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General model

∂uε

∂t
(t, x) = ∇ · [A(

x

ε
, v ε)∇uε(t, x)] + additional terms

dv ε(t, x) = −1

ε
(v ε(t, x)− uε(t, x))dt +

√
Q

ε
dW (t, x),

(1)

A(·, ·) is the permeability of the medium, Q is a bounded linear
operator of trace class defined on L2(D) and W a standard
L2(D)-valued Brownian motion.
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Scales

Here we have time scale and spatial scale: (t, tε) and (x , xε ).

v ε is the fast variable while uε is the slow variable.

Then the goal is to pass to the limit in ε.

To find the homogenized (effective) equation.
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Diffusion Reaction model

∂uε

∂t
(t, x) = div

(
A
(x
ε

)
∇uε(t, x)

)
+ α

(x
ε
, v ε(t, x)

)
uε(t, x) + f (t, x)

dv ε(t, x) = −1

ε
(v ε(t, x)− uε(t, x))dt +

√
Q

ε
dW (t, x),
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Diffusion Convection model

∂uε

∂t
(t, x) = div

(
A
(x
ε

)
∇uε(t, x)

)
+ α

(x
ε
, v ε(t, x)

)
∇uε(t, x) + f (t, x)

dv ε(t, x) = −1

ε
(v ε(t, x)− uε(t, x))dt +

√
Q

ε
dW (t, x),
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Multicontinuum model

∂uε1
∂t

= div (Aε1∇uε1) + αε (v ε1 , v
ε
2 ) (uε2 − uε1) + f1,

∂uε2
∂t

= div (Aε2∇uε2) + αε (v ε1 , v
ε
2 ) (uε1 − uε2) + f2,

dv ε1 = −1

ε
(v ε1 − g1(uε1, u

ε
2)dt +

√
Q1

ε
dW1(t, x),

dv ε2 = −1

ε
(v ε2 − g2(uε1, u

ε
2)dt +

√
Q2

ε
dW2(t, x)

+ Boundary Conditions, Initial Conditions,

where g1, g2 are Lipschitz.
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Literature on averaging

1 For stochastic differential equations:

R.Z. Khasminskii, on the principle of averaging the Itô
stochastic differential equation, Kybernetika, (1968).
A.Yu. Veretennikov, On the averaging principle for systems of
stochastic differential equations, Mat. USSR Sb., (1991).
M. Freidlin, A. Wentzell, Averaging principle for stochastic
perturbations of multifrequency systems, Stochastics and
Dynamics, (2003).

2 For stochastic partial differential equations:

S. Cerrai, A Khasminskii type averaging principle for stochastic
reaction-diffusion equations, Ann. Appl. Probab., (2009)
S. Cerrai, M. Freidlin, Averaging principle for a class of
stochastic reaction-diffusion equations, Probab. Theory
Related Fields, (2009).
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Introduction to the homogenization

Assume to have a sequence of partial differential operators Lε
(with oscillating coefficients) and a sequence of solutions uε which
for a given domain D and source f

Lεuε = f in D (2)

complemented by appropriate boundary conditions. If we assume
that uε converges in some sense to some u, we look for a so-called
homogenized operator L such that

Lu = f in D (3)

Passing from (2) to (3) is the homogenization process.
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Typically

Lεu
ε = −∇ · (a(x ,

x

ε
)∇uε).

Formally, in order to find the form of L, one writes the expansion

uε(x) = u0(x ,
x

ε
) + εu1(x ,

x

ε
) + ε2u2(x ,

x

ε
) + . . . (4)

where each ui (x , y) is periodic in y . Inserting (4) into (2) leads to
a cascade of equations for ui and averaging wrt to y the equation
for u0 gives (3).
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Typically
Lu0(x) = −∇ · (a(x)∇u0(x)),

where

a(x) =

∫
Y
〈a(x , y)(I +∇yN), (I +∇yN)〉dy ,

such that N is solution of the cell problem:

− div(a(I +∇N)) = 0 inY

and y → N(x , y)- is Y periodic.
Now, other arguments are needed to prove the convergence of the
sequence uε to u0.
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Homogenization methods

1 The energy method

2 The two-scale convergence
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Literature on homogenization

1 Homogenization of the Stokes problem in perforated domains

Sánchez-Palencia (1980) (asymptotic expansion method)
L. Tartar (the energy method)
G. Allaire (1992) (two scale convergence method)

2 Homogenization of PDEs with random coefficients or
stochastic forcing in non perforated domains

Bourgeat, A. Mikelić and Wright in (1994)
P. A. Razafimandimby, M. Sango, and J. L. Woukeng (2012)

3 Homogenization of SPDEs in perforated domains (at its
infancy)

W. Wang and J. Duan (2007)
H. Bessaih, Y. Efendiev and F. Maris (2015, 2016)
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Assumptions

The α satisfies the following conditions:

α(·, x) ∈ L2
per (Y ), (5)

for every x ∈ R3.
α(y , ·) ∈ Lipb(R), (6)

for every y ∈ Y , with

‖α(y , ·)‖Lipb(R) ≤ C , (7)

The matrix A = (aij)1≤i ,j≤3 ∈ L∞(Y ;R3×3) is strictly positive and
bounded uniformly in y ∈ Y , i. e. there exist 0 < m < M such
that

mξ2 ≤ A(y)ξξ ≤ Mξ2, (8)

for almost every y ∈ Y and ξ ∈ R3.
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For any ε > 0, we denote by

Aε : R3 → R3×3, Aε(x) = A
(x
ε

)
, (9)

and

αε : L2(D)→ L∞(D), αε(η)(x) = α
(x
ε
, η(x)

)
. (10)

We assume that W is Bm on a filtered probability space
(Ω,F ,Ft ,P). Q is a bounded operator on L2(D) of trace class,
and that f ∈ L2(0,T ; L2(D)) and uε0, v

ε
0 ∈ L2(D)
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Compare with the existing literature

E. Pardoux, A. L. Piatniski (2003), Homogenization of a nonlinear
random parabolic partial differential equation

∂uε

∂t
= ∇ · (A(

x

ε
, v(

t

ε2
))∇uε) +

1

ε
g(

x

ε
, v(

t

ε2
), uε)

dv = b(v)dt + σ(v)dW ,
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In Cerrai-Friedlin (2009), they consider

du = [A1u + B1(u, v)]dt + G1(u, v)dW

dv =
1

ε
[A2v + B2(u, v)]dt +

1√
ε
G2(u, v)dW .

Where B1 and B2 are Lipschitz-Continuous.
In particular, our term α(·, v ε)uε or α(·, v ε)∇uε do not satisfy
these assumptions.
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If uε0 ∈ L2(D) and v ε0 ∈ L2(Ω; L2(D)) then there exists a unique
global solution uε ∈ L∞(Ω;C ([0,T ]; L2(D) ∩ L2(0,T ;H1

0 (D))))
and v ε ∈ L2(Ω;C ([0,T ]; L2(D)): P a.s.∫

D
uε(t)φ−

∫
D
uε0φ+

∫ t

0

∫
D
Aε∇uε(s)∇φ+

∫ t

0

∫
D
αε(v ε)uεφ

=

∫ t

0

∫
D
f (s)φ,

for every t ∈ [0,T ] and every φ ∈ H1
0 (D), and

v ε(t) = v ε0e
−t/ε+

1

ε

∫ t

0
uε(s)e−(t−s)/εds+

1√
ε

∫ t

0
e−(t−s)/εdW (s).
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Uniform estimates

sup
ε>0
‖uε‖L∞(Ω;L2(0,T ;H1

0 (D))) ≤ CT , (11)

sup
ε>0
‖uε‖L∞(Ω;C([0,T ];L2(D))) ≤ CT , (12)

and

sup
ε>0

∥∥∥∥∂uε∂t
∥∥∥∥
L∞(Ω;L2(0,T ;H−1(D)))

≤ CT . (13)

sup
ε>0

E sup
t∈[0,T ]

‖v ε(t)‖2
L2(D) ≤ CT . (14)
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The fast motion equation

For fixed ξ ∈ L2(D):{
dv ξ = −(v ξ − ξ)dt +

√
QdW ,

v(0) = η.
(15)

This equation admits a unique mild solution
v ξ(t) ∈ L2(Ω;C (0,T ; L2(D))) given by:

v ξ(t) = ηe−t + ξ(1− e−t) +

∫ t

0
e−(t−s)

√
QdW . (16)
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Let us define the transition semigroup Pξt associated to the
equation (15)

Pξt Φ(η) = EΦ(v ξ,η(t)), (17)

for every Φ ∈ Bb(L2(D)) and every η ∈ L2(D).
Let µξ be the associated invariant measure on L2(D). We recall

that it is invariant for the semigroup Pξt if∫
L2(D)

Pξt Φ(z)dµξ(z) =

∫
L2(D)

Φ(z)dµξ(z),

for every Φ ∈ Bb(L2(D)).
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The equation (15) admits a unique ergodic invariant measure µξ

that is strongly mixing and gaussian with mean ξ and operator Q.
We also have:∣∣∣∣∣Pξt Φ(η)−

∫
L2(D)

Φ(z)dµξ(z)

∣∣∣∣∣ ≤ c[Φ]e−t(1+‖η‖L2(D) +‖ξ‖L2(D)),

for any Lipschitz function Φ defined on L2(D), where [Φ] is the
Lipschitz constant of Φ.
We need more refined results for the fast motion equation.
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So for any ξ, η ∈ L2(Ω,Ft0 , L
2(D)), and a.e. ω ∈ Ω we have:

E
(
‖v ξ,η(t)‖2

L2(D)|Ft0

)
≤ 2

(
‖η‖2

L2(D)e
−2(t−t0) + ‖ξ‖2

L2(D) + TrQ
)
,

and

E

(∣∣∣∣∣Pξ(ω)
t Φ(η(ω))−

∫
L2(D)

Φ(z)dµξ(ω)(z)

∣∣∣∣∣ ∣∣∣Ft0

)
≤

c[Φ]e−(t−t0)(1 + ‖η(ω)‖L2(D) + ‖ξ(ω)‖L2(D)),

Florian Maris Stochastic homogenization of multicontinuum models



Key Lemma

Lemma

Let Φ ∈ Cu([0,T ]; L∞(Ω; Lip(L2(D)))) be an Ft - measurable
process on Lip(L2(D)), and let 0 ≤ t0 < t0 + δ ≤ T. For
ξ, η ∈ L2(Ω,Ft0 , L

2(D)), let v ξ,η be the previous solution. We
have:

E

(∣∣∣∣∣1δ
∫ t0+δ

t0

(
Φ(s, v ξ,η(s))−

∫
L2(D)

Φ(s, z)dµξ(z)

)
ds

∣∣∣∣∣ ∣∣∣Ft0

)
≤

c
(
1 + ‖η‖L2(D) + ‖ξ‖L2(D)

)(‖Φ‖√
δ

+
√
‖Φ‖[Φ](δ)

)
,

(18)

where [Φ] is the modulus of uniform continuity of Φ.
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This lemma is crucial because, we need to apply the semigroup Pξt
to a function of the form

Φε(s, η) =

∫
D
αε(η)uε (εs) dx
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The cell problem

We introduce χ : Y → R the solution of the cell problem

{
div (A(y) (I +∇χ(y))) = 0 in Y ,

χ −Y periodic,

Florian Maris Stochastic homogenization of multicontinuum models



Averaged operators

We introduce the following averaged operators:

αε : L2(D)→ L∞(D), αε(ξ) =

∫
L2(D)

αε(η)dµξ(η)

α(ξ) =

∫
L2(D)

(∫
Y
α(y , z)dy

)
dµξ(z).

A =

∫
Y
A(y) (I +∇χ(y)) dy .
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Our main result of the diffusion reaction equation

Theorem (Bessaih-Efendiev-Maris, 2019)

Assume the sequence uε0 is uniformly bounded in H1
0 (D)) and

strongly convergent in L2(D) to some function u0, and v ε0 is
uniformly bounded in L2(Ω; L2(D)). Then, there exists
u ∈ L2(0,T ;H1

0 (D))) such that uε converges in probability to u in
L2(0,T ;H1

0 (D))) and u is the solution of the following
deterministic equation:

∂u

∂t
= div

(
A∇u

)
+ α(u)u + f in D,

u = 0 on ∂D,
u(0) = u0 in D.

(19)
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Our main result of the convection diffusion equation

Theorem (Bessaih-Efendiev-Maris, 2020)

Assume the sequence uε0 is uniformly bounded in H1
0 (D)) and

strongly convergent in L2(D) to some function u0, and v ε0 is
uniformly bounded in L2(Ω; L2(D)). Then, there exists
u ∈ L2(0,T ;H1

0 (D))) such that uε converges in probability to u in
L2(0,T ;Hs

0(D))) where 0 ≤ s < 1 and u is the solution of the
following deterministic equation:

∂u

∂t
= div

(
A∇u

)
+ αK (u)∇u + f in D,

u = 0 on ∂D,
u(0) = u0 in D.

(20)

αK (y , η) = α(y , η) (I +∇χ(y))
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Our main result of the multicontinuum equation

Theorem (Bessaih-Efendiev-Maris, 2020)

Assume similar properties for initial conditions. Then, there exist
u1, u2 ∈ L2(0,T ;H1

0 (D)) ∩ C ([0,T ]; L2(D)) such that uε1, u
ε
2

converge in probability to u1, u2:
∂u1

∂t
= div

(
A1∇u1

)
+ α(g1(u1, u2), g2(u1, u2))(u2 − u1) + f1 in D,

∂u2

∂t
= div

(
A2∇u2

)
+ α(g1(u1, u2), g2(u1, u2))(u1 − u2) + f2 in D,

+ initial conditions, boundary conditions,
(21)
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Sketch of the proof

We need to pass to the limit in ε on the variational formulation

∫
D
uε(t)φ−

∫
D
uε0φ+

∫ t

0

∫
D
Aε∇uε(s)∇φ+

∫ t

0

∫
D
αε(v ε)uεφ

=

∫ t

0

∫
D
f (s)φ,

Here, we use tightness arguments and pass to the limit in
distribution only. After changing the space of probability, the
sequence uε given by Skorokhod theorem converges a.s. to u
strongly in L2(0,T ;H1

0 (D))
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∫ t

0

∫
D
αε(v ε)uεφ = Sε1 + Sε2 + Sε3

Sε1 =

∫ T

0

∫
D

(αε(v ε(t))− αε(uε(t)))uε(t)φdxdt,

Sε2 =

∫ T

0

∫
D

(αε(uε(t))uε(t)− αε(u(t))u(t))φdxdt,

Sε3 =

∫ T

0

∫
D

(αε(u(t))u(t)− α(u(t))u(t))φdxdt.
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Key steps-for Sε1

Fix nε a positive integer and let δε =
T

nε
. We define ũε as the

piecewise constant function:

ũε(t) = uε(kδε) for t ∈ [kδε, (k + 1)δε). (22)

We define also the sequence ṽ ε as the solution of: dṽ ε(t, x) = −1

ε
(ṽ ε(t, x)− ũε(t, x))dt +

√
Q

ε
dW (t, x),

ṽ ε(0, x) = v ε0 (x).
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A simple calculation shows that

lim
δε→0

‖ũε − uε‖L∞(0,T ;L2(D)) = 0, (23)

so we also have that

lim
δε→0

‖ṽ ε − v ε‖L∞(0,T ;L2(D)) = 0, (24)
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Now ∫ T

0

∫
D

(αε(v ε(t))− αε(uε(t)))φε(t)dxdt

−
∫ T

0

∫
D

(αε(ṽ ε(t))− αε(ũε(t)))φε(t)dxdt =∫ T

0

∫
D
φε(t) (αε(v ε(t))− αε(ṽ ε(t))) dxdt

+

∫ T

0

∫
D
φε(t) (αε(ũε(t))− αε(uε(t))) dxdt,

→ 0
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∫ T

0

∫
D

(αε(ṽ ε(t))− αε(ũε(t)))φε(t)dxdt

=
nε−1∑
k=0

∫ (k+1)δε

kδε

∫
D

(αε(ṽ ε(t))− αε(ũε(t)))φε(t)dxdt.
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So, given the estimates uniform estimates for uε, and choosing the
δε appropriately we can get that

lim
ε→0

E |Sε1 | = 0.
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For the convergence of Sε3 , we used the homogenization results

G. Allaire (1991), Homogenization of the Navier-Stokes
Equations with a Slip Boundary Condition.
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For any t ∈ [0,T ], F εt : L2(D)→ L2(D),

F εt (z)(x) =

(
α
(x
ε
, z(x)

)
−
∫
Y
α (y , z(x))

)
u(t, x).

By a density argument, we show that: for any z ∈ L2(D), for every
t ∈ [0,T ] and a.e. ω ∈ Ω,

lim
ε→0

F εt (z) = 0 in L2(D), weakly .
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The sequence being also uniformly bounded by
‖u‖L∞(Ω;C([0,T ];L2(D))), Vitali’s convergence theorem implies

lim
ε→0

∫
L2(D)

F εt (z)dµu(t)(z) = 0 in L2(D),

which can be rewritten as

lim
ε→0

αε(u(t))u(t)− α(u(t))u(t) = 0 in L2(D).

This implies that P a.s. and for every t ∈ [0,T ]

lim
ε→0

∫
D

(αε(u(t))u(t)− α(u(t))u(t))φψ′(t)dx = 0.
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The sequence being also uniformly bounded by
c‖u‖L∞(Ω,C([0,T ];L2(D)))‖φ‖L∞(D)‖ψ′‖L∞[0,T ]. We apply the
bounded convergence theorem and integrate over Ω× [0,T ] and
get that

lim
ε→0

E |Sε3 | = 0.

The convergence of Sε2 is simpler:

E |Sε2 | ≤ c‖φ‖L∞(D)‖ψ‖L∞[0,T ]E ‖uε − u‖L1(0,T ;H1
0 (D))) .

implies that

lim
ε→0

E |Sε2 | = 0.
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Combining the convergences of Sε1 , Sε2 and Sε3 we get that

lim
ε→0

E
∣∣∣∣∫ T

0

∫
D

(αε(v ε(t))uε(t)− α(u(t))u(t))φdxdt

∣∣∣∣ = 0.
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Some remarks

Tackle the full diffusion problem

Tackle the case of coefficient dependent on time, the
non-autonomous case

Generalize to the case of SPDEs for the particle equations

Find some rate of convergence. This is related to better
convergence, like convergence in mean.
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