii;i , with T4, = 1 if

2 2 2

Pi = Pp; + P and |pi|” = [p,[” + [pr[” + 7, (41)
and ', = 0 otherwise. Furthermore, the collision operators Cag; (F) are given by
Q} (F) in Eq.(10) with I‘fjl =1 if Eq.(12) is satisfied, and Ffjl = 0 otherwise. The
system (2) can also be written as

oF
E+p~VxF=C&2(F)+FC'22(F). (42)
The collision operator Cy5 (F') in (42) is also given by the expression
Cha (F) =nLF +nQ(F, F), (43)

where

2T} Fy, — %, F; and

(i), -

QL (F,G) — 2TEQN (F, @), with

wW(F.G) = 5 (FiGr + GjFy = F, (G + Gy) = Gi (Fy + Fy)).
A function ¢ = ¢ (p) is a collision invariant, if and only if,
¢i = ¢j + b,
for all indices such that Fé p 7 0, if I' = 0, with the additional condition (14) for all

indices such that Ffjl # 0, if I # 0. The collision invariants include, and for normal
models (without spurious or non-physical collision invariants) are limited to

6=06(p)=—a(lp]*+n) - 8-p, (44)
for some constant o € R and 8 € R%. Then the equation
(Cr2 (F) +TCo% (F),¢) =0 (45)

has the general solution (44). Also, see [10],

F
log ——,C12(F) + T'Cy(F) ) <O0.
<Og1+F’ 12(F) +T'Cas( )>_
The Maxwellians are (for normal models)
M = (M, ..., My), with M; = ¢ = ¢=o(Ipil*+n)=6p;

and the Planckians are (again for normal models)

M; 1
P=(P,..,P,), with P, = —— = = ’
( 1y ) wi 1-— M; ea(\pi\2+n)+5'Pi —1 ea(|Pi*p0|2+”0) -1

(46)

—_




14 N. BERNHOFF

with o > 0, 8 € R%, pg = g and ng =n — |PO|2~
We define

H[F] = H[F](zx) = Y pip(Fi(x)),
i=1
where

_J ylogy—(1+y)log(1+y) ify >0
M(y)_{ OlfyZO

For the planar stationary system

dF
BE = C12(F) +TCy(F), with B = diag(p}, ..., px ), (47)

we obtain

n

d JdF,  F F

' dx 1+
with equality if, and only if, F' is a Planckian. Denote by
ji = (Bp',F),i=1,...4d,
jai = (B(Ipl*+n),F). (48)

By Eqs.(47),(45) the numbers ji, ..., jo+1 are independent with respect to x in the
planar stationary case. For some fixed numbers ji, ..., j411, we denote by P the
manifold of all Planckians F' = P (46), such that Eq.(48) is fulfilled. Then we can
prove the following analogue to Theorem 3.1 by similar arguments (used for the
discrete Boltzmann equation in [24] and also [13]).

Theorem 3.8. If F = F(z) is a bounded nonnegative solution to Eq.(47), then
lim dist(F(x),P) =0,
Tr—r o0

where P is the Planckian manifold associated with the invariants (48) of F'. If there

are only finitely many Planckians in P, then then there is a Planckian P in P, such
that li_>m F(z)=P.

Given a Planckian (46) we denote
F = P+ RY?f, with R= P(1 4 P),
in Eq.(42), and obtain

oF
Do P VRF+ L =S(f),

where L = Ly5 4+ I'Losy, with
Liof = =2nR™'?Q(P,R'?f) —nLR'/*f (49)

and Loo given by Eqs.(26),(28), is the linearized collision operator (N x N matrix),
and S(f) = SlZ(faf) +522(fvfaf)7 with

Si2(f,g9) = nR™Y2Q(RY?f, R"/?g) (50)
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and Sao(f, f, f) given by Eqs.(27),(29), is the nonlinear part. In more explicit forms,
the operators (49) and (50) read

N Ti Lif — 20K LY f

k 1 ) . .
(L12f); = nz E g I Y i=1,..,n, with
J,k=1 z
Lif = (L+Pj+P)R*f,— (P, — P)RY?f; — (P, — P) R/ fr, (51)
and
N 7 7 k Qk
I, 8% (f,g) — 2Tk Sk (f,
Siai(f,9) = n #5519 )1/2 S5h9) LN, with
j.k=1 R;
: 1
Si(fig) = 5 (BB (Fige + 9,00 — RPRY® (Figs + 9:8,) -

RJ/QR}@m (figr + gifk)) .

The linearized collision operator L is symmetric and positive semi-definite with,
for normal models, the null-space

N(L) = span (Rl/Q,Rl/Qpl,...,Rl/de,Rl/2 |p|2>

— span {\/P(l +eP), /P(1+P)p, /P(1+eP) \p\Q} .
Then also
(8(£), RV2) = (C1a (F) + TCy2 (F) ) + (F,LR"?¢) =0
for all collision invariants ¢, and for some constant K

1512 (f, f) = S12 (h, h)| =
[nR2 (QURY2 (F = h) B2 (f + 1)) | < KA1+ k)£ = hl.

Hence, by the inequality (31) there is some constant K (possibly different from the
one above) such that

1S (f) =S M < K(fl+ ) + |f]+ R} |f = Al
We can also, before prescribing the set of velocities, make the change of variables
P—P+Pg (52)
(cf. Eq.(46)). We then, instead of relations (41), obtain the relations
pi = P; + Pk + po and |pi|” = |p;|” + [p&l” + o,

2 C
where ng = n — |pg|”, and the collision invariants

¢=a (p+po) +b(|pl +mo).
Moreover
N(Z) = span (RY2 (04 + 9b) ot B2 (094 1) B2 (I +m0) ).

and if pj # 0, then the matrix B have to be replaced with B + p}I.
The planar stationary system reads as before
daf

Bd— + Lf = S(f), with B = diag(pj, ..., pk),
XL
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where
x=(z=2"2% .., 2% and p = (p', ...,p?%).
We assume that the sets P = {p1,...,pn} are chosen in such a way that p; # 0
fori=1,...,N.

4. Boundary layers. We can (without loss of generality) assume that

B= < %* _%_ > (53)
where
By =diag (by,...,b,+) and B_ = —diag (by+,1,-..,bn), with
b1y ..y b+ > 0and by+11,...,bn8 < 0. (54)

We also define the projections R, : RV — R" and R_ : RN — R" ,n~ = N—-nt,
by

=

Ris=s S1yeeySp+) and R_s =8 = (Sp+41,---,SN)

for s = (s1,...,5n), and consider the non-linear system
BEL +Lf=S(f)
fH0)=Cf7(0)+ho , (55)
fx) = 0asz— o0

where C' is a given nt x n™ matrix, hg € R”+, and the non-linear part fulfills
S(f)e N(L)*
and _
1S (9) =S (h)] < KG(|gl,|h]) |g — Al
for some positive constant K > 0 and differentiable function G : Ry x Ry — Ry
with positive partial derivatives and G(0,0) = 0.

The boundary condition f(z) — 0 as x — oo corresponds to the case when
we have made the transformation (3) for a stationary point P = P.,, such that
F — P, as ¢ — oo.

We introduce the operator C : RNV — R’ﬁ, given by

C == R+ - CRf,
and assume that
dimCX, = n™, with X = span (U1, ..., Upyt s Y1y ooy Yt » Wiy eve, W) - (56)
We have the following result [7].

Lemma 4.1. Let By and B_ be the matrices defined by Eq.(54). Then condition
(56) is fulfilled, if

CTB,C<B_ onR_X,. (57)
Proof. Let u € Xy and CTB,C < B_ on R_X. Then
(u,uy g > 0.

Furthermore, if u # 0 and Cu = 0, then
(u,u) g = <C’1f,C’1f>B+ —(u,u), ={((C"ByC—B)u ,u")<0.

Hence, if Cu = 0, then u = 0. That is, dimCX, = dim X, = n*, and the lemma is
proved. O

B_
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Remark 3. Condition (57) can, if [ = 0, be weakened to
CTB,C<B_onR_X,.
If C =0, then condition (56) is fulfilled. In particular,
(s eths Fsong0F o)

is a basis of R" . When the Maxwell-type boundary conditions, in the case of the
discrete Boltzmann equation, fulfill condition (56) is also studied in [7].

Our main result on boundary layers gives the number of conditions that must be
posed on the given data hg to obtain a well-posed problem.

Theorem 4.2. Let condition (56) be fulfilled and suppose that (ho,ho)p, is suf-

ficiently small. Then with k™ + | conditions on hg, the system (55) has a locally
unique solution.

Theorem 4.2 is proved below in Section 6.

For the discrete Boltzmann equation Theorem 4.2 improves the results in [7] for
the degenerate case [ > 0 by getting rid of some restrictive assumptions on the non-
linear part. An interesting thing and one of the main results of this paper is that the
generalizations made, make it possible to apply the results also for mixtures, poly-
atomic gases with a discrete number of internal energies, and bimolecular reactive
flows [15, 31, 39], but also for some discrete quantum kinetic equations, Nordheim-
Boltzmann equation [1, 37] (maybe more known as the Uehling-Uhlenbeck equation
[42]) and an equation for excitations in a Bose gas interacting with a Bose conden-
sate at low temperatures [2, 34, 46] (see Section 3 above).

Remark 4. Our results can be extended in a natural way, to yield also for singular
matrices B, cf. [7], if
N(L)NN(B) ={0}.

5. Critical numbers for axially symmetric discrete models. In this section
we study, instead of Eq.(5), the equation

dj
(B+u])£+Lf:S(f), (58)
and consider such symmetric sets P, such that
if pi = (3,97, ., p{) € P, then (£p;, +p7, ..., £p{) € P. (59)

We also assume that (i) we have a symmetric set (59); (ii) our DKM is normal; and
(i)
B = dlag(ph -”ap}\}v _p%a a3 _p}v% with p}7 7]9}\} > 0.

Below we will omit the tildes, and just write N instead of N.

In this case a possible reduction is as follows: the equation (5) (or (58)) admit a
class of solutions satisfying
2 2
" =Ipw|". (60)
This reduces the number N of equations (2) to the number 2N < N of different
combinations (p!, |ps|*). The structure of the collision terms (43) (including exten-
sions) and (13) (in slightly different notations) remains unchanged. However, to be
able to keep the structure, we might need to add equal equations (instead of just
taking them away). Hence, the elements in the diagonal matrix (53) might change,
but will still be multiples (with positive multipliers r; > 0) of the previous ones.

Fy=Fyif P} :pzl’ and |p;
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Below we will omit the tildes, and just write N instead of N. We can, without loss
of generality, assume that
2 2
(Piyns IPirn[*) = (=i, Ipi|) and p} >0
for i =1,..., N, and obtain
B = diag(r1pi, ..., 'NPr> —T1D1s -y —TNDN ), With pi, ..., ph > 0.

5.1. Nordheim-Boltzmann equation. We assume that the Maxwellian (21) in
the Planckian (22), which the transformation (25) is made around, is non-drifting,
i.e. with b =0 in Eq.(21). The linearized collision operator L has the null-space

N(L) = Span (¢17 ceey ¢d+2) ’
where, with R = P(1+ P),
¢1=RY?=RY2.(1,..,1)
¢2 = R1/2 = R1/2 : (p%a "'apJI\h 7p%a sy 7p}\/')
¢3 = R1/2 |p|2 = R1/2 . (|p1|2 LR |pN‘2 ) |p1|2,’ ceey |pN|2)
¢i+2 = R1/2 b= R1/2 : (p,jLLv "'7p§\/'7 _p,jLU sty _pg\/')a i = 27 7d

Then the degenerate values of u, i.e. the values of u for which [ > 1, are

2 2, _ 9
o = 0 and uy = 4| XXE T X2X5 ?X?’X“, ©2)
x2(X1x5 — Xx3)

where x1 = (¢1, ¢1), X2 = (P2, P2), X3 = (#1,$3), X4 = (P2, ¥3) g, X5 = (P3, P3), cf.

[6, 7, 13]. Moreover, we can obtain the following table for the values of k™, k= and
1 (16,7, 13]):

u<u_ [u=u_ |u_ <u<0|lu=0|0<u<uy |u=uy |uy <u
k+ 0 0 1 1 d+1 d+1 | d+2
k= | d+2 d+1 d+1 1 1 0 0
l 0 1 0 d 0 1 0
(63)
In the continuous case (f,g) = [ fgdp and [f,g] = [ufgdp corresponds to
<f7 g>B
For the continuous Boltzmann equation (¢ = 0), with d = 3, the numbers

X1, .-+ X5 are given by
X1 =p, X2 = pT, x3 = 3pT, xa = 5pT* and x5 = 15pT>,

(where p and T denote the density and the temperature respectively), if we have
made the expansion (3) around a non-drifting Maxwellian

P —leP/2T
(27T)3/2

Therefore, for the Boltzmann equation (with d = 3) the degenerate values (62) are

(cf. [25])
/5T
uozoandui:ui:i %

On the other hand, in the continuous case, assuming for bosons (¢ = 1) and
fermions (¢ = —1), with d = 3, that
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respectively, we have

R=Ry=Pi(1+Py)=

By a change to spherical coordinates, we obtain

16
i = /de:&rlei,xz = /R(p1)2 dp = 37TT21f,
2 327
w = [RIpdp = 160721 = [ R () f dp = 7
X5 = /R |p|4 dp = 3273 I3, where
oo 672 o0
It = /r"iz dr and I /r — s dr.
1 (er — 1) ) eT +1

—T3IF, a

19

nd

Here we have for bosons considered the restriction |p| > A\V/2T, for some A > 0, cf.

[2, 10]. Then the degenerate values are

IF [or /1i /2T
+1 il
up =0, uy = —If = ,and u= Ii

2

(oo} e’l"
with I} = [ r"————— dr and I, fr dr.
oA (e =) (e’“Q + 1)2
Considering fermions,
_ (2n — 1! 1
IQn = ﬁ 2n+1 n{n-— 5 )

where 7 is the Dirichlet eta-function or alternating zeta-function, and hence

5/2) [5T
oty 162 [5T

n(3/2)V 3
On the other hand, considering bosons,

2n — ! 1
1;14)\/7?(27%’_1)4(”2> aS)\HO,

where ( is the zeta-function, and hence

[¢(5/2) [T
+ C(3/2)\/:as)\—>0

However, remind that ¢ (%) is infinite.

The values of k™, k= and [ for the (continuous) Nordheim-Boltzmann equation,
with d = 3, are given by the table (cf. [25, 44] etc. for the Boltzmann equation)

u = ut u=20 u=ug
ET |0 0 1 1 4 5
k= |5 4 4 1 1 0 0
[ 10 1 0 3 1 0
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5.2. Multicomponent mixtures. We assume that the symmetric set P consists
of s symmetric (in the sense of Eq.(59)) sets of 2N,,, i = 1, ..., s, velocities respec-
tively, which constitute normal models considered by themselves, but also a normal
model all together (cf. semi-supernormal DVMs in [14]), and that we have made
the transformation (25) around a non-drifting Maxwellian M (i.e. with b =0 in
Eqgs.(32),(33)). Let

B = diag (Ba,, ..., Ba,), with B, = diag(¢8, ..., &y, =€ . —€x)). (65)

The linearized collision operator L has the null-space

N(L)_Span( 1 PRRRS) 1 7¢27")¢d+2)a
where
¢ = MY2.(0,..,0 ,1,..,1, 0,..,0 ), i=1,..s,
S~ = ~——
2T N, 2Nay 2305 No,

br = MUV - (1 657, oy, 657), with 6 = (€27, ., €37, < L =Eh
¢3 = M1/2 : (ma1¢g17"'7ma5¢gs)v with ¢3 - |£1 | ). |§N | ’ |£1 | 9 e |£N |
Poti = M2 (Ma, ¢giia ""mas¢2+i)’W1th P34 = (5? l> vsz(,) i=2,...d

The degenerate values of u are

X
up =0 and uy =+ Y OL , with
X (2
X2 (Z 3041' - X5>

=1 Xl

X5 IXE 72 (X" — Xx5'x5)?
Q ;. X5 °

=1 1 =1 X1 X1

where X?i = < ?iv¢(1li>v X;” = <¢?i7¢2>3ai = My, < gia¢gi>7 X2 = <¢27¢2>7 Xgi =

(077, P3) = ma, (P77, 057), xa = (P2, ¢3) 5, and x5 = (¢3, ¢3). Moreover, we can
obtain the following table for the values of k™, k= and [ (cf. [8] for s = 2):

U=uU_ u=20 U= Ut
kT 0 0 1 1 s+d| s+d |s+d+1
kw|s+d+1| s+d |s+d 1 1 0 0
l 0 1 0 s+d—1 0 1 0

For the continuous Boltzmann equation, with d = 3,

s s
thxi = Ng;, XSI = naiTv X2 = ZmainaiTa X?:l = SnaiTa X4 = BZnaiTQa
1= =1
s
X5 = 15ZnaiT2,
=1

(where ngy,, ..., g, , and T denote the number densities of the species aj, ..., as and
the temperature respectively), if we have made the expansion (3) around a non-
drifting Maxwellian

Nea.: 2
_ . _ Qi —ma,|E?/2T
M = (Mg, ..., My,), with M, = Ty : :



BOUNDARY LAYERS FOR DISCRETE KINETIC MODELS 21

Therefore, for the Boltzmann equation, with d = 3, for a mixture of s species the

degenerate values (62) are
S i na, [T
Zj:l Ma,; Ny 3 .

The values of k*, k~ and [ for the Boltzmann equation, with d = 3, for a mixture
of s species are given by the table

ug =0 and uqg =+

U= U_ u=20 U= Uy
kT 0 0 1 1 s+3| s+3 |s+4
km|s+4| s+3 |s+3 1 1 0 0
l 0 1 0 s+ 2 0 1 0

5.3. Polyatomic molecules. We assume that the symmetric set P consists of s
copies of the same symmetric (in the sense of Eq.(59)) set of 2N velocities, which
constitutes a normal model, and that we have made the change of variables (34)
and the transformation (25) around a non-drifting Maxwellian M (i.e. with b =0
in Eqs.(38),(37)). Let
B = dlag (Bl, veey Bg) s with Bi = g,dlag(fl, ceny §N, 751, caey 7§N),
and replace ul in Eq.(59) with
u = diag (u1, ..., us) , with u; = g;diag(u, ..., u),

The linearized collision operator L has the null-space

N(L) = span (¢1, ¢2, ..., Pat2) ,
where
¢ =MY?.(1,..,1)
Gy = M2 - (§g, .., b3), with dg = (€], ..., €L, —€1, ..., —€L)
by = MY (6}, 03) _ .
Goyi = MY2 - (poriy oy hari), With doyy = (&, .., Eox)si =2, ..., d,
with ¢ = (|67 + 2E7, ..., [en|” + 2E7, 61> + 2E7, ..., || + 2E7)

The degenerate values of u are

2 2 _ 9 ]
o = 0 and uy = 4| XXETX2X5 XaXaXa,
x2(X1x5 — Xx3)

where X1 = <¢17¢1>7 X2 = <¢27¢2>7 X3 = <¢17¢3>7 X4 = <¢27¢3>B) and X5 =
(¢3, ¢3). Moreover, the values of kT, k= and [ are given by the table (63).

For the continuous Boltzmann equation, with d = 3, the numbers x1, ..., x5 are
given by (see also [11])

S

2 .
X1 = N, X2 = nT7 X3 = 3nT + j ZgiEle_E /T7
i=1
Xa = % 3" (5T + 2TE") gie /T, and
i=1

x5 = 15nT%+ % Z (3TEi + (E”)z) gie BT

i=1
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(where E', ..., E*, and T denote the different internal energies and the temperature
respectively), if we have made the expansion (3) around a non-drifting Maxwellian

M = (M, ..., M,), with M; = e*(|£|2/2+Ei)/T7

. n
@r1)Q
where

Q= Zb: gie T,
i=1

5.4. Bose condensate with excitations. We assume that we have made the
transformation (52) and that the reduction induced by Eq.(60) is made. The lin-
earized collision operator L has the null-space

N(L) = span (¢1, ¢2) ,

where
b1 RYZ (p* +py) = RY? - (p} + b, .., DN + DGs —P1 + Ds s —PN + DY)
62 = R2(Ipl* +mo)

RY2 . (Ip1” + ng, ..., [pn|* + 0o, [p1]* + 00, ..., [pn* + n0),

with R = P(1 + P). See also [10], where we, without stating it, for simplicity
assumed the approximation ny = n— |p0|2 =0.
The degenerate values of pj, i.e. the values of p} for which [ > 1, are

L N 3Xx2X5 — 2x3X4a + \/(3X2X5 — 2x3x4)” + 4 (xaxs — X3) Xi

Pos = 2 (x1xs — Xx3) ’
where
X1 <R1/2,R1/2> X2 = <R1/2p1,R1/2p1> _ <R1/2,R1/2p1>3,
s <R1/2,R1/2 (\p\Q n n0)> x4 = <R1/2p1,R1/2 <|p|2 +n0)>B, and
v = (BY*(1pl* +m0), B2 (Ipf* +m0 ) ).

We obtain the following table for the values of k¥, k= and [

Pb<Po_ | Pb=pb_ | Pb_ <Pb<Pby|Pb=Pis | Pos <D0
kT 0 0 1 1 2
= 2 1 1 0 0
] 0 1 0 1 0

If we assume that the reduction induced by Eq.(60) isn’t made and consider sym-
metric sets P, such that

if p; = (p},p7,....pY) € P, then also (£p}, £p7, ..., +pf) € P,

then 0 is added to the degenerate values and the values of k*, k= and [ are

Py = —Dos pp=0 Po = Pos
KT 0 0 1] 1 |d d d+1
- ld+1 d a1 |1 0 0
I [ 0 1 0l d—1]0 1 0

for some number p§, , where pj, = pi, if pg, = ... = pl, =0.
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Assuming that

and, hence [10] (if we assume the approximation ng = n —ng = 0 for simplicity;
motivated by that we are ”close to diffusive thermal equilibrium” in [2])

16 32
Xo = 87TT’I27 X1 = %TQLL, X2 = T//TTSIG, X3 = 327TT316, and
o 2
(&
ya = 16aT%I,, with I, = / s dr.
3 (eT2 — 1)

Here we have considered the restriction |p| > Av2T, for some A > 0 (cf. [2, 10]).
The degenerate values are (assuming that pf, = pj, = 0)

/ Iy + Ig 41216 3[ with I, _/ " er’ 0
pO:t I2I6 . 1'4 (er2 _ 1)2 .
A

Here I,Ig > I? by the Cauchy-Schwarz inequality. Furthermore, the values of k7,
k~ and [ are given by the table

Py = -1 Py =0 Pb = DPos
B0 0 11 1 3 1
|4 3 1 |1 0 0
10 1 0o 2 [0 1 0

Note that for A =0

3 3 15 5
gﬁ( <2> and Is = EﬁC <2> ,

where ¢ = ( (z) is the zeta-function, while
I, > o0as A — 0,

and, hence
oy — 0as A — 0.

6. Proof of Theorem 4.2. We add (cf. [7] and [44]) a damping term —yBP;" f
to the right-hand side of the system (55) and obtain the damped system

BL + Lf =S(f) —vBP§ f
FH(0) =Cf(0) + ho : (66)

f(z) > 0asxz — o0
where v > 0 and, with the notations in Eqs.(6)-(8),

Pff= Z

— (Wivilp
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The projection (67) coincides with the ones in [7] and [44] in the non-degenerate
cases as [ = 0. However, in the degenerate cases the projection (67) is different
from the ones in [7] and [44].
We follow the ideas in [7]. First we consider the corresponding linearized inho-
mogeneous system
B% +Lf=g—yBPff
loy=cr©+h . (63)
f(z) > 0asxz — o0

where g = g(x) : Ry — RY is a given function such that
g(z) € N(L)* for all z € R, (69)

The system (68) has (under the assumption that all necessary integrals exist)
the solution, using the notations in Eqgs.(6)-(8),

l

Zﬂz ©)yi+ Y aj (@) (wy —az) + ) B (@) ur, (70)
r=1

j=1
where
pi () =p; (0)e " i=1,.. kT,
o (z) = ]m>ﬂmj—1 N
By (z) = Br (0) =% + fe(T @A g (r)ydr,r=1,...m", (71)
T =X B (r) dr,r=m* +1,...,q,
with
B () = @%%ﬁ? ()
and 31 (0), ..., B+ (0) 1(0), ..., gt (0), 01 (0), ..., (0) are given by the system

Z B, (0) Cuy + Z 11; (0) Cy; + Z a; (0) Cuw, (73)

= ho+ Z ”Tﬁ () dr Cu,, with C = Ry — CR_.
r=mt4+17
For hg = 0 in (66), we have the trivial solution f(z) = 0. Therefore, we consider
only non-zero hg, hy # 0, below. The system (73) has (under the assumption that

all necessary integrals exist) a unique solution if we assume that the condition (56)
is fulfilled.

Theorem 6.1. Assume that conditions (56) and (69) are fulfilled and that all nec-
essary integrals exist. Then the system (68) has a unique solution given by Eqs.(70)-
(73).
We now fix a number o, such that
0 < 20 < min {|A] # 0; det(AB — L) =0} and 20 <~
and introduce the norm (cf. [7] and [33])

il = sup(e” |k (x)]),

o
x>0
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the Banach space
X ={heB0,00) ||n], <0},
and its closed convex subset

r={heB’[0,00) |[hl, < Rlho| },

where R is a, so far, undetermined positive constant.
We assume that condition (56) is fulfilled and introduce the operator ©(f) on
X, defined by

kt l q
Of) = i (fl@)yi+ > a; (f(2) (wj — 22) + > _ By (f()) ur,
=1 j=1 r=1

where

a; (f(2) = oy (F0)) e*, j =1,
Br (f(z)) = Br (F(0)) e + g’e“‘z)“@- (f(r)dr,r=1,..,m*,

B, (F(2) = — [ €m0, (F () dry 7= m* + 1,004,

with 81 (£(0)) ;. B+ (£(0)), 1 (f(0)) s .., e+ (f(0)), and o (£(0)), ..., au (f(0))
given by the system

Z Br (f(0)) Cuy + Z i (f(0)) Cy; + Z a; (f(0)) Cw;,
g ~
= ho+ Z /e'r)‘rﬂr (f (7)) dr Cuy,

r=m++1 0

where

< (f)aur>

C=R,—CR_ and B, (f) = 3

Lemma 6.2. Let f,h € X and assume that condition (56) is fulfilled. Then there
is a positive constant K (independent of f and h), such that

0(0), < Klhol, (74)

o) -6, < G(fl, Ihl,)If —hl,, (75)

where G : Ry xRy — Ry is a differentiable function with positive partial derivatives
and G(0,0) = 0.

Proof. By condition (56) the linear map C = Ry — CR_ is invertible on X, =
SPAN (U1, +eey Uppt 5 Y1y oy Ypok s W1, -, wy ). The inverse map C~1 is bounded. We de-
note by P the matrix with w, ..., uq, ¥1, ..., Yk, 21, ..., 21, W1, ..., w; as columns (in that
order). Then the inverse matrix of P has the following expression

P~' = D7 'P'B, where D = diag(A1, ooy Ags Y15 s Yk Ly ooy 1),
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and P is the matrix with ULy ooy Ugy Y1y ooy Yoy W, oo, W, 214 -0, 21, &S columns (note
the interchanged order of the columns). We obtain that

©(0)], = [PP71O(0)], < [P|[P~6(0)],

mt
=|P||> B (0)e P,
r=1
k+
fe~rEp-l (Z 1 (0) y; + Z a; (0 :vzg))
i=1
mt kT l
<[PPI B (0 ur + D i (0) g+ Yy (0)w,
r=1 i=1 j=1

+Psupe2x -1 «
[Psup( Zg

l
e 2 |-
:|P| (|P 1C 1h0|+% P 1Zozj(0)wj) §K0|h0|,

Jj=1

2
with Ko = |P||[P7'C7H (14 —).
Ye

Here we used that

2
e 2% < Z forallz € R,
e

2
with equality if and only if x = 5
Clearly,

Ifly <00 =1[5(f)], < oo,

Kkt
+ > (i (f (0) = i (h (0)))%))
i=1

_ e B [ (37 ) =B () dru,
0

r=mt4+1

q

< |piclcp| /6*2” 3 (E,, (f (7)) = Br (h(T))) Py, dr
0 r=mt-+1
< |pT'c'ep| /6_3“’ dr |[P'B7(S(f) — S(h)), ,
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and
igg(e‘%"w) p Z (o (£(0)) — aj (h(0))) 2
l
= ililg(e_%xﬂf) P_lz(aj (f(0)) — a; (R (0))) w;
m™T l
< 2 |p-t (Z(ﬂr (f(0)) = B (h(0)))ur + Z(aj (f(0)) = aj (R (0)))w,

YE

+Z (11 ( s h<o>>>m> ‘ .

Hence, we obtain
©(f) = O(h)],
=[PP~ (O(f) —©(h))|, < |P[|PT1(B(f) —O©(h)]|,

® q
< |P| sup /6(390—27—)0
x>0

PN B () =B ()| dr
z r=mt+41
/ 2T“P12m B (h ()| dr
J .
l
#E) [P 0y (£0) = 05 (1 OD) 5

(Z )ur + Z a; ( —a; (h(0)))w;
+Z i ( i h(O)))yi)) D

< |P| (sup (/63(‘T_T)”d7'+/ (= T)”dT) +(1+ |P e 1CP’/ =377 dr)
x>0

T 0

[ PTIBTHS(f) - S(h)],

1 ~
< K1 [S(f) = S(h)], , with Ky = o |P| ]D*lpt
ag

2

(4 +(1+—) |PlclcP;> .
ve

By the assumption

IS(f) = S(h)| < K2G(|f],1h) | f — Al
Therefore,

1S(f) = S(h)l, < KG(f], ) [f = hl, < K2G(|f], 5 hl,) [f = A, -
Let K = maX(Ko,KlKQ).
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Theorem 6.3. Let condition (56) be fulfilled. Then there is a positive number dg,
such that if

|ho| < do,
then the system (66) has a unique solution f = f(x) in Sg for a suitable chosen R.
Proof. By estimates (74) and (75), there is a positive number K such that
O], =10(f) = ©(0) + 6(0)[, < K(|ho| + G(If,,0)[f],) (76)
if feX.
1

Let R = K +1 and let §y be a positive number, such that G(Rdy, Rdy) < I By

estimates (75) and (76)

K
o(Nl, < (E + G(R |hol , R|hol)) R |ho| < R |ho|
and
—-0(h)|. <K h h —h| < ——|f—-h
©/) — O, < KG(RIhol  RIhol) |1 — bl, < 7= |f =1,
if f,h € Sk and |hg| < dp. The theorem follows by the contraction mapping
theorem. 0

Theorem 6.4. The solution f = f(x) of Theorem 6.3 is a solution of the system
(55) if and only if Py f(0) = 0.

Proof. The solution f = f(x) of Theorem 6.3 is a solution of the system (55) if and
only if Py f(x) = 0. The theorem follows by the relations

pilf(@) = w(f0)e”, i=1,.. k",
O[](f(l')) = O‘j(f(o))ei’yza J=1.. la
that are fulfilled for any solution f = f(z) of Theorem 6.3. O

We denote by 17 the linear solution operator

7 (ho) = £(0),

where f(z) is given by

B%—&-Lf—i—wBPgrf:O
Cf(0) = ho '

f—0asz— o0

Similarly, we denote by Z” the nonlinear solution operator

Z7(ho) = f(0),
where f(z) is given by

BY 4 Lf=5(7.5) ~BEf ]

Cf(0) = ho
f—0asz— o0

By Theorem 6.4, the solution of Theorem 6.3 is a solution of the problem (55) if
and only if P,"Z7(hg) = 0.
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We now proceed with an orthonormalization process. Let
!/

r= ——i with
/ /
<riari>B+
m’ (Cy;, Cuy) il
' Cy — N T By b . . P — +
r; = Cy; Z CursCur) Cu, Z (Cyl,rj>B+ r; #0,i=1,..,k",
=1 + =1
and
T,
Tk++z = Lot 5 with
T T >
\/< kt 430" kT 44 B,
+ 1
m <Cwiycur>B kT +i—1 .
r;€++i = Cw; — Z WCUT — Z (Cwi7rj)B+ rj #£0,i=1,...,1
r=1 T E T By j=1
Then
Pf1" =0 & hyg € R+, where
RE5e — {u eRrR" ‘ (i), =0 fori=1,..k" + l}
and
_ kT 41
I7(ho) = I7(ai,.aptq1,h1), ho = Z a;r; + hy, with
i=1
hi € RLBJF and a; = <h0,7‘i>B+ .

Lemma 6.5. Suppose that Py Z7(ho) = 0. Then hq is a function of hy if (ho, h0>B+
1s sufficiently small.

Proof. It is obvious that Z7(0) = 0 and that we for the Fréchet derivative of Z7(ehg)
have

d
—T17(eh =1"(hg).
7. L (eho) . (ho)
Then
0 /=~ d
— {1 (a4, ... h = — (T (ery), = (I (ry), 0,
Gz (201, i ) ) oo d T ws| =00

where u =y; if i =1,...,kT and u = 2z;_j+ if i = k* +1,..., k" + . By the implicit
function theorem, <f7(a1, ey Qg+ g, 1), y1>B = 0 defines a; = ay(az, ..., ap+4, h1).
By induction

a; = al(hl), ey At 4] = ak++l(h1).
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