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Abstract. We consider some extensions of the classical discrete Boltzmann

equation to the cases of multicomponent mixtures, polyatomic molecules (with
a finite number of different internal energies), and chemical reactions, but also

general discrete quantum kinetic Boltzmann-like equations; discrete versions

of the Nordheim-Boltzmann (or Uehling-Uhlenbeck) equation for bosons and
fermions and a kinetic equation for excitations in a Bose gas interacting with

a Bose-Einstein condensate. In each case we have an H-theorem and so for the

planar stationary half-space problem, we have convergence to an equilibrium
distribution at infinity (or at least a manifold of equilibrium distributions).

In particular, we consider the nonlinear half-space problem of condensation

and evaporation for these discrete Boltzmann-like equations. We assume that
the flow tends to a stationary point at infinity and that the outgoing flow

is known at the wall, maybe also partly linearly depending on the incoming
flow. We find that the systems we obtain are of similar structures as for the

classical discrete Boltzmann equation (for single species), and that previously

obtained results for the discrete Boltzmann equation can be applied after being
generalized. Then the number of conditions on the assigned data at the wall

needed for existence of a unique solution is found. The number of parameters

to be specified in the boundary conditions depends on if we have subsonic or
supersonic condensation or evaporation. All our results are valid for any finite

number of velocities.

1. Introduction. The Boltzmann equation is a fundamental equation in kinetic
theory [22, 23]. Half-space problems for Boltzmann equation are of great importance
in the study of the asymptotic behavior of the solutions of boundary value problems
of the Boltzmann equation for small Knudsen numbers [40, 41], and have been
extensively studied both for the full Boltzmann equation, see for example [4, 29,
44, 45], and for the discrete Boltzmann equation [3, 7, 32, 33, 43]. The half-space
problems provide the boundary conditions for the fluid-dynamic-type equations and
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Knudsen-layer corrections to the solution of the fluid-dynamic-type equations in a
neighborhood of the boundary.

The Boltzmann equation can be approximated by discrete velocity models (DVMs)
up to any order [18, 27, 38], and these discrete velocity approximations can be used
for numerical methods [35] (and references therein). The studies in this paper is a
continuation of the studies in the papers [6, 7, 8, 16]. We also want to point out the
reference [9] for the case of a condensing vapor in the presence of a non-condensable
gas.

In the present paper we consider some extensions of the classical discrete Boltz-
mann equation (DBE). We extend the DBE to the cases of multicomponent mix-
tures, using a more efficient approach than the one used for binary mixtures in
[8]. In fact we add to each velocity an index (each corresponding to a different
species) and assume that the set of indexes stays fixed under collisions. By using
a similar approach we also consider DVMs for polyatomic molecules. Here poly-
atomic molecules means that each molecule has one of a finite number of different
internal energies, which can change, or not, during a collision. The approach in-
cludes that we to each velocity also add of the finite number of internal energies, cf.
[20]. Combining these two approaches for multicomponent mixtures and polyatomic
molecules, we obtain DVMs multicomponent mixtures with a finite number of in-
ternal energies. Then we can also include bimolecular chemical reactions. We also
consider some general discrete quantum kinetic Boltzmann-like equations; discrete
versions of the Nordheim-Boltzmann [37] (or Uehling-Uhlenbeck [42]) equation for
bosons and fermions and a kinetic equation for excitations in a Bose gas interacting
with a Bose-Einstein condensate [2], see [10]. In each case we have an H-theorem
and so for the planar stationary half-space problem, we have convergence to an equi-
librium distribution at infinity (or at least a manifold of equilibrium distributions),
by arguments in [30], see also [13].

Existence and uniqueness of solutions of half-space problems for a general dis-
crete kinetic model (DKM) of the Boltzmann equation are studied. The number of
conditions, on the assigned data for the outgoing particles at the boundary, needed
for the existence of a unique (in a neighborhood of an assigned equilibrium dis-
tribution at infinity) solution of the problem are found. The distribution for the
outgoing particles at the boundary might, under some restrictions on the depen-
dence, be partly linearly depending on the distribution of the incoming particles.
We improve previously obtained results for the classical discrete Boltzmann equa-
tion in the degenerate cases, which in the continuous case are corresponding to the
cases when the Mach number of the Maxwellian at infinity is 0 or ±1, in the way
that some restrictive conditions on the quadratic part are made superfluous. This
improvement is made possible by some improvements of the proof in [7]. Even if
the proof is similar to the one in [7], we still present it for the sake of completeness
and clarity. To our knowledge no similar results exist in the continuous case (except
for single species [4, 29, 44, 45] or binary mixtures, with equal masses, [5]).

The remaining part of the paper is organized as follows. In Section 2 we present
the general system of partial differential equations (PDEs) of our interest. We also
review a fundamental result [16] for our studies of boundary layers. In Section 3 we
present several examples of specific systems of the type in Section 2: the discrete
quantum Boltzmann equation, including the classical DBE (subsection 3.1); exten-
sions to multicomponent mixtures (subsection 3.2), polyatomic molecules (subsec-
tion 3.3), and bimolecular chemical reactions (subsection 3.4); and a discrete model
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for excitations in a Bose gas interacting with a Bose-Einstein condensate (subsection
3.5).

The main results on the boundary layers are presented in Section 4 (Theorem
4.2). In Section 5 we calculate the characteristic values, where the number of
conditions on the assigned data changes, for the different systems in the particular
case when the discrete sets are symmetric around the axis. The proof of Theorem
4.2 in Section 6, is based on the corresponding proof for the DBE in [7].

2. System of partial differential equations. We study a system of partial dif-
ferential equations

∂Fi
∂t

+ pi · ∇xFi = Qi (F ) , with t ∈ R+, x ∈ Rd, for i = 1, ..., N, (1)

where p1, ...,pN ∈ Rd are given, F1 = F1(t,x), ..., FN = FN (t,x), and F =
(F1, ..., FN ). If we denote by B the matrix where the rows are the transposes
of p1, ...,pN , respectively, and Q (F ) = (Q1 (F ) , ..., QN (F )), then the system (1)
can be rewritten as

∂F

∂t
+ (B∇x) · F = Q (F ) , with t, x ∈ R+. (2)

We assume that there exist positive equilibrium points P of the system (2), i.e.
points P such that

Q(P ) = 0 and Pi > 0 for i = 1, ..., N .

Given a positive equilibrium point P we denote

F = P +Rf , (3)

where R = R(P ) is an operator of P , and obtain the new system

∂f

∂t
+ (B∇x) · F + Lf = S(f), (4)

where L is the linearized collision operator (N ×N matrix) and S is the nonlinear
part.

We assume that we can choose R = R(P ) such that the matrix L is symmet-
ric and semi-positive, and that dim(N(L)) = ρ > 0 for the null-space N(L) of
L. Furthermore, the nonlinear part S (f) is assumed to belong to the orthogonal
complement of N(L), i.e.

S (f) ∈ N(L)⊥,

and to fulfill
|S (f)− S (g)| ≤ K̃G(|f | , |g|) |f − g| ,

for some positive constant K̃ > 0 and differentiable function G : R+ × R+ → R+

with positive partial derivatives and G(0, 0) = 0.
In particular, we will consider the planar stationary systems

B
df

dx
+ Lf = S(f), with f = f(x) and B = diag(p11, ..., p

1
N ), (5)

where
x = (x = x1, x2, ..., xd) and pi = (p1i , ..., p

d
i ), i = 1, ..., N ,

in more details. We will assume below that p1i 6= 0 for i = 1, ..., N .
We denote by n±, where n+ + n− = N , and m±, with m+ + m− = q, the

numbers of positive and negative eigenvalues (counted with multiplicity) of the
matrices B and B−1L respectively, and by m0 the number of zero eigenvalues of
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B−1L. Moreover, we denote by k+, k− and l, with k+ + k− = k, where k + l = ρ,
the numbers of positive, negative and zero eigenvalues of the ρ× ρ matrix K, with
entries kij = 〈yi, yj〉B = 〈yi, Byj〉, such that {y1, ..., yρ} is a basis of the null-space
of L. Here and below, we denote

〈·, ·〉B = 〈·, B·〉 ,

where 〈·, ·〉 denote the Euclidean scalar product in RN .
We remind the following result by Bobylev and Bernhoff in [16] (also proved in

[6]).

Theorem 2.1. The numbers of positive, negative and zero eigenvalues of B−1L
are given by

m+ = n+ − k+ − l
m− = n− − k− −
m0 = ρ+ l.

Remark 1. The proof of Theorem 2.1 in [16] is carried out for any real symmetric
matrices L and B, such that L is semi-positive and B is invertible.

In the proof of Theorem 2.1 a Jordan basis of RN , with respect to B−1L,

u1, ..., uq, y1, ..., yk, z1, ..., zl, w1, ..., wl, (6)

such that

yi, zr ∈ N(L), B−1Lwr = zr and B−1Luα = λαuα, (7)

and

〈uα, uβ〉B = λαδαβ , with λ1, ..., λm+ > 0 and λm++1, ..., λq < 0,

〈yi, yj〉B = γiδij , with γ1, ..., γk+ > 0 and γk++1, ..., γk < 0,

〈uα, zr〉B = 〈uα, wr〉B = 〈uα, yi〉B = 〈wr, yi〉B = 〈zr, yi〉B = 0,

〈wr, ws〉B = 〈zr, zs〉B = 0 and 〈wr, zs〉B = δrs, (8)

is constructed.
The Jordan Normal form of B−1L (with respect to the basis (6)) is (see also

[6, 7]) 

λ1
. . .

λq
0

. . .

0
0 1
0 0

. . .

0 1
0 0



,

where there are l blocks of the type

(
0 1
0 0

)
. In the non-degenerate case l = 0

the matrix B−1L is diagonalizable, in difference to in the degenerate case as l > 0.
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3. Discrete kinetic models.

3.1. Nordheim-Boltzmann equation. The discrete Nordheim-Boltzmann equa-
tion (or Uehling-Uhlenbeck equation) reads

∂Fi
∂t

+ pi · ∇xFi = Qεi (F ), i = 1, ..., N , (9)

where P = {p1, ...,pN} ⊂ Rd is a finite set and F = (F1, ..., FN ), Fi = Fi (x, t) =
F (x, t,pi), is the distribution function, with Fi > 0 and, if ε = −1, Fi < 1.

Remark 2. For a function g = g(p) (possibly depending on more variables than
p), we will identify g with its restrictions to the points p ∈ P, i.e.

g = (g1, ..., gN ) , with gi = g (pi) for i = 1, ..., N .

The collision operators Qεi (F ), i = 1, ..., N , in (9) are given by

Qεi (F ) =

N∑
j,k,l=1

Γklij (FkFl (1 + εFi) (1 + εFj)− FiFj (1 + εFk) (1 + εFl))

=

n∑
j,k,l=1

Γklij (1 + εFi) (1 + εFj) (1 + εFk) (1 + εFl)(
Fk

1 + εFk

Fl
1 + εFl

− Fi
1 + εFi

Fj
1 + εFj

)
, (10)

where it is assumed that the collision coefficients Γklij , 1 ≤ i, j, k, l ≤ N , satisfy the
relations

Γklij = Γklji = Γijkl ≥ 0, (11)

with equality unless the conservation laws

pi + pj = pk + pl and |pi|2 + |pj |2 = |pk|2 + |pl|2 (12)

are satisfied. The collision operators (10) can be obtained from the expression

Qε (F ) = Q(F, F ) + Q̂(F, F, F ) (13)

where

Qi(F,G) =
1

2

N∑
j,k,l=1

Γklij ((GkHl +HkGl)− (GiHj +HjGi))

and

Q̂i(F,G,H)

=
ε

2

N∑
j,k,l=1

Γklij ((Fi + Fj) (GkHl +HkGl)− (Fk + Fl) (GiHj +HjGi))

for i = 1, ..., N . Here ε = 0 corresponds to the classical discrete Boltzmann equation
([21, 28]), and we have ε = 1 for bosons and ε = −1 for fermions.

The collision invariants, i.e. the functions φ = φ (ξ), such that

φi + φj = φk + φl, (14)

for all indices 1 ≤ i, j, k, l ≤ N such that Γklij 6= 0, are assumed to be on the form

φ = a+ b · p + c |p|2 (15)
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for some constant a, c ∈ R and b ∈ Rd. Then the equation

〈Qε (F ) , φ〉 = 0 (16)

has the general solution (15). In general, discrete models can also have other,
so called spurious (or nonphysical), collision invariants. Models without spurious
collision invariants are called normal and methods of their construction are described
in e.g. [17, 19]. Our restriction to normal models is not necessary in our general
reasoning, but is motivated by the desire to have the same number of collision
invariants as in the continuous case.

One can easily obtain that

〈H,Qε (F )〉 =
1

4

N∑
i,j,k,l=1

Γklij (1 + εFi) (1 + εFj) (1 + εFk) (1 + εFl)

(Hi +Hj −Hk −Hl)

(
Fk

1 + εFk

Fl
1 + εFl

− Fi
1 + εFi

Fj
1 + εFj

)
, (17)

and so (substituting H = log F
1+εF ) that〈

log
F

1 + εF
,Qε (F )

〉
=

1

4

N∑
i,j,k=1

Γklij (1 + εFi) (1 + εFj) (1 + εFk) (1 + εFl)(
log

(
Fi

1 + εFi

Fj
1 + εFj

)
− log

(
Fk

1 + εFk

Fl
1 + εFl

))
(

Fk
1 + εFk

Fl
1 + εFl

− Fi
1 + εFi

Fj
1 + εFj

)
≤ 0. (18)

The inequality in Eq.(18) is obtained by using the relation

(z − y) log
y

z
≤ 0, (19)

with equality if, and only if, y = z, which is valid for all y, z ∈ R+. Hence, we have
equality in Eq.(18) if and only if

Fi
1 + εFi

Fj
1 + εFj

=
Fk

1 + εFk

Fl
1 + εFl

, (20)

for all indices such that Γklij 6= 0.
A Maxwellian distribution (or just a Maxwellian) is a function M = M(ξ), such

that (for normal models)

M = eφ = Keb·ξ+c|ξ|
2

, with K = ea > 0, (21)

where φ is a collision invariant. There is equality in Eq.(18), if and only if log
F

1 + εF
is a collision invariant (take the logarithms of Eq.(20)), or equivalently, if and only

if
F

1 + εF
is a Maxwellian M . That is, if and only if F is a Planckian (or if ε = 0 a

Maxwellian)

P =
M

1− εM
. (22)

We define

H[F ] = H[F ](x) =

n∑
i=1

p1iµ(Fi(x)),
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where (cf. [37]), for ε ∈ {0,±1}

µ(y) =

{
y log y − ε (1 + εy) log (1 + εy) if y > 0
0 if y = 0

.

For the planar stationary system

B
dF

dx
= Qε (F ) , with B = diag(p11, ..., p

1
N ), (23)

we obtain

d

dx
H[F ] =

n∑
i=1

p1i
dFi
dx

log
Fi

1 + εFi
=

〈
log

F

1 + εF
,Qε (F )

〉
≤ 0,

with equality if, and only if, F is a Planckian. Denote by

j1 = 〈B,F 〉
ji+1 =

〈
Bpi, F

〉
, i = 1, ..., d,

jd+2 =
〈
B |p|2 , F

〉
. (24)

By Eqs.(23),(16) the numbers j1, ..., jd+2 are independent with respect to x in the
planar stationary case. For some fixed numbers j1, ..., jd+2, we denote by P the
manifold of all Planckians F = P (22), such that Eq.(24) is fulfilled. Then we can
prove the following theorem by arguments similar to the ones used for the discrete
Boltzmann equation in [24] (see also [13]).

Theorem 3.1. If F = F (x) is a bounded nonnegative solution to Eq.(23), then

lim
x→∞

dist(F (x),P) = 0,

where P is the Planckian manifold associated with the invariants (24) of F . If there
are only finitely many Planckians in P, then then there is a Planckian P in P, such
that lim

x→∞
F (x) = P .

If we denote (cf. Eq.(3))

F = P +R1/2f , with R = P (1 + εP ) and P =
M

1− εM
, (25)

in Eq.(9), we obtain

∂fi
∂t

+ pi · ∇xfi + (Lf)i = Si (f, f, f)

where L is the linearized collision operator (N ×N matrix) given by

Lf = −R−1/2
(

2Q(P,R1/2f) + Q̂(R1/2f, P, P ) + 2Q̂(P,R1/2f, P )
)

. (26)

and the nonlinear part S (f, f, f) is given by

S(f, g, h) = R−1/2
(
Q(R1/2f,R1/2g) + Q̂(P +R1/2f,R1/2g,R1/2h)+

Q̂(R1/2f, P,R1/2h) + Q̂(R1/2f,R1/2g, P )
)
. (27)

In more explicit forms, the operators (26) and (27) read

(Lf)i =

N∑
j,k,l=1

Γklij

R
1/2
i

(P klij fi + P klji fj − P
ij
kl fk − P

ij
lk fl), i = 1, ..., N (28)
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where

P klij = (Pj (1 + εPk + εPl)− εPkPl)R1/2
i ,

and

Si(f, f, f) =

N∑
j,k,l=1

Γklij

R
1/2
i

(
Sklij (f, f, f)− Sijkl(f, f, f)

)
, i = 1, ..., N , (29)

with

Sklij (f, f, f) = (1 + εPi + εPj)R
1/2
k R

1/2
l fkfl + ε

(
R

1/2
i fi +R

1/2
j fj

)
(
PkR

1/2
l fl + PlR

1/2
k fk +R

1/2
k R

1/2
l fkfl

)
.

By Eqs.(12),(11),(28), and the relations

PiPj(1 + εPk)(1 + εPl) = PkPl(1 + εPi)(1 + εPj),

P klij = PkPl(1 + εPj)

√
1 + εPi√
Pi

for Γklij 6= 0, we obtain the equality

〈g, Lf〉 =
1

4

N∑
i,j,k,l=1

ΓklijPiPj(1 + εPk)(1 + εPl)(
fi

R
1/2
i

+
fj

R
1/2
j

− fk

R
1/2
k

− fl

R
1/2
l

)(
gi

R
1/2
i

+
gj

R
1/2
j

− gk

R
1/2
k

− gl

R
1/2
l

)
.

It is easy to see that the matrix L is symmetric and positive semi-definite, i.e.

〈g, Lf〉 = 〈Lg, f〉 and 〈f, Lf〉 ≥ 0,

for all functions g = g(ξ) and f = f(ξ).
Furthermore, 〈f, Lf〉 = 0 if and only if

fi

R
1/2
i

+
fj

R
1/2
j

=
fk

R
1/2
k

+
fl

R
1/2
l

(30)

for all indices satisfying Γklij 6= 0. We denote f = R1/2φ in Eq.(30) and obtain
Eq.(14). Hence, since L is semi-positive,

Lf = 0 if and only if f = R1/2φ,

where φ is a collision invariant (44). Hence, for normal models the null-space N(L)
is

N(L) = span
(
R1/2, R1/2p1, ..., R1/2pd, R1/2 |p|2

)
= span

{√
P (1 + εP ),

√
P (1 + εP )p,

√
P (1 + εP ) |p|2

}
.

Then also 〈
S (f, f, f) , R1/2φ

〉
= 〈Qε (F ) , φ〉+

〈
F,LR1/2φ

〉
= 0
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for all collision invariants φ, and for some constant K̃

|S (f, f, f)− S (h, h, h)| =
∣∣∣R−1/2 (Q(R1/2 (f − h) , R1/2 (f + h))

+ Q̂(P,R1/2 (f − h) , R1/2 (f + h))

+ 2
(
Q̂(R1/2 (f − h) , P,R1/2f) + Q̂(R1/2h, P,R1/2 (f − h))

)
+ Q̂(R1/2f,R1/2 (f − h) , R1/2 (f + h)) + Q̂(R1/2 (f − h) , R1/2h,R1/2h)

)∣∣∣
≤ K̃(|f |+ |h|)(1 + |f |+ |h|) |f − h| . (31)

The planar stationary system now reads

B
df

dx
+ Lf = S(f, f, f), with B = diag(p11, ..., p

1
N ),

where

x = (x = x1, x2, ..., xd) and p = (p1, ..., pd).

We assume that the sets P = {p1, ...,pN} are chosen in such a way that p1i 6= 0 for
i = 1, ..., N .

3.2. Multicomponent mixtures. We now consider the case of s different species,
labelled with α1, ..., αs, with the masses mα1 , ...,mαs , respectively. Fixing a set of
velocities

V αi = {ξαi1 , ..., ξαinαi} ⊂ Rd

for each species αi, and assigning the label αi to each velocity in V αi we obtain a
set of N = nα1 + ...+nαs pairs (each pair being composed of a velocity and a label)

P = {(ξα1
1 , α1) , ..., (ξα1

nα1 , α1) , ..., (ξαs1 , αs) , ..., (ξ
αs
nαs , αs)}

= {(p1, α(1)) , ..., (pN , α(N))}, with N = nα1 + ...+ nαs .

Note that the same velocity can be repeated many times, but only for different
species.

We consider the system (9)− (10) for ε = 0 (even if we in principle don’t need to
restrict ourselves to the case of the discrete Boltzmann equation) with the collision
coefficients

Γklij = Γklji = Γijkl ≥ 0

with equality unless

{α(i), α(j)} = {α(k), α(l)}
mα(i)pi +mα(j)pj = mα(k)pk +mα(l)pl

mα(i) |pi|2 +mα(j) |pj |2 = mα(k) |pk|2 +mα(l) |pl|2 .
The collision invariants include, and for normal models are restricted to

φ = (φα1 , ..., φαs) , with φαi = φαi(p) = aαi +mαib · p + cmαi |p|2 (32)

for some constant aα1 , ..., aαs , c ∈ R and b ∈ Rd. For normal models we will have
s + d + 1 linearly independent collision invariants. How to construct such normal
models is considered in [14].

The Maxwellians are

M = eφ, i.e. M = (Mα1 , ...,Mαs) , with Mαi = eφ
αi

, (33)

where (for normal models) φ is given by Eq.(32).
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The notion of supernormal models was introduced for binary mixtures by Bobylev
and Vinerean in [19], and denotes a normal discrete velocity model, which is normal
also considering the sets of velocities for the different species separately. It was later
extended to the case of mixtures of several species in [14].

Definition 3.2. [14] A DVM {Vα1 , . . . ,Vαs} for mixtures of s species is called
supernormal if the restriction to each collection

{V1, . . . ,Vi} ⊆ {Vα1 , . . . ,Vαs} , 1 ≤ i ≤ s,
of velocity sets is a normal DVM for mixtures of i species.

Theorem 3.3. [14] A DVM {Vα1 , . . . ,Vαs} for mixtures of s species is supernormal
if and only if the restriction to each pair {Vαi ,Vαj}, 1 ≤ i < j ≤ s, of velocity sets
is a supernormal DVM for binary mixtures.

Theorem 3.4. [14] Let d = 2 or d = 3. For any given number s of species with
given rational masses mα1 , ...,mαs there is a supernormal DVM for the mixture.

Assume that d = 2, s = 3, the mass ratios 2,
3

2
, and 3, and let

Vαi =
h

mαi

V, i = 1, 2, 3V = {(±1,±1), (3,±1), (1, 3), (3, 3), (5, 1)} ,

which is a normal DVM, then we obtain a 27-velocity supernormal DVM (see figure
1)

Figure 1. 27-velocity model for a mixture of three species with
mass ratios 2, 3/2, and 3

3.3. Polyatomic molecules. We now assume that we have s different internal
energies E1, ..., Es. Fixing a set of velocity vectors Vi =

{
ξi1, ..., ξ

i
ni

}
⊂ Rd for each

internal energy Ei we obtain a set of N = n1 + ... + ns pairs (each pair being
composed of a velocity vector and an internal energy), cf. [20],

P = {
(
ξ11 , E

1
)
, ...,

(
ξ1n1

, E1
)
, ..., (ξs1, E

s) , ...,
(
ξsns , E

s
)
}

= {(p1, E1) , ..., (pN , EN )}, with N = n1 + ...+ ns.

Obviously, the same velocity can be repeated many times, but only for different
internal energies. We might need to scale the distribution functions (see below, cf.
[26, 36])

f ′r =
fr
gi

if Er = Ei, r = 1, ..., N for some numbers g1, ..., gs. (34)
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Then we consider the system (9)− (10) (ε = 0 for the discrete Boltzmann equa-
tion) with the collision coefficients

Γklij = Γklji = Γijkl ≥ 0 (35)

with equality unless

pi + pj = pk + pl and

m |pi|2

2
+
m |pj |2

2
+ Ei + Ej =

m |pk|2

2
+
m |pl|2

2
+ Ek + El. (36)

We assume that we can obtain the symmetry relations (35), possibly after a scaling
(34). Actually assuming a convenient reciprocity relation [26], this will be the case.

The collision invariants include, and for normal models are restricted to

φ = φ(p) = a+ b · p + c(m |p|2 + 2E(p)) (37)

for some constant a, c ∈ R, b ∈ Rd. For normal models we will have d+ 2 linearly
independent collision invariants. How to construct such normal models is considered
in [12].

The Maxwellians are

M = eφ, (38)

where (for normal models) φ is given by Eq.(37).

Definition 3.5. [12] A DVM
{{

V1, E
1
}
, ..., {Vs, E

s}
}

, with internal energies{
E1, ..., Es

}
, is called supernormal if the restriction to each collection

{{Vr1 , E
r1} , ..., {Vri , E

ri}} ⊆
{{

V1, E
1
}
, ..., {Vs, Es}

}
, 1 ≤ i ≤ s,

is a normal DVM.

Theorem 3.6. [12] A DVM
{{

V1, E
1
}
, ..., {Vs, E

s}
}

, with internal energies
{E1, ..., Es}, is supernormal if and only if the restriction to each pair{{

Vi, E
i
}
,
{

Vj , E
j
}}

, 1 ≤ i < j ≤ s, of velocity sets is a supernormal DVM.

Theorem 3.7. [12] Let d = 2 or d = 3. For any given set of internal energies
{r1E, ..., rsE}, where r1, ..., rs are positive integers, there is a supernormal DVM
{{Vr1 , r1E} , ..., {Vrs , rsE}}.

Assume that d = 2, s = 3, and ri = i, for i = 1, 2, 3, and let

Vi =

√
E

2
√
m

V, i = 1, 2, 3,

where m denotes the mass, and

V = {(±1,±1), (3,±1), (1, 3), (3, 3)} ,

which is a normal 8-velocity DVM, then we obtain a supernormal 24-velocity DVM
(see figure 2).

3.4. Bimolecular chemical reactions. We can combine the two different ap-
proaches in the two preceding sections in an obvious way to obtain models for
mixtures with internal energies, see [11]. It is then also possible to add bimolecular
reactive collisions [15] and by that extend to models for bimolecular chemical reac-
tions, cf. [11]. We will below consider an example (cf. [39, 31]), but our method is
not limited to this case in any way.
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Figure 2. 24-velocity supernormal DVM for internal energies E,
2E, and 3E

We assume that we have four different species A1, ..., A4, with masses m1, ...,m4

and internal energies E1, ..., E4, respectively. We assume that we have all elastic
collisions (as a mixture), but also a reaction

A1 +A2 � A3 +A4

if

m1ξ
1 +m2ξ

2 = m3ξ
3 +m4ξ

4 and

m1

∣∣ξ1∣∣2 +m2

∣∣ξ2∣∣2 + 2E1 + 2E2 = m3

∣∣ξ3∣∣2 +m4

∣∣ξ4∣∣2 + 2E3 + 2E4,

which implies one less collision invariant. The collision invariants for normal models
are then

φ = (φα1 , φα2 , φα3 , φα4) , with φαi = φαi(ξ) = aαi +mαib · ξ + cmαi |ξ|
2

and aα4
= aα1

+ aα2
− aα3

,

for some constant aα1
, aα2

, aα3
, c ∈ R, b ∈ Rd. Furthermore, we still assume (after

some scaling of the distribution functions) that the collision coefficients fulfill

Γklij = Γklji = Γijkl ≥ 0. (39)

Assumption (39) is needed to be able to obtain the same structure as for single
species, which we, in turn, need to be able to apply our results for boundary layers
presented in Section 4 below. However, assuming a convenient reciprocity relation
[26], this assumption (39) is fulfilled after a suitable scaling of the distribution
function.

3.5. Bose condensate with excitations. A general discrete model for excitations
in a Bose gas interacting with a Bose condensate, under the assumption that the
density of the Bose condensate is constant (cf. [2]), first presented in [10], reads

∂Fi
∂t

+ pi · ∇xFi = C12i (F ) + ΓC22i (F ) , i = 1, ..., N , (40)

where P = {p1, ...,pN} ⊂ Rd is a finite set, F = (F1, ..., FN ), Fi = Fi (x) =
F (x,pi), is the distribution function of the excitations, and Γ ∈ R+ is constant. For
generality, we allow p = (p1, ..., pd) to be of dimension d, rather than of dimension
3.
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The collision operators C12i (F ) are given by

C12i (F ) =

N∑
j,k,l=1

(δil − δij − δik) Γljk ((1 + Fl)FjFk − Fl (1 + Fj) (1 + Fk)) ,

where δij =

{
1 if i = j
0 if i 6= j

, with Γijk = 1 if

pi = pj + pk and |pi|2 = |pj |2 + |pk|2 + n, (41)

and Γijk = 0 otherwise. Furthermore, the collision operators C22i (F ) are given by

Q1
i (F ) in Eq.(10) with Γklij = 1 if Eq.(12) is satisfied, and Γklij = 0 otherwise. The

system (2) can also be written as

∂F

∂t
+ p · ∇xF = C12 (F ) + ΓC22 (F ) . (42)

The collision operator C12 (F ) in (42) is also given by the expression

C12 (F ) = nL̃F + nQ̃(F, F ), (43)

where (
L̃F
)
i

=

N∑
j,k=1

2ΓkijFk − ΓijkFi and

Q̃i(F,G) =

N∑
j,k=1

ΓijkQ
i
jk(F,G)− 2ΓkijQ

k
ij(F,G), with

Qijk(F,G) =
1

2
(FjGk +GjFk − Fi (Gj +Gk)−Gi (Fj + Fk)) .

A function φ = φ (p) is a collision invariant, if and only if,

φi = φj + φk,

for all indices such that Γijk 6= 0, if Γ = 0, with the additional condition (14) for all

indices such that Γklij 6= 0, if Γ 6= 0. The collision invariants include, and for normal
models (without spurious or non-physical collision invariants) are limited to

φ = φ (p) = −α
(
|p|2 + n

)
− β · p, (44)

for some constant α ∈ R and β ∈ Rd. Then the equation

〈C12 (F ) + ΓC22 (F ) , φ〉 = 0 (45)

has the general solution (44). Also, see [10],〈
log

F

1 + F
,C12(F ) + ΓC22(F )

〉
≤ 0.

The Maxwellians are (for normal models)

M = (M1, ...,Mn), with Mi = eφi = e−α(|pi|2+n)−β·pi ,

and the Planckians are (again for normal models)

P = (P1, ..., Pn), with Pi =
Mi

1−Mi
=

1

eα(|pi|2+n)+β·pi − 1
=

1

eα(|pi−p0|2+n0) − 1
,

(46)
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with α > 0, β ∈ Rd, p0 =
β

2
and n0 = n− |p0|2.

We define

H[F ] = H[F ](x) =

n∑
i=1

p1iµ(Fi(x)),

where

µ(y) =

{
y log y − (1 + y) log (1 + y) if y > 0
0 if y = 0

.

For the planar stationary system

B
dF

dx
= C12(F ) + ΓC22(F ), with B = diag(p11, ..., p

1
N ), (47)

we obtain

d

dx
H[F ] =

n∑
i=1

p1i
dFi
dx

log
Fi

1 + Fi
=

〈
log

F

1 + F
,C12(F ) + ΓC22(F )

〉
≤ 0,

with equality if, and only if, F is a Planckian. Denote by

ji =
〈
Bpi, F

〉
, i = 1, ..., d,

jd+1 =
〈
B
(
|p|2 + n

)
, F
〉
. (48)

By Eqs.(47),(45) the numbers j1, ..., jd+1 are independent with respect to x in the
planar stationary case. For some fixed numbers j1, ..., jd+1, we denote by P the
manifold of all Planckians F = P (46), such that Eq.(48) is fulfilled. Then we can
prove the following analogue to Theorem 3.1 by similar arguments (used for the
discrete Boltzmann equation in [24] and also [13]).

Theorem 3.8. If F = F (x) is a bounded nonnegative solution to Eq.(47), then

lim
x→∞

dist(F (x),P) = 0,

where P is the Planckian manifold associated with the invariants (48) of F . If there
are only finitely many Planckians in P, then then there is a Planckian P in P, such
that lim

x→∞
F (x) = P .

Given a Planckian (46) we denote

F = P +R1/2f , with R = P (1 + P ),

in Eq.(42), and obtain

∂F

∂t
+ p · ∇xF + Lf = S (f) ,

where L = L12 + ΓL22, with

L12f = −2nR−1/2Q̃(P,R1/2f)− nL̃R1/2f (49)

and L22 given by Eqs.(26),(28), is the linearized collision operator (N ×N matrix),
and S (f) = S12(f, f) + S22(f, f, f), with

S12(f, g) = nR−1/2Q̃(R1/2f,R1/2g) (50)
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and S22(f, f, f) given by Eqs.(27),(29), is the nonlinear part. In more explicit forms,
the operators (49) and (50) read

(L12f)i = n

N∑
j,k=1

ΓijkL
i
jkf − 2ΓkijL

k
ijf

R
1/2
i

, i = 1, ..., n, with

Lijkf = (1 + Pj + Pk)R
1/2
i fi − (Pk − Pi)R1/2

j fj − (Pj − Pi)R1/2
k fk, (51)

and

S12i(f, g) = n

N∑
j,k=1

ΓijkS
i
jk(f, g)− 2ΓkijS

k
ij(f, g)

R
1/2
i

, i = 1, ..., N , with

Sijk(f, g) =
1

2

(
R

1/2
j R

1/2
k (fjgk + gjfk)−R1/2

i R
1/2
j (figj + gifj)−

R
1/2
i R

1/2
k (figk + gifk)

)
.

The linearized collision operator L is symmetric and positive semi-definite with,
for normal models, the null-space

N(L) = span
(
R1/2, R1/2p1, ..., R1/2pd, R1/2 |p|2

)
= span

{√
P (1 + εP ),

√
P (1 + εP )p,

√
P (1 + εP ) |p|2

}
.

Then also〈
S (f) , R1/2φ

〉
= 〈C12 (F ) + ΓC22 (F ) , φ〉+

〈
F,LR1/2φ

〉
= 0

for all collision invariants φ, and for some constant K̃

|S12 (f, f)− S12 (h, h)| =∣∣∣nR−1/2 (Q̃(R1/2 (f − h) , R1/2 (f + h))
)∣∣∣ ≤ K̃(|f |+ |h|) |f − h| .

Hence, by the inequality (31) there is some constant K̃ (possibly different from the
one above) such that

|S (f)− S (h)| ≤ K̃(|f |+ |h|)(1 + |f |+ |h|) |f − h| .
We can also, before prescribing the set of velocities, make the change of variables

p→ p + p0 (52)

(cf. Eq.(46)). We then, instead of relations (41), obtain the relations

pi = pj + pk + p0 and |pi|2 = |pj |2 + |pk|2 + n0,

where n0 = n− |p0|2, and the collision invariants

φ = a· (p + p0) + b
(
|p|2 + n0

)
.

Moreover

N(L) = span
(
R1/2

(
p1 + p10

)
, ..., R1/2

(
pd + pd0

)
, R1/2

(
|p|2 + n0

))
,

and if p10 6= 0, then the matrix B have to be replaced with B + p10I.
The planar stationary system reads as before

B
df

dx
+ Lf = S(f), with B = diag(p11, ..., p

1
N ),
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where
x = (x = x1, x2, ..., xd) and p = (p1, ..., pd).

We assume that the sets P = {p1, ...,pN} are chosen in such a way that p1i 6= 0
for i = 1, ..., N .

4. Boundary layers. We can (without loss of generality) assume that

B =

(
B+ 0
0 −B−

)
, (53)

where

B+ = diag (b1, ..., bn+) and B− = −diag (bn++1, ..., bN ) , with

b1, ..., bn+ > 0 and bn++1, ..., bN < 0. (54)

We also define the projections R+ : RN → Rn+

and R− : RN → Rn− , n− = N−n+,
by

R+s = s+ = (s1, ..., sn+) and R−s = s− = (sn++1, ..., sN )

for s = (s1, ..., sN ), and consider the non-linear system B df
dx + Lf = S(f)

f+(0) = Cf−(0) + h0
f(x)→ 0 as x→∞

, (55)

where C is a given n+ × n− matrix, h0 ∈ Rn+

, and the non-linear part fulfills

S (f) ∈ N(L)⊥

and
|S (g)− S (h)| ≤ K̃G(|g| , |h|) |g − h|

for some positive constant K̃ > 0 and differentiable function G : R+ × R+ → R+

with positive partial derivatives and G(0, 0) = 0.
The boundary condition f(x) → 0 as x → ∞ corresponds to the case when

we have made the transformation (3) for a stationary point P = P∞, such that
F → P∞ as x→∞.

We introduce the operator C : RN → Rn+

, given by

C = R+ − CR−,

and assume that

dim CX+ = n+, with X+ = span (u1, ..., um+ , y1, ..., yk+ , w1, ...., wl) . (56)

We have the following result [7].

Lemma 4.1. Let B+ and B− be the matrices defined by Eq.(54). Then condition
(56) is fulfilled, if

CTB+C < B− on R−X+. (57)

Proof. Let u ∈ X+ and CTB+C < B− on R−X+. Then

〈u, u〉B ≥ 0.

Furthermore, if u 6= 0 and Cu = 0, then

〈u, u〉B =
〈
Cu−, Cu−

〉
B+
−
〈
u−, u−

〉
B−

=
〈
(CTB+C −B−)u−, u−

〉
< 0.

Hence, if Cu = 0, then u = 0. That is, dim CX+ = dimX+ = n+, and the lemma is
proved.
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Remark 3. Condition (57) can, if l = 0, be weakened to

CTB+C ≤ B− on R−X+.

If C = 0, then condition (56) is fulfilled. In particular,{
u+1 , ..., u

+
m+ , y

+
1 , ..., y

+
k+ , w

+
1 , ..., w

+
l

}
is a basis of Rn+

. When the Maxwell-type boundary conditions, in the case of the
discrete Boltzmann equation, fulfill condition (56) is also studied in [7].

Our main result on boundary layers gives the number of conditions that must be
posed on the given data h0 to obtain a well-posed problem.

Theorem 4.2. Let condition (56) be fulfilled and suppose that 〈h0, h0〉B+
is suf-

ficiently small. Then with k+ + l conditions on h0, the system (55) has a locally
unique solution.

Theorem 4.2 is proved below in Section 6.
For the discrete Boltzmann equation Theorem 4.2 improves the results in [7] for

the degenerate case l > 0 by getting rid of some restrictive assumptions on the non-
linear part. An interesting thing and one of the main results of this paper is that the
generalizations made, make it possible to apply the results also for mixtures, poly-
atomic gases with a discrete number of internal energies, and bimolecular reactive
flows [15, 31, 39], but also for some discrete quantum kinetic equations, Nordheim-
Boltzmann equation [1, 37] (maybe more known as the Uehling-Uhlenbeck equation
[42]) and an equation for excitations in a Bose gas interacting with a Bose conden-
sate at low temperatures [2, 34, 46] (see Section 3 above).

Remark 4. Our results can be extended in a natural way, to yield also for singular
matrices B, cf. [7], if

N(L) ∩N(B) = {0} .

5. Critical numbers for axially symmetric discrete models. In this section
we study, instead of Eq.(5), the equation

(B + uI)
df

dx
+ Lf = S(f), (58)

and consider such symmetric sets P, such that

if pi = (p1i , p
2
i , ..., p

d
i ) ∈ P, then (±p1i ,±p2i , ...,±pdi ) ∈ P. (59)

We also assume that (i) we have a symmetric set (59); (ii) our DKM is normal; and
(iii)

B = diag(p11, ..., p
1
Ñ
,−p11, ...,−p1Ñ ), with p11, ..., p

1
Ñ
> 0.

Below we will omit the tildes, and just write N instead of Ñ .
In this case a possible reduction is as follows: the equation (5) (or (58)) admit a

class of solutions satisfying

Fi = Fi′ if p1i = p1i′ and |pi|2 = |pi′ |2 . (60)

This reduces the number N of equations (2) to the number 2Ñ ≤ N of different

combinations (p1i , |pi|
2
). The structure of the collision terms (43) (including exten-

sions) and (13) (in slightly different notations) remains unchanged. However, to be
able to keep the structure, we might need to add equal equations (instead of just
taking them away). Hence, the elements in the diagonal matrix (53) might change,
but will still be multiples (with positive multipliers ri > 0) of the previous ones.
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Below we will omit the tildes, and just write N instead of Ñ . We can, without loss
of generality, assume that

(p1i+N , |pi+N |
2
) = (−p1i , |pi|

2
) and p1i > 0

for i = 1, ..., N , and obtain

B = diag(r1p
1
1, ..., rNp

1
N ,−r1p11, ...,−rNp1N ), with p11, ..., p

1
N > 0.

5.1. Nordheim-Boltzmann equation. We assume that the Maxwellian (21) in
the Planckian (22), which the transformation (25) is made around, is non-drifting,
i.e. with b = 0 in Eq.(21). The linearized collision operator L has the null-space

N(L) = span (φ1, ..., φd+2) ,

where, with R = P (1 + P ),

φ1 = R1/2 = R1/2 · (1, ..., 1)
φ2 = R1/2p1 = R1/2 · (p11, ..., p1N ,−p11, ...,−p1N )

φ3 = R1/2 |p|2 = R1/2 · (|p1|2 , ..., |pN |2 , |p1|2 , ..., |pN |2)
φi+2 = R1/2pi = R1/2 · (pi1, ..., piN ,−pi1, ...,−piN ), i = 2, ..., d.

(61)

Then the degenerate values of u, i.e. the values of u for which l ≥ 1, are

u0 = 0 and u± = ±

√
χ1χ2

4 + χ2
2χ5 − 2χ2χ3χ4

χ2(χ1χ5 − χ2
3)

, (62)

where χ1 = 〈φ1, φ1〉, χ2 = 〈φ2, φ2〉, χ3 = 〈φ1, φ3〉, χ4 = 〈φ2, φ3〉B , χ5 = 〈φ3, φ3〉, cf.
[6, 7, 13]. Moreover, we can obtain the following table for the values of k+, k− and
l ( [6, 7, 13]):

u < u− u = u− u− < u < 0 u = 0 0 < u < u+ u = u+ u+ < u
k+ 0 0 1 1 d+ 1 d+ 1 d+ 2
k− d+ 2 d+ 1 d+ 1 1 1 0 0
l 0 1 0 d 0 1 0 .

(63)
In the continuous case 〈f, g〉 =

∫
fg dp and [f, g] =

∫
ufg dp corresponds to

〈f, g〉B .
For the continuous Boltzmann equation (ε = 0), with d = 3, the numbers

χ1, ..., χ5 are given by

χ1 = ρ, χ2 = ρT , χ3 = 3ρT , χ4 = 5ρT 2 and χ5 = 15ρT 2,

(where ρ and T denote the density and the temperature respectively), if we have
made the expansion (3) around a non-drifting Maxwellian

M =
ρ

(2πT )3/2
e−|ξ|

2/2T .

Therefore, for the Boltzmann equation (with d = 3) the degenerate values (62) are
(cf. [25])

u0 = 0 and u± = u0± = ±
√

5T

3
.

On the other hand, in the continuous case, assuming for bosons (ε = 1) and
fermions (ε = −1), with d = 3, that

P = P± =
1

e
|p|2
2T ∓ 1

,
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respectively, we have

R = R± = P±(1± P±) =
e
|p|2
2T(

e
|p|2
2T ∓ 1

)2 .
By a change to spherical coordinates, we obtain

χ1 =

∫
Rdp = 8πT I±2 , χ2 =

∫
R
(
p1
)2
dp =

16π

3
T 2I±4 ,

χ3 =

∫
R |p|2 dp = 16πT 2I±4 , χ4 =

∫
R
(
p1
)2 |p|2 dp =

32π

3
T 3I±6 , and

χ5 =

∫
R |p|4 dp = 32πT 3I±6 , where

I+n =

∞∫
λ

rn
er

2(
er2 − 1

)2 dr and I−n =

∞∫
0

rn
er

2(
er2 + 1

)2 dr.
Here we have for bosons considered the restriction |p| ≥ λ

√
2T , for some λ > 0, cf.

[2, 10]. Then the degenerate values are

u0 = 0, u±1+ =

√
I±6
I±4

√
2T

3
,and u±1− = −

√
I±6
I±4

√
2T

3
,

with I+n =
∞∫
λ

rn
er

2(
er2 − 1

)2 dr and I−n =
∞∫
0

rn
er

2(
er2 + 1

)2 dr.
Considering fermions,

I−2n =
√
π

(2n− 1)!!

2n+1
η

(
n− 1

2

)
,

where η is the Dirichlet eta-function or alternating zeta-function, and hence

u−1± = ±

√
η (5/2)

η (3/2)

√
5T

3
.

On the other hand, considering bosons,

I+2n →
√
π

(2n− 1)!!

2n+1
ζ

(
n− 1

2

)
as λ→ 0,

where ζ is the zeta-function, and hence

u+1
± → ±

√
ζ (5/2)

ζ (3/2)

√
5T

3
as λ→ 0.

However, remind that ζ
(
1
2

)
is infinite.

The values of k+, k− and l for the (continuous) Nordheim-Boltzmann equation,
with d = 3, are given by the table (cf. [25, 44] etc. for the Boltzmann equation)

u = uε− u = 0 u = uε+
k+ 0 0 1 1 4 4 5
k− 5 4 4 1 1 0 0
l 0 1 0 3 0 1 0 . (64)
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5.2. Multicomponent mixtures. We assume that the symmetric set P consists
of s symmetric (in the sense of Eq.(59)) sets of 2Nαi , i = 1, ..., s, velocities respec-
tively, which constitute normal models considered by themselves, but also a normal
model all together (cf. semi-supernormal DVMs in [14]), and that we have made
the transformation (25) around a non-drifting Maxwellian M (i.e. with b = 0 in
Eqs.(32),(33)). Let

B = diag (Bα1
, ..., Bαs) , with Bα = diag(ξα,11 , ..., ξα,1Nα

,−ξα,11 , ...,−ξα,1Nα
). (65)

The linearized collision operator L has the null-space

N(L) = span (φα1
1 , ..., φαs1 , φ2, ..., φd+2) ,

where

φαi1 = M1/2 · ( 0, ..., 0︸ ︷︷ ︸
2
∑i−1
j=1Nαj

, 1, ..., 1︸ ︷︷ ︸
2Nαi

, 0, ..., 0︸ ︷︷ ︸
2
∑s
j=i+1Nαj

), i = 1, ..., s,

φ2 = M1/2 · (mα1
φα1
2 , ...,mαsφ

αs
2 ), with φα2 = (ξα,11 , ..., ξα,1Nα

,−ξα,11 , ...,−ξα,1Nα
)

φ3 = M1/2 · (mα1φ
α1
3 , ...,mαsφ

αs
3 ), with φα3 = (|ξα1 |

2
, ...,

∣∣ξαNα ∣∣2 , |ξα1 |2 , ..., ∣∣ξαNα ∣∣2)

φ2+i = M1/2 · (mα1
φα1
2+i, ...,mαsφ

αs
2+i),with φα2+i = (ξα,i1 , ..., ξα,i2Nα

), i = 2, ..., d.

The degenerate values of u are

u0 = 0 and u± = ±
√√√√√ X

χ2

(
s∑
i=1

(χαi3 )2

χαi1
− χ5

) , with

X = χ2
4 + χ5

s∑
i=1

(χαi2 )2

χαi1
− 2χ4

s∑
i=1

χαi2 χ
αi
3

χαi1
−

s∑
i=1

(χαi2 χ
αj
3 − χ

αj
2 χαi3 )2

χαi1 χ
αj
1

.

where χαi1 = 〈φαi1 , φ
αi
1 〉, χ

αi
2 = 〈φαi1 , φ2〉Bαi = mαi 〈φ

αi
2 , φ

αi
2 〉, χ2 = 〈φ2, φ2〉, χαi3 =

〈φαi1 , φ3〉 = mαi 〈φ
αi
1 , φ

αi
3 〉, χ4 = 〈φ2, φ3〉B , and χ5 = 〈φ3, φ3〉. Moreover, we can

obtain the following table for the values of k+, k− and l (cf. [8] for s = 2):

u = u− u = 0 u = u+
k+ 0 0 1 1 s+ d s+ d s+ d+ 1
k− s+ d+ 1 s+ d s+ d 1 1 0 0
l 0 1 0 s+ d− 1 0 1 0 .

For the continuous Boltzmann equation, with d = 3,

χαi1 = nαi , χ
αi
2 = nαiT , χ2 =

s∑
i=1

mαinαiT , χαi3 = 3nαiT , χ4 = 5

s∑
i=1

nαiT
2,

χ5 = 15

s∑
i=1

nαiT
2,

(where nα1 , ..., nαs , and T denote the number densities of the species α1, ..., αs and
the temperature respectively), if we have made the expansion (3) around a non-
drifting Maxwellian

M = (Mα1 , ...,Mαs) , with Mαi =
nαi

(2πT )3/2
e−mαi |ξ|

2/2T .
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Therefore, for the Boltzmann equation, with d = 3, for a mixture of s species the
degenerate values (62) are

u0 = 0 and u± = ±

√ ∑s
i=1 nαi∑s

i=1mαinαi

√
5T

3
.

The values of k+, k− and l for the Boltzmann equation, with d = 3, for a mixture
of s species are given by the table

u = u− u = 0 u = u+
k+ 0 0 1 1 s+ 3 s+ 3 s+ 4
k− s+ 4 s+ 3 s+ 3 1 1 0 0
l 0 1 0 s+ 2 0 1 0 .

5.3. Polyatomic molecules. We assume that the symmetric set P consists of s
copies of the same symmetric (in the sense of Eq.(59)) set of 2N velocities, which
constitutes a normal model, and that we have made the change of variables (34)
and the transformation (25) around a non-drifting Maxwellian M (i.e. with b = 0
in Eqs.(38),(37)). Let

B = diag (B1, ..., Bs) , with Bi = gidiag(ξ1, ..., ξN ,−ξ1, ...,−ξN ),

and replace uI in Eq.(59) with

ũ = diag (u1, ..., us) , with ui = gidiag(u, ..., u),

The linearized collision operator L has the null-space

N(L) = span (φ1, φ2, ..., φd+2) ,

where

φ1 = M1/2 · (1, ..., 1)

φ2 = M1/2 · (φ̃2, ..., φ̃2), with φ̃2 = (ξ11 , ..., ξ
1
N ,−ξ11 , ...,−ξ1N )

φ3 = M1/2 · (φ13, ..., φs3)

φ2+i = M1/2 · (φ̃2+i, ..., φ̃2+i),with φ̃2+i = (ξi1, ..., ξ
i
2N ), i = 2, ..., d,

with φr3 = (|ξ1|2 + 2Er, ..., |ξN |2 + 2Er, |ξ1|2 + 2Er, ..., |ξN |2 + 2Er)

The degenerate values of u are

u0 = 0 and u± = ±

√
χ1χ2

4 + χ2
2χ5 − 2χ2χ3χ4

χ2(χ1χ5 − χ2
3)

.

where χ1 = 〈φ1, φ1〉, χ2 = 〈φ2, φ2〉, χ3 = 〈φ1, φ3〉, χ4 = 〈φ2, φ3〉B , and χ5 =
〈φ3, φ3〉. Moreover, the values of k+, k− and l are given by the table (63).

For the continuous Boltzmann equation, with d = 3, the numbers χ1, ..., χ5 are
given by (see also [11])

χ1 = n, χ2 = nT , χ3 = 3nT +
2n

Q

s∑
i=1

giE
ie−E

i/T ,

χ4 =
n

Q

s∑
i=1

(
5T 2 + 2TEi

)
gie
−Ei/T , and

χ5 = 15nT 2 +
4n

Q

s∑
i=1

(
3TEi +

(
Ei
)2)

gie
−Ei/T ,
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(where E1, ..., Es, and T denote the different internal energies and the temperature
respectively), if we have made the expansion (3) around a non-drifting Maxwellian

M = (M1, ...,Ms) , with Mi =
n

(2πT )3/2Q
e−(|ξ|2/2+Ei)/T ,

where

Q =

s∑
i=1

gie
−Ei/T .

5.4. Bose condensate with excitations. We assume that we have made the
transformation (52) and that the reduction induced by Eq.(60) is made. The lin-
earized collision operator L has the null-space

N(L) = span (φ1, φ2) ,

where

φ1 = R1/2
(
p1 + p10

)
= R1/2 · (p11 + p10, ..., p

1
N + p10,−p11 + p10, ...,−p1N + p10)

φ2 = R1/2
(
|p|2 + n0

)
= R1/2 · (|p1|2 + n0, ..., |pN |2 + n0, |p1|2 + n0, ..., |pN |2 + n0),

with R = P (1 + P ). See also [10], where we, without stating it, for simplicity

assumed the approximation n0 = n− |p0|2 = 0.
The degenerate values of p10, i.e. the values of p10 for which l ≥ 1, are

p10± = ±

√√√√3χ2χ5 − 2χ3χ4 +
√

(3χ2χ5 − 2χ3χ4)
2

+ 4 (χ1χ5 − χ2
3)χ2

4

2 (χ1χ5 − χ2
3)

,

where

χ1 =
〈
R1/2, R1/2

〉
, χ2 =

〈
R1/2p1, R1/2p1

〉
=
〈
R1/2, R1/2p1

〉
B
,

χ3 =
〈
R1/2, R1/2

(
|p|2 + n0

)〉
, χ4 =

〈
R1/2p1, R1/2

(
|p|2 + n0

)〉
B
, and

χ5 =
〈
R1/2

(
|p|2 + n0

)
, R1/2

(
|p|2 + n0

)〉
.

We obtain the following table for the values of k+, k− and l

p10 < p10− p10 = p10− p10− < p10 < p10+ p10 = p10+ p10+ < p10
k+ 0 0 1 1 2
k− 2 1 1 0 0
l 0 1 0 1 0 .

If we assume that the reduction induced by Eq.(60) isn’t made and consider sym-
metric sets P, such that

if pi = (p1i , p
2
i , ..., p

d
i ) ∈ P, then also (±p1i ,±p2i , ...,±pdi ) ∈ P,

then 0 is added to the degenerate values and the values of k+, k− and l are

p10 = −p̃10+ p10 = 0 p10 = p̃10+
k+ 0 0 1 1 d d d+ 1
k− d+ 1 d d 1 1 0 0
l 0 1 0 d− 1 0 1 0 ,

for some number p̃10+, where p̃10+ = p10+ if p20+ = ... = pd0+ = 0.
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Assuming that

P =
1

e
|p|2
2T − 1

,

in the continuous case, we have

R = P (1 + P ) =
e
|p|2
2T(

e
|p|2
2T − 1

)2 ,
and, hence [10] (if we assume the approximation n0 = n− n0 = 0 for simplicity;
motivated by that we are ”close to diffusive thermal equilibrium” in [2])

χ0 = 8πT I2, χ1 =
16π

3
T 2I4, χ2 =

32π

3
T 3I6, χ3 = 32πT 3I6, and

χ4 = 16πT 2I4, with In =

∞∫
λ

rn
er

2(
er2 − 1

)2 dr.
Here we have considered the restriction |p| ≥ λ

√
2T , for some λ > 0 (cf. [2, 10]).

The degenerate values are (assuming that p20+ = p30+ = 0)

p10± = ±
√
T

3

√
I4I6 + I6

√
4I2I6 − 3I24

I2I6 − I24
, with In =

∞∫
λ

rn
er

2(
er2 − 1

)2 dr.
Here I2I6 ≥ I24 by the Cauchy-Schwarz inequality. Furthermore, the values of k+,
k− and l are given by the table

p10 = −p10+ p10 = 0 p10 = p10+
k+ 0 0 1 1 3 3 4
k− 4 3 3 1 1 0 0
l 0 1 0 2 0 1 0 .

Note that for λ = 0

I4 =
3

8

√
πζ

(
3

2

)
and I6 =

15

16

√
πζ

(
5

2

)
,

where ζ = ζ (z) is the zeta-function, while

I2 →∞ as λ→ 0,

and, hence

p10± → 0 as λ→ 0.

6. Proof of Theorem 4.2. We add (cf. [7] and [44]) a damping term −γBP+
0 f

to the right-hand side of the system (55) and obtain the damped system B df
dx + Lf = S(f)− γBP+

0 f
f+(0) = Cf−(0) + h0
f(x)→ 0 as x→∞

, (66)

where γ > 0 and, with the notations in Eqs.(6)-(8),

P+
0 f =

k+∑
i=1

〈f(x), yi〉B
〈yi, yi〉B

yi +

l∑
j=1

〈f(x), zj〉B (wj − xzj). (67)
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The projection (67) coincides with the ones in [7] and [44] in the non-degenerate
cases as l = 0. However, in the degenerate cases the projection (67) is different
from the ones in [7] and [44].

We follow the ideas in [7]. First we consider the corresponding linearized inho-
mogeneous system  B df

dx + Lf = g − γBP+
0 f

f+(0) = Cf−(0) + h0
f(x)→ 0 as x→∞

, (68)

where g = g(x) : R+ → RN is a given function such that

g (x) ∈ N(L)⊥ for all x ∈ R+. (69)

The system (68) has (under the assumption that all necessary integrals exist)
the solution, using the notations in Eqs.(6)-(8),

f(x) =

k+∑
i=1

µi (x) yi +

l∑
j=1

αj (x) (wj − xzj) +

q∑
r=1

βr (x)ur, (70)

where
µi (x) = µi (0) e−γx, i = 1, ..., k+,
αj (x) = αj (0) e−γx, j = 1, ..., l,

βr (x) = βr (0) e−λrx +
x∫
0

e(τ−x)λr β̃r (τ) dτ , r = 1, ...,m+,

βr (x) = −
∞∫
x

e(τ−x)λr β̃r (τ) dτ , r = m+ + 1, ..., q,

(71)

with

β̃r (x) =
〈g (x) , ur〉

λr
. (72)

and β1 (0) , ..., βm+ (0) , µ1 (0) , ..., µk+ (0) , α1 (0) , ..., αl (0) are given by the system

m+∑
r=1

βr (0) Cur +

k+∑
i=1

µi (0) Cyi +

l∑
j=1

αj (0) Cwj (73)

= h0 +

q∑
r=m++1

∞∫
0

eτλr β̃r (τ) dτ Cur, with C = R+ − CR−.

For h0 = 0 in (66), we have the trivial solution f(x) ≡ 0. Therefore, we consider
only non-zero h0, h0 6= 0, below. The system (73) has (under the assumption that
all necessary integrals exist) a unique solution if we assume that the condition (56)
is fulfilled.

Theorem 6.1. Assume that conditions (56) and (69) are fulfilled and that all nec-
essary integrals exist. Then the system (68) has a unique solution given by Eqs.(70)-
(73).

We now fix a number σ, such that

0 < 2σ ≤ min {|λ| 6= 0; det(λB − L) = 0} and 2σ ≤ γ

and introduce the norm (cf. [7] and [33])

|h|σ = sup
x≥0

(eσx |h (x)|),
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the Banach space

X =
{
h ∈ B0[0,∞) | |h|σ <∞

}
,

and its closed convex subset

SR =
{
h ∈ B0[0,∞) | |h|σ ≤ R |h0|

}
,

where R is a, so far, undetermined positive constant.
We assume that condition (56) is fulfilled and introduce the operator Θ(f) on

X , defined by

Θ(f) =

k+∑
i=1

µi (f(x)) yi +

l∑
j=1

αj (f(x)) (wj − xzj) +

q∑
r=1

βr (f(x))ur,

where

µi (f(x)) = µi (f(0)) e−γx, i = 1, ..., k+,
αj (f(x)) = αj (f(0)) e−γx, j = 1, ..., l,

βr (f(x)) = βr (f(0)) e−λrx +
x∫
0

e(τ−x)λr β̃r (f (τ)) dτ , r = 1, ...,m+,

βr (f(x)) = −
∞∫
x

e(τ−x)λr β̃r (f (τ)) dτ, r = m+ + 1, ..., q,

with β1 (f(0)) , ..., βm+ (f(0)) , µ1 (f(0)) , ..., µk+ (f(0)) , and α1 (f(0)) , ..., αl (f(0))
given by the system

m+∑
r=1

βr (f(0)) Cur +

k+∑
i=1

µi (f(0)) Cyi +

l∑
j=1

αj (f(0)) Cwj

= h0 +

q∑
r=m++1

∞∫
0

eτλr β̃r (f (τ)) dτ Cur,

where

C = R+ − CR− and β̃r (f) =
〈S (f) , ur〉

λr
.

Lemma 6.2. Let f, h ∈ X and assume that condition (56) is fulfilled. Then there
is a positive constant K (independent of f and h), such that

|Θ(0)|σ ≤ K |h0| , (74)

|Θ(f)−Θ(h)|σ ≤ G(|f |σ , |h|σ) |f − h|σ , (75)

where G : R+×R+ → R+ is a differentiable function with positive partial derivatives
and G(0, 0) = 0.

Proof. By condition (56) the linear map C = R+ − CR− is invertible on X+ =
span (u1, ..., um+ , y1, ..., yk+ , w1, ...., wl). The inverse map C−1 is bounded. We de-
note by P the matrix with u1, ..., uq, y1, ..., yk, z1, ..., zl, w1, ..., wl as columns (in that
order). Then the inverse matrix of P has the following expression

P−1 = D−1P̃ tB, where D = diag(λ1, ..., λq, γ1, ..., γk, 1, ..., 1),
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and P̃ is the matrix with u1, ..., uq, y1, ..., yk, w1, ..., wl, z1, ..., zl, as columns (note
the interchanged order of the columns). We obtain that

|Θ(0)|σ =
∣∣PP−1Θ(0)

∣∣
σ
≤ |P |

∣∣P−1Θ(0)
∣∣
σ

= |P |

∣∣∣∣∣∣
m+∑
r=1

βr (0) e−λrxP−1ur

+e−γxP−1

 k+∑
i=1

µi (0) yi +

l∑
j=1

αj (0) (wj − xzj)

∣∣∣∣∣∣
σ

≤ |P |

∣∣∣∣∣∣P−1
m+∑
r=1

βr (0)ur +

k+∑
i=1

µi (0) yi +

l∑
j=1

αj (0)wj

∣∣∣∣∣∣
+ |P | sup

x≥0
(e−

γ
2 xx)

∣∣∣∣∣∣P−1
l∑

j=1

αj (0) zj

∣∣∣∣∣∣
= |P |

∣∣P−1C−1h0∣∣+
2

γe

∣∣∣∣∣∣P−1
l∑

j=1

αj (0)wj

∣∣∣∣∣∣
 ≤ K0 |h0| ,

with K0 = |P |
∣∣P−1C−1∣∣ (1 +

2

γe
).

Here we used that

e−
γ
2 xx ≤ 2

γe
for all x ∈ R,

with equality if and only if x =
2

γ
.

Clearly,

|f |σ <∞⇒ |S(f)|σ <∞,

∣∣∣∣∣∣P−1
m+∑
r=1

(βr (f(0))− βr (h(0)))ur +

l∑
j=1

(αj (f (0))− αj (h (0)))wj

+

k+∑
i=1

(µi (f (0))− µi (h (0)))yi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣P−1C−1C
q∑

r=m++1

∞∫
0

eτλr
(
β̃r (f (τ))− β̃r (h (τ))

)
dτ ur

∣∣∣∣∣∣
≤

∣∣P−1C−1CP ∣∣
∣∣∣∣∣∣
∞∫
0

e−2τσ
q∑

r=m++1

(
β̃r (f (τ))− β̃r (h (τ))

)
P−1ur dτ

∣∣∣∣∣∣
≤

∣∣P−1C−1CP ∣∣ ∞∫
0

e−3τσ dτ
∣∣P−1B−1(S(f)− S(h))

∣∣
σ

,
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and

sup
x≥0

(e−
γ
2 xx)

∣∣∣∣∣∣P−1
l∑

j=1

(αj (f (0))− αj (h (0))) zj

∣∣∣∣∣∣
= sup

x≥0
(e−

γ
2 xx)

∣∣∣∣∣∣P−1
l∑

j=1

(αj (f (0))− αj (h (0)))wj

∣∣∣∣∣∣
≤ 2

γe

∣∣∣∣∣∣P−1
m+∑
r=1

(βr (f(0))− βr (h(0)))ur +

l∑
j=1

(αj (f (0))− αj (h (0)))wj

+

k+∑
i=1

(µi (f (0))− µi (h (0)))yi)

∣∣∣∣∣∣ .
Hence, we obtain

|Θ(f)−Θ(h)|σ
=
∣∣PP−1 (Θ(f)−Θ(h))

∣∣
σ
≤ |P |

∣∣P−1 (Θ(f)−Θ(h))
∣∣
σ

≤ |P | sup
x≥0

 ∞∫
x

e(3x−2τ)σ

∣∣∣∣∣∣P−1
q∑

r=m++1

(β̃r (f (τ))− β̃r (h (τ)))ur

∣∣∣∣∣∣ dτ
+

x∫
0

e(2τ−x)σ

∣∣∣∣∣∣P−1
m+∑
r=1

(β̃r (f (τ))− β̃r (h (τ)))ur

∣∣∣∣∣∣ dτ
+ (e−

γ
2 xx)

∣∣∣∣∣∣P−1
l∑

j=1

(αj (f (0))− αj (h (0))) zj

∣∣∣∣∣∣
+

∣∣∣∣∣∣P−1
m+∑
r=1

(βr (f(0))− βr (h(0)))ur +

l∑
j=1

(αj (f (0))− αj (h (0)))wj

+

k+∑
i=1

(µi (f (0))− µi (h (0)))yi)

∣∣∣∣∣∣


≤ |P | (sup
x≥0

 ∞∫
x

e3(x−τ)σ dτ +

∞∫
0

e(τ−x)σ dτ

+ (1 +
2

γe
)
∣∣P−1C−1CP ∣∣ ∞∫

0

e−3τσ dτ)

∗
∣∣P−1B−1(S(f)− S(h))

∣∣
σ

≤ K1 |S(f)− S(h)|σ , with K1 =
1

3σ
|P |
∣∣∣D−1P̃ t∣∣∣ (4 + (1 +

2

γe
)
∣∣P−1C−1CP ∣∣) .

By the assumption

|S(f)− S(h)| ≤ K2G(|f | , |h|) |f − h|

Therefore,

|S(f)− S(h)|σ ≤ K2G(|f | , |h|) |f − h|σ ≤ K2G(|f |σ , |h|σ) |f − h|σ .

Let K = max(K0,K1K2).
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Theorem 6.3. Let condition (56) be fulfilled. Then there is a positive number δ0,
such that if

|h0| ≤ δ0,

then the system (66) has a unique solution f = f(x) in SR for a suitable chosen R.

Proof. By estimates (74) and (75), there is a positive number K such that

|Θ(f)|σ = |Θ(f)−Θ(0) + Θ(0)|σ ≤ K(|h0|+G(|f |σ , 0) |f |σ) (76)

if f ∈ X .

Let R = K + 1 and let δ0 be a positive number, such that G(Rδ0, Rδ0) ≤ 1

R
. By

estimates (75) and (76)

|Θ(f)|σ ≤ (
K

R
+G(R |h0| , R |h0|))R |h0| ≤ R |h0|

and

|Θ(f)−Θ(h)|σ ≤ KG(R |h0| , R |h0|) |f − h|σ ≤
K

K + 1
|f − h|σ ,

if f, h ∈ SR and |h0| ≤ δ0. The theorem follows by the contraction mapping
theorem.

Theorem 6.4. The solution f = f(x) of Theorem 6.3 is a solution of the system
(55) if and only if P+

0 f(0) = 0.

Proof. The solution f = f(x) of Theorem 6.3 is a solution of the system (55) if and
only if P+

0 f(x) = 0. The theorem follows by the relations

µi(f(x)) = µi(f(0))e−γx, i = 1, ..., k+,

αj(f(x)) = αj(f(0))e−γx, j = 1, ..., l,

that are fulfilled for any solution f = f(x) of Theorem 6.3.

We denote by Iγ the linear solution operator

Iγ(h0) = f(0),

where f(x) is given by 
B
df

dx
+ Lf + γBP+

0 f = 0

Cf(0) = h0
f → 0 as x→∞

.

Similarly, we denote by Iγ the nonlinear solution operator

Iγ(h0) = f(0),

where f(x) is given by
B
df

dx
+ Lf = S(f, f)− γBP+

0 f

Cf(0) = h0
f → 0 as x→∞

.

By Theorem 6.4, the solution of Theorem 6.3 is a solution of the problem (55) if
and only if P+

0 Iγ(h0) ≡ 0.
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We now proceed with an orthonormalization process. Let

ri =
r′i√

〈r′i, r′i〉B+

, with

r′i = Cyi −
m+∑
r=1

〈Cyi, Cur〉B+

〈Cur, Cur〉B+

Cur −
i−1∑
j=1

〈Cyi, rj〉B+
rj 6= 0, i = 1, ..., k+,

and

rk++i =
r′k++i√〈

r′k++i, r
′
k++i

〉
B+

, with

r′k++i = Cwi −
m+∑
r=1

〈Cwi, Cur〉B+

〈Cur, Cur〉B+

Cur −
k++i−1∑
j=1

〈Cwi, rj〉B+
rj 6= 0, i = 1, ..., l.

Then

P+
0 Iγ ≡ 0⇔ h0 ∈ R⊥B+ , where

R⊥B+ =
{
u ∈ Rn

+
∣∣∣ 〈u, ri〉B+

= 0 for i = 1, ..., k+ + l
}

and

Iγ(h0) ≡ Ĩγ(a1, ..., ak++l, h1), h0 =

k++l∑
i=1

airi + h1, with

h1 ∈ R⊥B+ and ai = 〈h0, ri〉B+
.

Lemma 6.5. Suppose that P+
0 Iγ(h0) ≡ 0. Then h0 is a function of h1 if 〈h0, h0〉B+

is sufficiently small.

Proof. It is obvious that Iγ(0) = 0 and that we for the Fréchet derivative of Iγ(εh0)
have

d

dε
Iγ(εh0)

∣∣∣∣
ε=0

= Iγ(h0).

Then

∂

∂ai

〈
Ĩγ(a1, ..., ak++l, h1), u

〉
B

∣∣∣∣
(0,...,0)

=
d

dε
〈Iγ(εri), u〉B

∣∣∣∣
ε=0

= 〈Iγ(ri), u〉B 6= 0,

where u = yi if i = 1, ..., k+ and u = zi−k+ if i = k+ + 1, ..., k+ + l. By the implicit

function theorem,
〈
Ĩγ(a1, ..., ak++l, h1), y1

〉
B

= 0 defines a1 = a1(a2, ..., ak++l, h1).

By induction
a1 = a1(h1), ..., ak++l = ak++l(h1).
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