
Two-scale model for moisture transport in concrete
carbonation process

AIKI, Toyohiko

Japan Women’s University, Tokyo, JAPAN/Karlstad University, Karlstad, Sweden

KAAS seminar 15 April, 2020
with KUMAZAKI, Kota (Nagasaki University, Nagasaki, JAPAN)



Outline of this talk

Aims: Introduce our results on concrete carbonation process: Model and
mathematical results

1 1D model: free boundary model (with A. Muntean): 2009-2015
2 In 3D domain( with N. Sato, Y. Murase, K. Shirakawa, K. Kumazaki): Since 2011
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1. Concrete carbonation process

Porous media, many holes.

CO2(aq)+ Ca(OH)2(aq)→ CaCO3(aq)+ H2O

Purpose : To construct a model for concrete carbonation
By mathematical models we can measure depth of carbonation.



2. 1D model: Free boundary problem

Muntean, Böhm, 2007, 2009

1D FBP: Existence and uniqueness of
solutions

A., Muntean, 2009-2011
Simplified model, large time behavior
of carbonation depth l(t):

c
√
t ≤ l(t) ≤ C

√
t for t ≥ 0.

Experimental law:
”Carbonation Depth ∝

√
t”

Our mathematical result guarantees the
law.



3. Concrete carbonation process in 3D domain (1)

Maekawa-Chaube-Kishi(1999, book), Maekawa-Ishida-Kishi(1999)
Our model:

Moisture transport & CO2 diffusion(Kumazaki)
Moisture transport = conservation of H2O(Two types)

Diffusion equation & relationship between relative humidity and degree of
saturation in concrete.



3. Concrete carbonation process in 3D domain (2)

Porous material

ϕ: porocity ϕ =
(Void)

(Unit Volume)
s: degree of saturation

s = (water region)
(Void)

Experimental results

Hysteresis with anti-clockwise trend
Our aim Find mathematical formula of
this relationship



4. Multi-scale model(1): Outline

Concrete = Porous material

Multi-scale model :
( Macro-domain

Concrete building
Diffusion equation

)
&
( Micro-domain

One pore
1D FBP

)
Let Ω be a macro-domain in R3, bounded.



4. Multi-scale model(2): Domains and variables

macro domain: ξ ∈ Ω

relative humidity h = h(t, ξ) on Ω

degree of saturation:
s = s(t, ξ) = (water region)

(Void)

micro domain: x ∈ (0, 1)
water region: [0, s(t)]
air region: [s(t), 1]
wall : x = 0
Connection to macro domain: x = 1
relative humidity: u = u(t, ξ, x)



4. Multi-scale model(3): FBP in micro domain

Find u and s s.t.

ρaut − κuxx = 0 on (s(t), 1),
u(t, 1) = h(t), t > 0,
κux(t, s(t)) = (ρl − ρau(t, s(t)))s′(t), t > 0,
s′(t) = a(u(t, s(t))− φ(s(t))), t > 0,
s(0) = s0,u(0, x) = u0(x), s0 ≤ x ≤ 1.

ρa, ρl: density of H2O in air, liquid (resp.)
κ: diffusion coefficient
a: a positive constant
φ : R → R



4. Multi-scale model(4): Free boundary condition

Key: s(t) → 1?
s′(t) = a(u(t, s(t))− φ(s(t))), t > 0.

Assumption: h ≤ h∗ < φ(1).
If s(t) → 1, then s′(t) = a(u(t, s)− φ(s(t))) → a(u(t, 1)− φ(1)) and s′(t) < 0.
Then, s does not touch the fixed boundary x = 1.



4. Multi-scale model(5): Numerical result

Numerical result Experimental result



4. Multi-scale model(6): Previous results on 1D FBP

Sato, A., Murase, Shirakawa(2013, 2014):
Derivation of the free boundary problem
Local existence in time and uniqueness
A., Murase(2017):

Global existence, since s does not touch the fixed boundary x = 1.
Convergence to the steady solution as t→ ∞,
namely, s(t) → s∗ and u(t) → u∗ as t→ ∞, where s∗ and u∗ are constants.

Sato, A.(2018):
If the boundary function h is periodic in time, then the FBP has a periodic
solution in time. The uniqueness of periodic solutions is an open problem.



4. Multi-scale model(7): Mathematical formulation (Macro Scale)

Ω ⊂ R3. We suppose that h = h(t, ξ) on Q(T) := (0, T)× Ω satisfies

ρlht − divξ(g(h)∇ξh) = sf in Q(T),
h = hb on (0, T)× ∂Ω, h(0) = h0 on Ω.

f : Q(T) → [0,∞): generation rate of
H2O by chemical reaction(given)
hb, h0: given

g : (0,∞) → R, continuous



4. Multi-scale model(8): Mathematical formulation

Find h = h(t, ξ) and s = s(t, ξ) on Q(T) := (0, T)× Ω,
u = u(t, ξ, x) on Σs(T) = {(t, ξ, x)|0 < t < T, ξ ∈ Ω, s(t, ξ) < x < 1};

ρlht − divξ(g(h)∇ξh) = sf in Q(T),
h = hb on (0, T)× ∂Ω, h(0) = h0 on Ω,

ρaut − κuxx = 0 on (s(t, ξ), 1),
u(t, ξ, 1) = h(t, ξ) for (t, ξ) ∈ Q(T),
(ρl − ρau(t, ξ, s(t, ξ)))s′(t, ξ) = κux(t, ξ, s(t)) for t > 0,
s′(t, ξ) = a(u(t, ξ, s(t, ξ))− φ(s(t, ξ))) for (t, ξ) ∈ Q(T),
s(0, ξ) = s0(ξ),u(0, ξ, x) = u0(ξ, x) for s0 ≤ x ≤ 1, ξ ∈ Ω.



4. Multi-scale model(9): Mathematical results on Multi-scale
model

Kumazaki(2016, 2017): Measurability of s w.r.t. (t, ξ) for given h.
Kumazaki, A., Murase, Sato(2017): Local existence in time and uniqueness
Kumazaki(2019): Global existence in time and uniqueness:
Assume f = (1− ψ(h))v, v ∈ L∞(Q(T)) ∩W1,2(0, T;H1(Ω)), v ≥ 0,
and ψ : R → R, continuous, 0 ≤ ψ ≤ 1 on R, ψ(r) = 1 for r ≥ h∗.
If hb ≤ h∗ and h0 ≤ h∗, then the multi-scale problem has a unique solution
on [0, T] for any T > 0.



5. Summary, future works (1): Summary

(Concrete carbonation process in 3D domain)
= (Moisture transport) & (Diffusion CO2)
(Moisture transport)

1 Nonlinear diffusion H2O
2 Hysteresis relationship between degree of saturation and relative humidity

=⇒ 1D FBP
Moisture transport by multi-scale model
=⇒ Global Existence (by Kumazaki)

ρlht − div (g(h)∇h) = s(1− ψ(h))v on Ω.



5. Summary, future works (2): Future problems

As a next step, we would like to consider the system of moisture transport and
CO2 diffusion. For example: v: concentration of CO2.

ρlht − div((g(h) + ϕ(v)(1− s))∇h) = s(1− ψ(h))v,
(ϕ(v)(1− s)v)t − div ((1− s)∇v) = −kvw,

where ϕ is the porosity and a function of v, k is a positive constant and w is a
given function.

Thus we need the estimate for ∂s
∂ξ
.



5. Summary, future works (3): Estimate for∇s

ρaut − κuxx = 0 on (s(t, ξ), 1),
u(t, ξ, 1) = h(t, ξ) for (t, ξ) ∈ Q(T),
(ρl − ρau(t, ξ, s(t, ξ)))s′(t, ξ) = κux(t, ξ, s(t)) for t > 0,
s′(t, ξ) = a(u(t, ξ, s(t, ξ))− φ(s(t, ξ))) for (t, ξ) ∈ Q(T),
s(0, ξ) = s0(ξ),u(0, ξ, x) = u0(ξ, x) for s0 ≤ x ≤ 1, ξ ∈ Ω.

Lemma (A., Kumazaki)
If ∇ξh,∇ξht ∈ L2(0, T), ∇ξs0 ∈ R and ∇ξu0 ∈ W1,2(s0, 1), then ∇ξs ∈ W1,2(0, T) and

|∇ξs|W1,2(0,T) ≤ C(1+ |∇ξh|L2(0,T) + |∇ξht|L2(0,T) + |∇ξs0|+ |∇ξu0|W1,2(s0,1)).



5. Summary, future works (4): Future works

The above estimate may not be enough to deal with the system of moisture
transport and CO2 diffusion.

1 To solve the system we need to modify:
FBP, particularly, u(t, 1) = h(t).
Equation for moisture transport.
Diffusion equation for CO2.

2 Uniqueness of periodic solutions of 1D FBP
3 Construction of a weak solution of 1D FBP


