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Introduction

Toy problem

Example 1

We consider the following ODE:

∂tu = −u3. (1)

Multiplying both sides of (1) by ∂tu, we have

|∂tu|2 = −u3∂tu = −∂t

(
1

4
u4
)

Namely,

∂t

(
1

4
u4
)
+ |∂tu|2 = 0. (2)

Integrating both sides of (2), we obtain

1

4
|u(t)|4 +

∫ t

0
|∂tu(s)|2ds =

1

4
|u(0)|4.
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Introduction

Finite difference schemes for the toy problem

Example 1

∂tu = −u3 (1)

∆t; a time mesh size
U (n); the approximation to u(n∆t)

For example, we have the following finite difference schemes for (1):

U (n+1) − U (n)

∆t
= −

(
U (n)

)3
,

U (n+1) − U (n)

∆t
= −

(
U (n+1)

)3
,

U (n+1)−U (n)

∆t
= −

(
U (n+1)

)3
+
(
U (n+1)

)2
U (n)+U (n+1)

(
U (n)

)2
+
(
U (n)

)3
4

.

(3)

We focus on the scheme (3).
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Introduction

The structure-preserving scheme for the toy problem

∂tu = −u3 (×∂tu)

⇒ ∂t

(
1

4
u4

)
+ |∂tu|2 = 0

⇒ 1

4
|u(t)|4 +

∫ t

0

|∂tu(s)|2ds =
1

4
|u(0)|4

∆t; a time mesh size
U (n); the approximation to u(n∆t)

U (n+1)−U (n)

∆t
= −

(
U (n+1)

)3
+
(
U (n+1)

)2
U (n)+U (n+1)

(
U (n)

)2
+
(
U (n)

)3
4

.

(3)
Multiplying both sides of (3) by (U (n+1) − U (n))/∆t, we have∣∣∣∣∣U (n+1)−U (n)

∆t

∣∣∣∣∣
2

= −
(
U (n+1)

)3
+
(
U (n+1)

)2
U (n)+U (n+1)

(
U (n)

)2
+
(
U (n)

)3
4

U (n+1)−U (n)

∆t

= − 1

∆t

{
1

4

(
U (n+1)

)4
− 1

4

(
U (n)

)4}
.
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)2
U (n)+U (n+1)

(
U (n)

)2
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(
U (n)

)3
4

.

(3)
Multiplying both sides of (3) by (U (n+1) − U (n))/∆t, we have

1

∆t

{
1

4

(
U (n+1)

)4
− 1

4

(
U (n)

)4}
+

∣∣∣∣∣U (n+1)−U (n)

∆t

∣∣∣∣∣
2

= 0. (4)

Summing both sides of (4) from 0 to n− 1, we obtain

1

4

(
U (n)

)4
+

n−1∑
l=0

∣∣∣∣∣U (n+1)−U (n)

∆t

∣∣∣∣∣
2

∆t =
1

4

(
U (0)

)4
.
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Introduction

A failure case of a numerical computation

We consider the following Cahn–Hilliard equation with the homogeneous
Neumann boundary conditions:{

∂tu = ∂2
x(−γ∂2

xu+ u3 − u), in (0, L)× (0, T ],

∂xu(x, t)|x=0,L = ∂3
xu(x, t)

∣∣
x=0,L

= 0, in (0, T ].

Figure 1–2 show the numerical results obtained by the Runge–Kutta
scheme. The numerical computation by this scheme fails when the time
mesh size is coarse.

Fig. 1: ∆t = 1/2500 Fig. 2: ∆t = 1/25000
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Introduction

The dissipative and conservative properties{
∂tu = ∂2

x(−γ∂2
xu+ u3 − u), in (0, L)× (0, T ],

∂xu(x, t)|x=0,L = ∂3
xu(x, t)

∣∣
x=0,L

= 0, in (0, T ].

The solution u to the above problem satisfies the following energy
dissipation and mass conservation:

d

dt
J(u(t)) ≤ 0,

∫ L

0
u(x, t)dx =

∫ L

0
u(x, 0)dx,

where the the “global energy” J and “local energy” G are defined by

J(u) :=

∫ L

0
G(u, ∂xu)dx, G(u, ∂xu) :=

γ

2
|∂xu|2 +

1

4
u4 − 1

2
u2.

Remark

In generic numerical methods, such as the Runge-Kutta method, the
above essential structure of the equation is highly likely to be
destroyed.
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The dissipative and conservative properties{
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xu(x, t)
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dissipation and mass conservation:

d

dt
J(u(t)) ≤ 0,

∫ L

0
u(x, t)dx =

∫ L

0
u(x, 0)dx,

These figures show the time developments of the discrete energy and the
discrete mass by the Runge–Kutta scheme, respectively.
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Introduction

The dissipative and conservative properties{
∂tu = ∂2

x(−γ∂2
xu+ u3 − u), in (0, L)× (0, T ],
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dt
J(u(t)) ≤ 0,

∫ L

0
u(x, t)dx =

∫ L

0
u(x, 0)dx,

where the the “global energy” J and “local energy” G are defined by

J(u) :=

∫ L

0
G(u, ∂xu)dx, G(u, ∂xu) :=

γ

2
|∂xu|2 +

1

4
u4 − 1

2
u2.

Thus, we use the discrete variational derivative method (DVDM),
which is for designing numerical schemes which inherit the above
properties from the original equation (Furihata–Matsuo(2010)).
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Introduction

A successful case by DVDM

Figure 3 is the earlier result obtained by the Runge–Kutta scheme. Figure
4 is the one obtained by the discrete variational derivative scheme.

Fig. 3: Runge–Kutta (∆t=1/25000) Fig. 4: DVDM (∆t = 1/1000)

We can stably obtain the numerical solution by the discrete variational
derivative one even when the time mesh size ∆t is coarse.
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Introduction

The energy dissipation of the Cahn–Hilliard equation

G(u, ∂xu) =
γ

2
|∂xu|2 +

1

4
u4 − 1

2
u2, J(u) =

∫ L

0
G(u, ∂xu)dx.

The Cahn–Hilliard equation can be written as

∂tu = ∂2
x

(
δG

δu

)
,

where δG/δu = −γ∂2
xu+ u3 − u is the (first) variational derivative of G.

Then we can show the energy dissipation as follows:

d

dt
J(u) =

d

dt

∫ L

0
G(u, ∂xu)dx

=

∫ L

0

δG

δu
∂tudx+ (b.t) =

∫ L

0

δG

δu

{
∂2
x

(
δG

δu

)}
dx+ (b.t.)

= −
∫ L

0

{
∂x

(
δG

δu

)}2

dx+ (b.t.) ≤ 0.

We construct a structure-preserving scheme by retaining the relationship
between the equation and the variational derivative in a discrete setting.
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Introduction

Discrete operators

Notation

∆x := L/K; a space mesh size, ∆t; a time mesh size,

U
(n)
k ; the approximation to u(k∆x, n∆t),

U (n) :=
(
U

(n)
−1 , U

(n)
0 , . . . , U

(n)
K , U

(n)
K+1

)⊤
.

Definition 2

Let us define the difference operators δ+k , δ
−
k , δ

⟨1⟩
k , and δ

⟨2⟩
k concerning

subscript k by

δ+k fk :=
fk+1 − fk

∆x
, δ−k fk :=

fk − fk−1

∆x
,

δ
⟨1⟩
k fk :=

fk+1 − fk−1

2∆x
, δ

⟨2⟩
k fk :=

fk+1 − 2fk + fk−1

(∆x)2
(k = 0, 1, . . . ,K).

δ+k , δ
−
k , and δ

⟨1⟩
k correspond to ∂x, and δ

⟨2⟩
k corresponds to ∂2

x.
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Introduction

Discrete operator and summation-by-parts formula

Definition 3

We adopt the summation operator
∑K

k=0
′′ defined by

K∑
k=0

′′fk∆x :=
1

2
f0∆x+

K−1∑
k=1

fk∆x+
1

2
fK∆x for all {fk}K+1

k=−1 ∈ RK+3.

This operator corresponds to the integral:∫ L

0
f(x)dx.

Summation-by-parts formula

K∑
k=0

′′ (δ
+
k fk)(δ

+
k gk) + (δ−k fk)(δ

−
k gk)

2
∆x

=

K∑
k=0

′′(δ
⟨2⟩
k fk)gk∆x+ (b.t.).
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+
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+
k gk) + (δ−k fk)(δ

−
k gk)

2
∆x

=

K∑
k=0

′′(δ
⟨2⟩
k fk)gk∆x+ (b.t.).

Integration-by-parts formula∫ L

0
(∂xf(x))(∂xg(x))dx

=

∫ L

0
(∂2

xf(x))g(x)dx+(b.t.).
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Introduction

Discretization of the energy

We define the discrete local energy Gd,k by

Gd,k(U) :=
γ

2

(δ+k Uk)
2 + (δ−k Uk)

2

2
+

1

4
U4
k − 1

2
U2
k (k = 0, . . . ,K).

This Gd is a discrete analogue of G:

G(u, ∂xu) =
γ

2
|∂xu|2 +

1

4
u4 − 1

2
u2.

Accordingly, we define the discrete global energy Jd as follows:

Jd(U) :=

K∑
k=0

′′Gd,k(U)∆x.

This Jd corresponds to J :

J(u) =

∫ L

0
G(u, ∂xu)dx.

Remark

There are several selections of the discrete energy Gd. In general, a
different selection will lead us to a different scheme in DVDM.
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Introduction

Discrete variational derivative

Based on DVDM, we calculate the discrete variation Jd(U)−Jd(V ) to get
the discrete variational derivative by the summation-by-parts formula.

Remark

The discrete variational derivative δGd/δ(·, ·)k is defined so that the
following identity holds:

K∑
k=0

′′ (Gd,k(U)−Gd,k(V ))∆x =

K∑
k=0

′′ δGd

δ(U ,V )k
(Uk − Vk)∆x+ (b.t.).

The above identity is a discrete version of the Gâteaux differentiation:

lim
ε→0

∫ L

0

G(u+ εη, ∂xu+ ε∂xη)−G(u, ∂xu)

ε
dx =

∫ L

0

δG

δu
ηdx+ (b.t.),

where η: [0, L]× [0, T ] → R is a smooth function.
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Introduction

The structure-preserving scheme by DVDM

Thus, we define the scheme with the discrete variational derivative:

U
(n+1)
k − U

(n)
k

∆t
= δ

⟨2⟩
k

(
δGd

δ(U (n+1),U (n))k

)
(k=0, . . . ,K, n=0, 1, . . .),

δGd

δ(U (n+1),U (n))k
= −γδ

⟨2⟩
k

(
U

(n+1)
k +U

(n)
k

2

)

+

(
U

(n+1)
k

)3
+
(
U

(n+1)
k

)2
U

(n)
k +U

(n+1)
k

(
U

(n)
k

)2
+
(
U

(n)
k

)3
4

−
U

(n+1)
k + U

(n)
k

2
(k=0, . . . ,K, n=0, 1, . . .).

This scheme corresponds to the Cahn–Hilliard equation:

∂tu = ∂2
x

(
δG

δu

)
,

δG

δu
= −γ∂2

xu + u3 − u.
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Discretization of the nonlinear term

Discrete variational derivative
K∑
k=0

′′ (Gd,k(U)−Gd,k(V ))∆x =
K∑
k=0

′′ δGd

δ(U ,V )k
(Uk − Vk)∆x+ (b.t.),

δGd

δ(U ,V )k
= −γδ

⟨2⟩
k

(
Uk+Vk

2

)
+

U3
k + U2

kVk + UkV
2
k + V 3

k

4
− Uk + Vk

2
.

By the factorization, we can easily obtain the following identity:

K∑
k=0

′′
{(

1

4
U4
k − 1

2
U2
k

)
−
(
1

4
V 4
k − 1

2
V 2
k

)}
∆x

=

K∑
k=0

′′
{
1

4
(Uk−Vk)(U

3
k+U2

kVk+UkV
2
k +V 3

k )−
1

2
(Uk−Vk)(Uk+Vk)

}
∆x

=

K∑
k=0

′′
(
U3
k + U2

kVk + UkV
2
k + V 3

k

4
− Uk + Vk

2

)
(Uk − Vk)∆x.
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The discrete energy dissipation

d

dt
J(u) = −

∫ L

0

{
∂x

(
δG

δu

)}2

dx ≤ 0.

Then we can show the discrete energy dissipation by imposing suitable
discrete boundary conditions with which the boundary terms vanish.

Jd(U
(n+1))−Jd(U

(n))

∆t
=

1

∆t

K∑
k=0

′′
(
Gd,k(U

(n+1))−Gd,k(U
(n))
)
∆x

=

K∑
k=0

′′ δGd

δ(U (n+1),U (n))k

U
(n+1)
k − U

(n)
k

∆t
∆x+ (b.t.)

=

K∑
k=0

′′ δGd

δ(U (n+1),U (n))k

{
δ
⟨2⟩
k

(
δGd

δ(U (n+1),U (n))k

)}
∆x+ (b.t.)

= −1

2

K∑
k=0

′′

{∣∣∣∣δ+k( δGd

δ(U (n+1),U (n))k

)∣∣∣∣2+∣∣∣∣δ−k( δGd

δ(U (n+1),U (n))k

)∣∣∣∣2
}
∆x+(b.t.)

≤ 0 (n = 0, 1, . . .).
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The discrete mass conservation∫ L

0
u(x, t)dx =

∫ L

0
u(x, 0)dx.

Summing the following equation:

U
(n+1)
k − U

(n)
k

∆t
= δ

⟨2⟩
k

(
δGd

δ(U (n+1),U (n))k

)
, (k=0, . . . ,K, n=0, 1, . . .)

over k = 0, . . . ,K based on the trapezoidal rule, we can also show the
discrete mass conservation:

K∑
k=0

′′U
(n)
k ∆x =

K∑
k=0

′′U
(0)
k ∆x (n = 0, 1, . . .).

To summarize, by using DVDM,

1 we can construct a structure-preserving scheme that retains the
dissipative and conservative properties in a discrete setting,

2 we can stably obtain the numerical solution.
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The Allen–Cahn equation with a dynamic boundary condition

The Allen–Cahn equation with a dynamic boundary
condition
Let Ω := (0, L). We study the Allen–Cahn equation with a dynamic
boundary condition:

∂tu = ∂2
xu− u3 + u, in Ω× (0, T ],

∂tu(0, t) = ∂xu(x, t)|x=0 − (u(0, t))3 + u(0, t), in (0, T ],

∂tu(L, t) = − ∂xu(x, t)|x=L − (u(L, t))3 + u(L, t), in (0, T ],

The nonlinear term is the derivative of W (s) :=(1/4)(s2−1)2. Then, the
solution u of the problem satisfies the following total energy dissipation:

d

dt
{JAC(u(t)) +W (u(0, t)) +W (u(L, t))}

= −
∫ L

0

∣∣∣∣δGAC

δu

∣∣∣∣2 dx− |∂tu(0, t)|2 − |∂tu(L, t)|2 ≤ 0,

where the “local energy” GAC and the “global energy” JAC are defined by

GAC(u, ∂xu) :=
|∂xu|2

2
+W (u), JAC(u) :=

∫ L

0
GAC(u, ∂xu)dx.
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The Allen–Cahn equation with a dynamic boundary condition

Previous study

Difficulty

In the problem with dynamic boundary conditions, it was difficult to find a
suitable discrete boundary condition in the conventional way of DVDM.

Thus, Fukao et al. defined another discrete energy and used another
summation-by-parts formula:

K∑
k=1

(
δ−k fk

) (
δ−k gk

)
∆x = −

K∑
k=1

(
δ
⟨2⟩
k fk

)
gk∆x+

[(
δ+k fk

)
gk
]K
0
.

As a result, they have to approximate the boundary condition by a forward
difference, and their scheme is first-order accurate in space.

◦ T. Fukao, S. Yoshikawa and S. Wada, Structure-preserving finite
difference schemes for the Cahn–Hilliard equation with dynamic boundary
conditions in the one-dimensional case, Commun. Pure Appl. Anal., 16
(2017), 1915–1938.
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The Allen–Cahn equation with a dynamic boundary condition

Discretization of the energy

Let us define two discrete local energies G±
ACd,k by

G+
ACd,k(U) :=

(δ+k Uk)
2

2
+W (Uk) (k = 0, . . . ,K − 1),

G−
ACd,k(U) :=

(δ−k Uk)
2

2
+W (Uk) (k = 1, . . . ,K).

Then we define a discrete global energy JACd as follows:

JACd(U) :=
1

2

{
K−1∑
k=0

G+
ACd,k (U)∆x+

K∑
k=1

G−
ACd,k (U)∆x

}

=

K−1∑
k=0

(
δ+k Uk

)2
2

∆x+

K∑
k=0

′′W (Uk)∆x.

Remark

There are several selections of the discrete energy Gd. In general, a
different selection will lead us to a different scheme in DVDM.
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The Allen–Cahn equation with a dynamic boundary condition

Discretization of the energy

Let us define two discrete local energies G±
ACd,k by

G+
ACd,k(U) :=

(δ+k Uk)
2

2
+W (Uk) (k = 0, . . . ,K − 1),

G−
ACd,k(U) :=

(δ−k Uk)
2

2
+W (Uk) (k = 1, . . . ,K).

Then we define a discrete global energy JACd as follows:

JACd(U) :=
1

2

{
K−1∑
k=0

G+
ACd,k (U)∆x+

K∑
k=1

G−
ACd,k (U)∆x

}

=

K−1∑
k=0

(
δ+k Uk

)2
2

∆x+

K∑
k=0

′′W (Uk)∆x.

Remark

If we follow the way Fukao et al. used, we consequently adopt∑K
k=1G

−
ACd,k (U)∆x only as a discrete global energy JACd(U).
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The Allen–Cahn equation with a dynamic boundary condition

Calculation of the discrete variation

Based on DVDM, we calculate JACd(U)− JACd(V ) to derive the discrete
variational derivative by the following summation-by-parts formula:

K−1∑
k=0

(
δ+k fk

) (
δ+k gk

)
∆x = −

K∑
k=0

′′
(
δ
⟨2⟩
k fk

)
gk∆x+

[(
δ
⟨1⟩
k fk

)
gk

]K
0
. (5)

Remark

If we follow the method Fukao et al. used, we consequently use the
following summation-by-parts formula:

K∑
k=1

(
δ−k fk

) (
δ−k gk

)
∆x = −

K∑
k=1

(
δ
⟨2⟩
k fk

)
gk∆x+

[(
δ+k fk

)
gk
]K
0
.

Remark

By adopting the previously mentioned discrete energy and (5), we can
construct a structure-preserving scheme based on DVDM.
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The Allen–Cahn equation with a dynamic boundary condition

Calculation of the discrete variation

Based on DVDM, we calculate JACd(U)− JACd(V ) to derive the discrete
variational derivative by the following summation-by-parts formula:

K−1∑
k=0

(
δ+k fk

) (
δ+k gk

)
∆x = −

K∑
k=0

′′
(
δ
⟨2⟩
k fk

)
gk∆x+

[(
δ
⟨1⟩
k fk

)
gk

]K
0
. (5)

Remark

If we follow the method Fukao et al. used, we consequently use the
following summation-by-parts formula:

K∑
k=1

(
δ−k fk

) (
δ−k gk

)
∆x = −

K∑
k=1

(
δ
⟨2⟩
k fk

)
gk∆x+

[(
δ+k fk

)
gk
]K
0
.

Remark

By adopting the previously mentioned discrete energy and (5), we can
approximate the boundary condition by a central difference.
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The Allen–Cahn equation with a dynamic boundary condition

Our structure-preserving scheme

For n = 0, 1, . . .,

δ+n U
(n)
k = δ

⟨2⟩
k

(
U

(n+1)
k +U

(n)
k

2

)
− dW

d(U
(n+1)
k , U

(n)
k )

, (k = 0, . . . ,K),

δ+n U
(n)
0 = δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=0

− dW

d(U
(n+1)
0 , U

(n)
0 )

,

δ+n U
(n)
K = −δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=K

− dW

d(U
(n+1)
K , U

(n)
K )

,

where δ+n is the forward difference operator to time index (n). The

concrete form of dW/d(U
(n+1)
k , U

(n)
k ) is as follows:

dW

d(U
(n+1)
k , U

(n)
k )

=

(
U

(n+1)
k

)3
+
(
U

(n+1)
k

)2
U

(n)
k +U

(n+1)
k

(
U

(n)
k

)2
+
(
U

(n)
k

)3
4

−
U

(n+1)
k + U

(n)
k

2
(k = 0, . . . ,K).
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The Allen–Cahn equation with a dynamic boundary condition

Our structure-preserving scheme

For n = 0, 1, . . .,

δ+n U
(n)
k = δ

⟨2⟩
k

(
U

(n+1)
k +U

(n)
k

2

)
− dW

d(U
(n+1)
k , U

(n)
k )

, (k = 0, . . . ,K),

δ+n U
(n)
0 = δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=0

− dW

d(U
(n+1)
0 , U

(n)
0 )

,

δ+n U
(n)
K = − δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=K

− dW

d(U
(n+1)
K , U

(n)
K )

,

The solution U (n) of the scheme satisfies the following discrete total
energy dissipation:

δ+n

{
JACd(U

(n)) +W (U
(n)
0 ) +W (U

(n)
K )

}
=−

K∑
k=0

′′

∣∣∣∣∣ δGACd

δ
(
U (n+1),U (n)

)
k

∣∣∣∣∣
2

∆x− |δ+n U
(n)
0 |2− |δ+n U

(n)
K |2 ≤ 0 (n=0, 1, . . .).
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The Allen–Cahn equation with a dynamic boundary condition

Our structure-preserving scheme

For n = 0, 1, . . .,

δ+n U
(n)
k = δ

⟨2⟩
k

(
U

(n+1)
k +U

(n)
k

2

)
− dW

d(U
(n+1)
k , U

(n)
k )

, (k = 0, . . . ,K),

δ+n U
(n)
0 = δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=0

− dW

d(U
(n+1)
0 , U

(n)
0 )

,

δ+n U
(n)
K = − δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=K

− dW

d(U
(n+1)
K , U

(n)
K )

,

Also, we have obtained the following mathematical results:

L∞-boundedness of the solution of the scheme

Existence and uniqueness of the solution of the scheme

Error estimate
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The Allen–Cahn equation with a dynamic boundary condition

Numerical example

As the initial condition, we consider

u(x, 0) = exp{−500(x− 0.5)2}.

Figure 5 shows the time development of the numerical solution. Figure 6

shows the time development of JACd(U
(n)) +W (U

(n)
0 ) +W (U

(n)
K ).

Fig. 5: Numerical solution Fig. 6: Total energy
These graphs show that the numerical solution can be stably obtained by
our proposed scheme and that the energy decreases numerically.
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The Allen–Cahn equation with a dynamic boundary condition

Dissipative property

It follows from the discrete energy dissipation that

A
(n)
d := JACd(U

(n)) +W (U
(n)
0 ) +W (U

(n)
K )

+

n−1∑
l=0


K∑
k=0

′′

∣∣∣∣∣ δGACd

δ
(
U (l+1),U (l)

)
k

∣∣∣∣∣
2

∆x+
∣∣∣δ+n U (l)

0

∣∣∣2+∣∣∣δ+n U (l)
K

∣∣∣2
∆t

= JACd(U
(0)) +W (U

(0)
0 ) +W (U

(0)
K ) (n = 1, . . . , N).

These figures show the time development of

A
(n)
d − (JACd(U

(0)) +W (U
(0)
0 ) +W (U

(0)
K )).
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The Allen–Cahn equation with a dynamic boundary condition

Comparison between the dynamic boundary
condition and the Neumann boundary one

u(x, 0) = exp{−500(x− 0.5)2}.

Fig. 7: Dynamic boundary condition:
10∂tu = −∂νu− 100(u3 − u) on ∂Ω.

Fig. 8: Neumann boundary condition:
−∂νu− 100(u3 − u) = 0 on ∂Ω.

These solutions arrive at different states from each other, although each
stationary problem of the Allen–Cahn equation with the dynamic boundary
condition and Neumann boundary one is the same.
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The Allen–Cahn equation with a dynamic boundary condition

Comparison between the dynamic boundary
condition and the Neumann boundary one

Fig. 11: Dynamic boundary condition:
10∂tu = −∂νu− 100(u3 − u) on ∂Ω.

Fig. 12: Neumann boundary condition:
−∂νu− 100(u3 − u) = 0 on ∂Ω.

These solutions arrive at different states from each other, although each
stationary problem of the Allen–Cahn equation with the dynamic boundary
condition and Neumann boundary one is the same.
Remark

The result assures that the difference in the long-time behavior of the
solution occurs.
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The Allen–Cahn equation with a dynamic boundary condition

Comparison between the dynamic boundary
condition and the Neumann boundary one

Fig. 11: Dynamic boundary condition:
10∂tu = −∂νu− 100(u3 − u) on ∂Ω.

Fig. 12: Neumann boundary condition:
−∂νu− 100(u3 − u) = 0 on ∂Ω.

These solutions arrive at different states from each other, although each
stationary problem of the Allen–Cahn equation with the dynamic boundary
condition and Neumann boundary one is the same.
Future work

We find initial values that cause differences in the long-time behavior of
the solution and classify those that do and do not make the difference.
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Mathematical results for our proposed scheme

The discrete norms and the discrete Sobolev type
inequality

Definition 4

For all f = {fk}Kk=0 ∈ RK+1,we define the discrete L2-norm, the discrete
Dirichlet semi-norm, the discrete Sobolev norm, and the discrete L∞-norm
by

∥f∥L2
d
:=

√√√√ K∑
k=0

′′|fk|2∆x, ∥Df∥ :=

√√√√K−1∑
k=0

|δ+k fk|2∆x,

∥f∥H̃1
d
:=
√
∥f∥L2

d
+ ∥Df∥2, ∥f∥L∞

d
:= max

0≤k≤K
|fk|.

Lemma 5 (Discrete Sobolev type inequality, Yoshikawa(2017))

The following inequality holds:

∥f∥L∞
d

≤ C̃L ∥f∥H̃1
d

for all {fk}Kk=0 ∈ RK+1,

where C̃L is a constant depending on L only.
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Mathematical results for our proposed scheme

L∞-boundedness of the solution

The following lemma holds from the discrete total energy dissipation.

Lemma 6

Let us define a constant C0 independent of k and n by

C0 := 2
{
JACd(U

(0)) +W (U
(0)
0 ) +W (U

(0)
K )
}
+

3

2
(L+ 2).

Then the solution U (n) of the scheme satisfies the following inequality:∥∥∥U (n)
∥∥∥2
H̃1

d

+
∣∣∣U (n)

0

∣∣∣2 + ∣∣∣U (n)
K

∣∣∣2 ≤ C0 (n = 0, 1, . . .).

By using Lemma 6 and the discrete Sobolev type inequality, we obtain

Theorem 3.1

The solution U (n) of the scheme satisfies the following inequality:∥∥∥U (n)
∥∥∥
L∞
d

≤ C̃L

√
C0 (n = 0, 1, . . .).
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Mathematical results for our proposed scheme

Existence and uniqueness of the solution

We prove the proposed scheme has a unique solution under a specific
condition on ∆t.

Theorem 3.2

For any given U (0) = {U (0)
k }K+1

k=−1 ∈ RK+3, if ∆t satisfies

∆t2max

5 max
|ξ|≤2B0

∣∣W ′′(ξ)
∣∣2 , max

|ξ|≤2B0

∣∣W ′′(ξ)
∣∣2

2
+

25C̃2
LB

2
0 max
|ξ|≤2B0

∣∣W ′′′(ξ)
∣∣2

18

< 1,

where B0 is the L∞-bound of the solution, i.e., B0 := C̃L

√
C0, then there

exists a unique solution {U (n)
k }K+1

k=−1 ∈ RK+3 (n ∈ N) of the scheme.

Remark

We remark that the assumption is independent of the space mesh size ∆x.
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Mathematical results for our proposed scheme

Error estimate

Let ∆t := T/N .

Theorem 3.3

Assume that u ∈ C5([0, L]× [0, T ]). Also, denote the bounds by

max
0≤n≤N

{∥∥∥DU (n)
∥∥∥ , ∥∥∥Du(n)

∥∥∥}≤C1, max
0≤n≤N

{∥∥∥U (n)
∥∥∥
L∞d

,
∥∥∥u(n)

∥∥∥
L∞d

}
≤C2,

where C1 and C2 are constants independent of n. Let

CW := 2

{
C2
1 C̃

2
L max

|ξ|≤C2

∣∣W ′′′(ξ)
∣∣2 + max

|ξ|≤C2

∣∣W ′′(ξ)
∣∣2} .

If ∆t satisfies ∆t < 1/{3(1 + CW )}, then there exists a constant C
independent of k and n such that

∥(Π∆x,∆tU)(·, t)−u(·, t)∥L∞(0,L) ≤ C
(
(∆x)2+(∆t)2

)
for all t∈ [0, T ],

where Π∆x,∆tU is the function which interpolates the grid value point U
(n)
k .
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Error estimate

Let ∆t := T/N .

Theorem 3.3

Assume that u ∈ C5([0, L]× [0, T ]). Also, denote the bounds by

max
0≤n≤N

{∥∥∥DU (n)
∥∥∥ , ∥∥∥Du(n)

∥∥∥}≤C1, max
0≤n≤N

{∥∥∥U (n)
∥∥∥
L∞d

,
∥∥∥u(n)

∥∥∥
L∞d

}
≤C2,

where C1 and C2 are constants independent of n. Let

CW := 2

{
C2
1 C̃

2
L max

|ξ|≤C2

∣∣W ′′′(ξ)
∣∣2 + max

|ξ|≤C2

∣∣W ′′(ξ)
∣∣2} .

If ∆t satisfies ∆t < 1/{3(1 + CW )}, then there exists a constant C
independent of k and n such that

∥(Π∆x,∆tU)(·, t)−u(·, t)∥L∞(0,L) ≤ C
(
(∆x)2+(∆t)2

)
for all t∈ [0, T ],

Remark

This theorem means that our scheme is second-order accurate in space
and time, respectively.
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Conclusions and future work

Conclusions and future work

Conclusions
We introduced the procedure of constructing a structure-preserving scheme
by DVDM.

We designed a structure-preserving scheme for the Allen–Cahn equation
with a dynamic boundary condition by using DVDM.

We can use a central difference as an approximation of an outward normal
derivative on the discrete boundary condition of the scheme.

We proved the L∞-boundedness, the existence and the uniqueness of the
solution, and the error estimate for our scheme.

Future work
The comparative study of the dynamic and Neumann boundary conditions
through the long-time behavior of the solution.
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Other results

The Cahn–Hilliard equation with a dynamic
boundary condition

We study the following Cahn–Hilliard equation with a dynamic boundary
condition:

∂tu = ∂2
xp, in Ω× (0, T ],

p = −γ∂2
xu+ u3 − u, in Ω× (0, T ],

∂tu(0, t) = ∂xu(x, t)|x=0 ,−u(0, t) in (0, T ],

∂tu(L, t) = − ∂xu(x, t)|x=L ,−u(L, t) in (0, T ],

∂xp(x, t)|x=0 = ∂xp(x, t)|x=L = 0, in (0, T ],

where γ is a positive constant, and the nonlinear term is the derivative of
W (s) := (1/4)s4−(1/2)s2.

◦ T. Fukao, S. Yoshikawa, and S. Wada, Structure-preserving finite
difference schemes for the Cahn–Hilliard equation with dynamic boundary
condition in the one-dimensional case, Commun. Pure Appl. Anal., 16
(2017), 1915–1938.
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Other results

The Cahn–Hilliard equation with a dynamic
boundary condition

We study the following Cahn–Hilliard equation with a dynamic boundary
condition:

∂tu = ∂2
xp, in Ω× (0, T ],

p = −γ∂2
xu+ u3 − u, in Ω× (0, T ],

∂tu(0, t) = ∂xu(x, t)|x=0 ,−u(0, t) in (0, T ],

∂tu(L, t) = − ∂xu(x, t)|x=L ,−u(L, t) in (0, T ],

∂xp(x, t)|x=0 = ∂xp(x, t)|x=L = 0, in (0, T ].

The solution u of the problem satisfies the following energy dissipation:

d

dt
JCH(u(t)) = −γ|∂tu(0, t)|2 − γ|∂tu(L, t)|2 −

∫ L

0
|∂xp(x, t)|2dx ≤ 0,

where the “local energy” GCH and the “global energy” JCH are defined by

GCH(u, ∂xu) :=
γ

2
|∂xu|2 +W (u), JCH(u) :=

∫ L

0
GCH(u, ∂xu)dx.
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Other results

The Cahn–Hilliard equation with a dynamic
boundary condition

We study the following Cahn–Hilliard equation with a dynamic boundary
condition:

∂tu = ∂2
xp, in Ω× (0, T ],

p = −γ∂2
xu+ u3 − u, in Ω× (0, T ],

∂tu(0, t) = ∂xu(x, t)|x=0 ,−u(0, t) in (0, T ],

∂tu(L, t) = − ∂xu(x, t)|x=L ,−u(L, t) in (0, T ],

∂xp(x, t)|x=0 = ∂xp(x, t)|x=L = 0, in (0, T ].

The solution u of the problem satisfies the following energy dissipation:

d

dt
JCH(u(t)) = −γ|∂tu(0, t)|2 − γ|∂tu(L, t)|2 −

∫ L

0
|∂xp(x, t)|2dx ≤ 0,

Also, the solution u satisfies the following mass conservation:

d

dt

∫ L

0
u(x, t)dx = 0.
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Other results

Our structure-preserving scheme

For n = 0, 1, . . .,

δ+n U
(n)
k = δ

⟨2⟩
k P

(n)
k , (k = 0, . . . ,K),

P
(n)
k = −γδ

⟨2⟩
k

(
U

(n+1)
k +U

(n)
k

2

)
+

dW

d(U
(n+1)
k , U

(n)
k )

, (k=0, . . . ,K),

δ+n U
(n)
0 = δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=0

,

δ+n U
(n)
K = − δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=K

,

δ
⟨1⟩
k P

(n)
k = 0 (k = 0,K),

The solution of the scheme satisfies the following discrete energy
dissipation: for n = 0, 1, . . .,

δ+n JCHd(U
(n))=−γ

∣∣∣δ+n U (n)
0

∣∣∣2− γ
∣∣∣δ+n U (n)

K

∣∣∣2−K−1∑
k=0

∣∣∣δ+k P (n)
k

∣∣∣2∆x ≤ 0,

where JCHd(U) :=
∑K−1

k=0 (γ/2)(δ+k Uk)
2∆x+

∑K
k=0

′′W (Uk)∆x.
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Our structure-preserving scheme

For n = 0, 1, . . .,

δ+n U
(n)
k = δ

⟨2⟩
k P

(n)
k , (k = 0, . . . ,K),

P
(n)
k = −γδ

⟨2⟩
k

(
U

(n+1)
k +U

(n)
k

2

)
+

dW

d(U
(n+1)
k , U

(n)
k )

, (k=0, . . . ,K),

δ+n U
(n)
0 = δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=0

,

δ+n U
(n)
K = − δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=K

,

δ
⟨1⟩
k P

(n)
k = 0 (k = 0,K),

The solution of the scheme satisfies the following discrete mass
conservation: for n = 0, 1, . . .,

δ+nMd(U
(n)) = 0,

where Md is the discrete mass and defined by Md(U) :=
∑K

k=0
′′Uk∆x.
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Other results

Our structure-preserving scheme

For n = 0, 1, . . .,

δ+n U
(n)
k = δ

⟨2⟩
k P

(n)
k , (k = 0, . . . ,K),

P
(n)
k = −γδ

⟨2⟩
k

(
U

(n+1)
k +U

(n)
k

2

)
+

dW

d(U
(n+1)
k , U

(n)
k )

, (k=0, . . . ,K),

δ+n U
(n)
0 = δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=0

,

δ+n U
(n)
K = −δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=K

,

δ
⟨1⟩
k P

(n)
k = 0 (k = 0,K),

Remark

We use a central difference as an approximation of an outward normal
derivative on the boundary, although Fukao, Yoshikawa, and Wada use a
forward difference in their structure-preserving scheme’s boundary
conditions (Fukao–Yoshikawa–Wada(2017)).
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Other results

Our structure-preserving scheme

For n = 0, 1, . . .,

δ+n U
(n)
k = δ

⟨2⟩
k P

(n)
k , (k = 0, . . . ,K),

P
(n)
k = −γδ

⟨2⟩
k

(
U

(n+1)
k +U

(n)
k

2

)
+

dW

d(U
(n+1)
k , U

(n)
k )

, (k=0, . . . ,K),

δ+n U
(n)
0 = δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=0

,

δ+n U
(n)
K = − δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=K

,

δ
⟨1⟩
k P

(n)
k = 0 (k = 0,K),

Also, we have obtained the following mathematical results:
L∞-boundedness of the solution of the scheme
Existence and uniqueness of the solution of the scheme
Error estimate

Note that our scheme is second-order accurate in space, although the
previous scheme by Fukao–Yoshikawa–Wada(2017) is first-order accurate.
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Other results

GMS model

We study the following GMS model:

∂tu = ∂2
xp, in Ω× (0, T ]

p = −γ∂2
xu+ u3 − u, in Ω× (0, T ],

∂tu(0, t) = ∂xp(x, t)|x=0 , ∂tu(L, t) = −∂xp(x, t)|x=L , in (0, T ],

p(0, t) = −γ∂xu(x, t)|x=0 + (u(0, t))3 − u(0, t), in (0, T ],

p(L, t) = γ∂xu(x, t)|x=L + (u(L, t))3 − u(L, t), in (0, T ].

Then, the solution u of the problem satisfies the following total energy
dissipation:

d

dt
{JCH(u(t)) +W (u(0, t)) +W (u(L, t))} ≤ 0.

Also, the solution u satisfies the following total mass conservation:

d

dt

{∫ L

0
u(x, t)dx+ u(0, t) + u(L, t)

}
= 0.

◦ G. R. Goldstein, A. Miranville and G. Schimperna, A Cahn–Hilliard model
in a domain with non-permeable walls, Physica D, 240 (2011), 754–766.

Makoto Okumura (Osaka University) June 17, 2020 37/ 34



Other results

Our structure-preserving scheme
For n = 0, 1, . . .,

δ+n U
(n)
k = δ

⟨2⟩
k P

(n)
k , (k = 0, . . . ,K),

P
(n)
k = −γδ

⟨2⟩
k

(
U

(n+1)
k +U

(n)
k

2

)
+

dW

d(U
(n+1)
k , U

(n)
k )

, (k=0, . . . ,K),

δ+n U
(n)
0 = δ

⟨1⟩
k P

(n)
k

∣∣∣
k=0

, δ+n U
(n)
K = − δ

⟨1⟩
k P

(n)
k

∣∣∣
k=K

,

P
(n)
0 = −γ δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=0

+
dW

d(U
(n+1)
0 , U

(n)
0 )

,

P
(n)
K = γ δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=K

+
dW

d(U
(n+1)
K , U

(n)
K )

.

The solution of the scheme satisfies the following discrete total energy
dissipation and discrete total mass conservation:

δ+n

{
JCHd(U

(n)) +W (U
(n)
0 ) +W (U

(n)
K )

}
≤ 0 (n = 0, 1, . . .),

δ+n

{
Md(U

(n)) + U
(n)
0 + U

(n)
K

}
= 0 (n = 0, 1, . . .).
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Other results

Our structure-preserving scheme
For n = 0, 1, . . .,

δ+n U
(n)
k = δ

⟨2⟩
k P

(n)
k , (k = 0, . . . ,K),

P
(n)
k = −γδ

⟨2⟩
k

(
U

(n+1)
k +U

(n)
k

2

)
+

dW

d(U
(n+1)
k , U

(n)
k )

, (k=0, . . . ,K),

δ+n U
(n)
0 = δ

⟨1⟩
k P

(n)
k

∣∣∣
k=0

, δ+n U
(n)
K = −δ

⟨1⟩
k P

(n)
k

∣∣∣
k=K

,

P
(n)
0 = −γ δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=0

+
dW

d(U
(n+1)
0 , U

(n)
0 )

,

P
(n)
K = γ δ

⟨1⟩
k

(
U

(n+1)
k + U

(n)
k

2

)∣∣∣∣∣
k=K

+
dW

d(U
(n+1)
K , U

(n)
K )

.

Remark

Fukao, Yoshikawa, and Wada use a forward difference in their scheme’s
boundary conditions (Fukao–Yoshikawa–Wada(2017)).

Also, we have obtained the following mathematical results.
L∞-boundedness of the solution of the scheme
Existence and uniqueness of the solution of the scheme
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Appendix

The dissipative and conservative properties{
∂tu = ∂2

x(−γ∂2
xu+ u3 − u), in (0, L)× (0, T ],

∂xu(x, t)|x=0,L = ∂3
xu(x, t)

∣∣
x=0,L

= 0, in (0, T ].

The solution u to the above problem satisfies the following energy
dissipation and mass conservation:

d

dt
J(u(t)) ≤ 0,

∫ L

0
u(x, t)dx =

∫ L

0
u(x, 0)dx,

These figures show the time developments of the discrete energy and the
discrete mass by the discrete variational derivative scheme, respectively.
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Appendix

Calculation of the discrete variation

First, using the summation-by-parts formula:

K∑
k=0

′′ (δ
+
k fk)(δ

+
k gk) + (δ−k fk)(δ

−
k gk)

2
∆x =

K∑
k=0

′′(δ
⟨2⟩
k fk)gk∆x+ (b.t.),

we have the following identity:

K∑
k=0

′′
{
γ

2

(δ+k Uk)
2 + (δ−k Uk)

2

2
− γ

2

(δ+k Vk)
2 + (δ−k Vk)

2

2

}
∆x

=
γ

2

K∑
k=0

′′
[{

δ+k

(
Uk + Vk

2

)}{
δ+k (Uk − Vk)

}
+

{
δ−k

(
Uk + Vk

2

)}{
δ−k (Uk − Vk)

}]
∆x

=

K∑
k=0

′′
{
−γδ

⟨2⟩
k

(
Uk+Vk

2

)}
(Uk − Vk)∆x+ (b.t.).
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Appendix

The discrete mass conservation

Summing the following equation:

U
(n+1)
k − U

(n)
k

∆t
= δ

⟨2⟩
k

(
δGd

δ(U (n+1),U (n))k

)
, (k=0, . . . ,K, n=0, 1, . . .)

over k = 0, . . . ,K based on the trapezoidal rule, we can also show the
discrete mass conservation:

1

∆t

(
K∑
k=0

′′U
(n+1)
k ∆x−

K∑
k=0

′′U
(n)
k ∆x

)
=

K∑
k=0

′′U
(n+1)
k − U

(n)
k

∆t
∆x

=
K∑
k=0

′′δ
⟨2⟩
k

(
δGd

δ(U (n+1),U (n))k

)
∆x =

[
δ
⟨1⟩
k

(
δGd

δ(U (n+1),U (n))k

)]K
0

= 0 (n = 0, 1, . . .).

under the suitable discrete boundary condition. For example, we impose
the following discrete Neumann boundary conditions:

δ
⟨1⟩
k U

(n)
k = δ

⟨1⟩
k

(
δGd

δ(U (n+1),U (n))k

)
= 0 (k = 0,K, n = 0, 1, . . .).
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Appendix

Calculation of the discrete variation

Based on DVDM, we calculate JACd(U)− JACd(V ) to derive the discrete
variational derivative by the following summation-by-parts formula:

K−1∑
k=0

(
δ+k fk

) (
δ+k gk

)
∆x = −

K∑
k=0

′′
(
δ
⟨2⟩
k fk

)
gk∆x+

[(
δ
⟨1⟩
k fk

)
gk

]K
0
.

Property

For all U = {Uk}K+1
k=−1,V = {Vk}K+1

k=−1 ∈ RK+3, it holds that

JACd(U)−JACd(V ) =
K∑
k=0

′′
{
−δ

⟨2⟩
k

(
Uk+Vk

2

)
+

dW

d(Uk, Vk)

}
(Uk−Vk)∆x

+

[{
δ
⟨1⟩
k

(
Uk + Vk

2

)}
(Uk − Vk)

]K
0

,

where
dW

d(Uk, Vk)
=

U3
k+U2

kVk+UkV
2
k +V 3

k

4
− Uk + Vk

2
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Appendix

Numerical example 2

As the initial condition, we consider

u(x, 0) = 0.02− 0.05 cos(5πx)− 0.008 sin(8πx) + 0.01 cos(2πx).

Figure 13 shows the time development of the numerical solution. Figure

14 shows the time development of JACd(U
(n)) +W (U

(n)
0 ) +W (U

(n)
K ).

Fig. 13: Numerical solution Fig. 14: Total energy

These graphs show that the numerical solution can be stably obtained by
our proposed scheme and that the energy decreases numerically.
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Appendix

Dissipative property

It follows from the discrete energy dissipation that

A
(n)
d = JACd(U

(0)) +W (U
(0)
0 ) +W (U

(0)
K ) (n = 1, . . . , N).

These figures show the time development of

A
(n)
d − (JACd(U

(0)) +W (U
(0)
0 ) +W (U

(0)
K )).

These graphs show that A
(n)
d is conserved numerically.
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Appendix

Comparison between the dynamic boundary
condition and the Neumann boundary one

u(x, 0) = 0.02− 0.05 cos(5πx)− 0.008 sin(8πx) + 0.01 cos(2πx).

Fig. 15: Dynamic boundary condition:
10∂tu = −∂νu− 100(u3 − u) on ∂Ω.

Fig. 16: Neumann boundary condition:
−∂νu− 100(u3 − u) = 0 on ∂Ω.

These solutions arrive at different states from each other, although each
stationary problem of the Allen–Cahn equation with the dynamic boundary
condition and Neumann boundary one is the same.
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