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This paper reports on the planning of a pilot study where the aim is to develop and investigate 

teaching practices, using connected classroom technology (CCT), to support formative classroom 

practices in mathematics. The focus is on the design of a teaching unit including a whole-class 

discussion drawing on students’ computer-based work. The paper outlines both generic and topic-

specific theories underpinning the design. Moreover, findings from a previous study, in terms of 

student responses to a task developed for a dynamic mathematics software environment, are used in 

the planning. One important issue addressed in this paper is the sequencing of student responses to 

display and use as a basis for whole-class discussions.  
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INTRODUCTION 

In a concluding paragraph of a survey of the research on technology use in upper secondary 

mathematics education, Hegedus et al. (2017) present some practically oriented questions to consider 

in the future. For example,  

… is there, or could there be, a taxonomy for orchestrating student digital work? How

can the teacher make best use of student created contributions? What new opportunities 

of interaction are there between the teacher and the students and what is the role of the 

teacher within these new forms of interactions? (p. 32) 

These types of question have been addressed by studies investigating the educational use of the type 

of technology referred to as Connected Classroom Technology (CCT). Irving (2006) defines CCT as 

“… a networked system of personal computers or handheld devices specifically designed to be used 

in a classroom for interactive teaching and learning.” (p. 16). Technological development in this area 

has led to more sophisticated teaching tools to support richer classroom discourse. For example, 

Clark-Wilson (2010) found how teachers who used a CCT system over a period of a few months 

developed their teaching towards new types of formative assessment practices. When describing the 

most ‘desirable’ feature of CCT, the teachers emphasised the enhanced opportunity of monitoring 

students’ computer-based work during the lesson. For example this helped the teachers to identify 

‘interesting screens’ to share with the whole class to promote a rich classroom discourse. Although 

the literature identifies promising opportunities provided by CCT, there is still a challenge for teachers 

in orchestrating (in the sense used by Hegedus) these types of teaching practice.  

This paper reports on preparation for a project, located in a Swedish upper secondary school, which 

aims to develop methods and procedures for using CCT to support formative classroom practices in 

mathematics, and so to develop design principles to guide teaching activities using CCT. In this paper, 

we focus on the design, for a pilot study, of a teaching unit using CCT to support a formative 

classroom practice in mathematics. The design is guided by both generic and topic-specific theories. 
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GENERIC THEORIES GUIDING THE DESIGN 

In the pilot study, a teaching unit will be trialled. The design of  this teaching unit is guided by three 

generic theories: first, the theoretical framework for formative assessment (FA) by Black and William 

(2009); second, the three technological functionalities identified by the European project Formative 

Assessment in Science and Mathematics Education (FaSMEd) (e.g. Cusi, Morselli, & Sabena, 2017); 

and finally the model of five practices as a tool for “orchestrating productive mathematical 

discussions” by Stein, Engle, Smith, and Hughes (2008). The framework for formative assessment 

(Black & Wiliam, 2009) consists of five key strategies and three agents (teacher, learner, peer). The 

FA strategies are  

(1) clarifying and sharing learning intentions and criteria for success; 

(2) engineering effective classroom discussions and other learning tasks that elicit evidence 

of student understanding; 

(3) providing feedback that moves learners forward; 

(4) activating students as instructional resources for one another; and 

(5) activating students as the owners of their own learning (p. 8). 

While the teacher takes the initiative in the first strategy, it is also important that students are actively 

engaged, e.g. by discussing the learning intensions. The second strategy aims to identify current 

student understandings and misunderstandings by making their thinking visible. To do this, the 

teacher can use various tactics, e.g. using carefully designed tasks that explicitly require students to 

explain their thinking. However, it is not enough to make students’ thinking visible; as the third 

strategy indicates, the teacher also needs to use this information to provide feedback that guides 

learners towards the learning goals. The fifth strategy involves helping students to become aware of 

their own learning process so as to be able to perform self-assessment and self-regulation. Finally, in 

the fourth strategy, to act as learning resources for one another, students need to learn to collaborate, 

e.g. to provide as well as receive peer feedback (Black & Wiliam, 2009). 

The literature on formative assessment has emphasized the potential of technology to enhance FA 

strategies in mathematics education (Clark-Wilson, 2010; Irving et al., 2016). The FaSMEd project 

investigated different aspects of the use of digital technology to promote formative assessment and 

developed a three dimensional theoretical framework. Besides the five key strategies and the three 

agents introduced above, the framework identifies a third dimension consisting of three technological 

functionalities: (a) sending and displaying, (b) processing and analysing, and (c) providing an 

interactive environment (Cusi et al., 2017).  

The first functionality facilitates teacher – student and student – student communication. The second 

functionality concerns different kinds of management and analysis of data. Finally, the third 

functionality concerns interactive environments in two ways; technology that enables students to 

explore mathematical relations individually (or in small groups) and technology that provides a shared 

platform for whole-class collaboration. 

Cusi et al. (2017) emphasize the challenge for teachers to plan whole-class discussions based on 

students’ computer-based work. Accordingly, they complemented the FaSMEd framework with the 

five practices proposed by Stein et al. (2008): 

(1) anticipating likely student responses to cognitively demanding mathematical tasks, 

(2) monitoring students’ responses to the tasks during the explore phase, 

(3) selecting particular students to present their mathematical responses during the discuss-

and-summarize phase, 

(4) purposefully sequencing the student responses that will be displayed, and 
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(5) helping the class make mathematical connections between different students’ responses 

and between students’ responses and the key ideas. (p. 321) 

Although this model focuses on how to follow up students’ previous work on problem solving tasks, 

results from a previous study (Fahlgren & Brunström, 2016) indicate that the model might be useful 

when following up students’ computer-based work as well. 

To summarize, the generic theoretical frames that will underpin the design of a teaching unit are the 

five key strategies for formative assessment (FA-1 to FA-5), the three technological functionalities 

(TF-1 to TF-3), and the five practices for orchestrating whole-class discussions (TP-1 to TP-5).  

GENERIC DESIGN PRINCIPLES FOR A TEACHING UNIT 

The planned teaching unit consists of three stages: introduction, pair work, and whole-class 

discussion. A description of the stages and how elements from each theory have been taken into 

account is presented below. 

Introduction. The teacher introduces the activity by clarifying the purpose (FA-1) and providing 

necessary instructions for performing the activity. The material, primarily in terms of e-worksheets, 

is delivered (TF-1) to pairs (or small groups) of students.  

Pair work. While the students are working on the computer-based activity (TF-3), they are prompted 

to send (TF-1) their responses to each subtask as they proceed. Students will be encouraged to agree 

on a common response to each subtask. The reason for this is twofold. Primarily, this obliges the 

students to communicate their mathematical reasoning to each other. Moreover, in this way the 

number of responses for the teacher to monitor is reduced.  

The teacher’s role during this stage is to monitor (exploiting TF-1 to carry out TP-2 as a basis for 

subsequent FA-2) the students’ work in two ways; on one hand the teacher follows all the students’ 

progression across the whole activity, and on the other hand, the teacher monitors all students’ 

responses to a particular item.  

The most critical issue for the teacher during this stage is to identify and select appropriate student 

responses (exploiting TF1 to carry out TP-3) to display and use as a basis for the whole-class 

discussion. Moreover, the teacher has to decide the sequencing of these responses (TP-4).  

Whole-class discussion. During this stage, the teacher purposefully displays the selected student 

responses so as to provide an instructive basis for the whole-class discussion (exploiting TF-1 to 

support FA-2, FA-3, FA-4, FA-5 in carrying out TP-5). Preferably, the teacher has had the 

opportunity to think about possible student responses in advance (TP-1), and hence, has prepared 

some useful questions to discuss in relation to different types of student responses. To conclude the 

activity, we suggest asking some evaluative (e.g. multiple-choice) questions (exploiting TF-1, TF-2 

to support FA-2). In this way, the students are provided a further opportunity to clarify or consolidate 

their mathematical thinking. For the teacher, on the other hand, this supplies information regarding 

the students’ current understanding, which will be useful in planning the subsequent teaching.  

TOPIC-SPECIFIC CONSIDERATIONS AND THEORIES GUIDING THE DESIGN 

In planning the teaching unit, careful attention needs to be given to the handling of student responses 

to the mathematical task in play. In this respect, we draw on  a previous study (Fahlgren & Brunström, 

2018) which investigated how small but potentially significant changes in wording might influence 

students’ explanatory responses in a dynamic mathematics software (DMS) environment. 
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These student responses were collected in a study involving 229 tenth grade students, from eight 

different classes, at an upper secondary school in Sweden. The students worked on a sequence of 

tasks designed for a DMS environment. In this particular task sequence, students were introduced to 

graphical representations of quadratic functions written in the standard form f(x) = ax2 + bx + c, and 

encouraged to examine the visual effect on the graph when changing the value of a parameter by 

using a slider tool. The students had previously worked with linear functions, linear equations and on 

solving quadratic equations algebraically. 

The task sequence included ‘explanation tasks’ where students were asked to explain their empirical 

observations made in the DMS environment. As a basis for planning the teaching unit to be used in 

the pilot study, we used findings relating to Task 1c (see Figure 1).  

Task 1 
(a) Investigate, by dragging the slider c, in what way the value of c alters the graph. Describe in your own 

words. 

(b) The value of the constant c can be found in the coordinate system. How? 

(c) Give a mathematical explanation why the value of c can be found in this way. 

 

Figure 1. The first task including a request for an explanation (subtask c) 

Briefly, the analysis of students’ responses to Task 1c identified the following elements of explanation 

(see Table 1) which could feature in a particular response.  

 
Code Explanation element 

A x = 0 gives y = c 

B c can be found where the graph intersects the y-axis (i.e. repeats the answer to the previous subtask) 

C Comparing with the standard linear equation, y = kx + m 

D c behaves like/corresponds to m 

E c is the constant term 

F c is independent of x 

G c is independent of a and/or b 

H solves for c 

I Providing example 

J Referring to the DMS feedback 

Table 1. The categories of explanation element in Task 1c 

These findings provide useful information about what kind of student responses to expect during this 

particular activity and within a similar context. To simplify the findings appropriately for the pilot 

study, we have dropped the categories G and H because there were very few answers in these 

categories. We have also merged the categories C and D, E and F, and I and J into the categories C/D, 

E/F, and I/J respectively.  

Based on these findings, and the assumption that all categories are represented among the student 

responses in a class, we suggest the sequencing in Table 2 when displaying different student responses 

as a basis for the whole-class discussion. 
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Order Category Comments 

1 B Since this is a repetition of the answer to the previous subtask, it might form a 

base for a whole-class discussion concerning the distinction between a 

description and an explanation in mathematics. 

2 I/J These responses encourage discussions about the suitability of using examples as 

mathematical explanations. 

3 C/D This links to a topic that the students’ have previously studied, and so are already 

familiar with, and provides a base for discussions about similarities and 

differences between the linear function and the quadratic function.  

4 E/F That c is the constant term and independent of x, naturally follows from the 

foregoing discussions. 

5 A Finally, the valid mathematical explanation is introduced and discussed 

Table 2. The suggested sequencing for displaying student responses. 

To investigate the presence of the different categories in the eight different classes, a further analysis 

was made. In this analysis, each single student response was categorized according to an order of 

precedence, based on the sequencing above. So, for example, a student response that only include the 

explanation element B, is categorized as B, while a student response that include both explanation 

element B and C or D, is categorized as C/D. Table 3 provides an overview of the presence of student 

responses across the eight classes, organized in the sequence suggested above. 

Class B (only) I/J C/D E/F A Total 

1 3 8 12 1 3 27 

2 5 3 13 2 1 24 

3 2 8 5 6 4 25 

4 1 1 18 3 3 26 

5 0 5 7 6 6 24 

6 4 3 12 3 2 24 

7 2 5 17 5 0 29 

8  2 2 13 12 2 31 

Total 19 (9%) 35 (17%) 97 (46%) 38 (18%) 21 (10%) 210  

Table 3. The presence of the categories of student responses in the eight classes. 

Table 3 indicates that all categories are represented in six out of eight classes. In particular, while the 

first response (B only) is relatively rarely offered (by around 10% of students overall) it is present in 

7 of the 8 classes; the next response (I/J) is offered (by nearly 20% of students overall) in every class; 

the following response (C/D) is offered (by between roughly 20% and 70% of students) in every 

class, indicating the prevalence of the linear analogy; the penultimate response (E/F) is offered (by 

nearly 20% of students overall) in every class; and while the final ‘desirable’ response (A) is relatively 

rarely offered (by 10% of students overall) it is present in 7 of the 8 classes. 
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Functions and graphs  

The literature points out various aspects to consider in the teaching of functions and graphs. One 

important aspect is the distinction between a ‘local’ and a ‘global’ view of functions (Leinhardt, 

Zaslavsky, & Stein, 1990). The local view is characterized by a point by point attention where the 

focus is on specific values of a function. A global view, on the other hand, draws attention to global 

features of a function such as the shape of its graph or the structure of its closed form equation. In 

Task 1a (see Figure 1), the focus is on how c alters the graph, which might promote a global view. In 

contrast, Task 1b encourages a local view by directing students’ focus on a specific point in the 

coordinate system. 

PLANNING FOR A WHOLE-CLASS DISCUSSION 

The main aims of the whole-class discussion are to (a) discuss what constitutes an appropriate 

mathematical explanation, (b) to clarify that x = 0 when a graph intersects the y-axis (local view), and 

(c) to clarify how changing the constant term translates the whole graph vertically (global view).  

Following the sequencing outlined in Table 2, and provided that all the categories of student responses 

(in Table 3) are present, we suggest that the categories are displayed one by one (by one or several 

examples of student responses). Of course, the teacher must be flexible in the orchestration of the 

discussion, however, we propose the following step-by-step guidance including some questions to 

discuss.  

(1) Category B 

What is the distinction between Task 1b and Task 1c? (i.e. what is the distinction between a 

description and an explanation in mathematics?) 

(2) Categories I and/or J 

Could ‘providing an example’ (Category I) be regarded as an explanation? 

Could referring to the DMS feedback (Category J) be regarded as an explanation? 

(3) Categories C and/or D 
What do m in f(x) = kx + m and c in f(x)=ax2 + bx + c have in common? 

This discussion might provide a natural link to the next category. 

(4) Categories E and/or F 
Could the explanation be strengthened? Why does this mean that the graph intersects the y-

axis when y=c? 

Preferably, this discussion leads into the final (and most desirable) response. 

(5) Category A 

These discussions should lead to a class agreement on what constitutes an approprate 

explanation in this particular case (Task 1c).  

To conclude the activity, we suggest using some follow-up questions. First, to consolidate students’ 

understanding that x = 0 gives the y-intercept (local view), we recommend the following question:  

What are the coordinates of the point where the function f(x) = (x – 2)2 intersects the y-axis? 

As a second follow-up question, we suggest the multiple-choice question in Figure 2.   
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                                                                                          Use the lower graph, f(x) = (x – 1)2 , to figure out                

                                                                                          which function the upper graph shows. 

            

 

 

 

 

 

 

Figure 2. The second follow-up question. 

The intention behind the latter question is to introduce the more general feature that changing the 

constant term translates the whole graph vertically (global view). 

CONCLUDING REMARKS 

The planned teaching unit will be trialled in four classes during the spring 2019. Preferably, the 

students would have access to both the DMS environment and the instructions and questions on the 

same screen display. However, we have not yet found any technical solutions that fulfill these 

pedagogical needs. Therefore, the students will use two computers; one displaying an e-worksheet 

and one displaying the DMS environment, in this case GeoGebra. After testing different available 

software systems, we decided to use the Desmos Classroom Activity as an e-worksheet where students 

can submit their responses. 

Data in terms of field notes from classroom observations, audio recordings from the classroom and 

from teacher interviews, and screen recordings of the teachers’ computer will be collected. In the 

analytical process, both generic and topic-specific theories will be used.  

Reconsidering the potentials suggested in the literature on technology-enhanced strategies for 

developing formative classroom practices in mathematics (Clark-Wilson, 2010; Cusi et al., 2017; 

Irving et al., 2016), several questions appear. For example, what particular CCT features are useful? 

And how could these features be utilized to provide the teacher with appropriate information about 

their students’ mathematical thinking during the lesson, and to support the whole-class discussion? 

These and related questions will guide the analysis. At the time of the conference, we will be able to 

report and discuss some results from the pilot study.  
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