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Outline of this talk

Aims: Introduce our results on concrete carbonation process: Model and
mathematical results

@ 1D model: free boundary model (with A. Muntean): 2009-2015
© In 3D domain( with N. Sato, Y. Murase, K. Shirakawa, K. Kumazaki): Since 2011
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1. Concrete carbonation process

Free boundary Iron bars Rust of iron bars

S S -

Carbon dibxide

Carbonated Zhe;:Unicarbaata Zone
(Neutral) Calcium hydroxide
(Ca(OH)_2: Alkali)

Porous media, many holes. Lorecslin of chicete

CO,(aq) + Ca(OH),(aq) — CaCOs(aq) + H,0

Purpose : To construct a model for concrete carbonation
By mathematical models we can measure depth of carbonation.



2. 1D model: Free boundary problem

Muntean, Bohm, 2007, 2009 A., Muntean, 2009-2011
1o, Carbonatedzone | Simplified model, large time behavior
ime .
| Diffusion equation for ¢0Z of carbonation depth [(t):
atmbsphere @s(T)  [Cifemical reactio cVt<I(t)<Cvt fort>0.
Dirighlet B.C.
S Experimental law:
X=UD b nated zone ”Carbonation Depth o /1"
= Our mathematical result guarantees the

1D FBP: Existence and uniqueness of law.

solutions



3. Concrete carbonation process in 3D domain (1)

Maekawa-Chaube-Kishi(1999, book), Maekawa-Ishida-Kishi(1999)
Our model:

@ Moisture transport & CO, diffusion(Kumazaki)

@ Moisture transport = conservation of H,O(Two types)
ozt Relative humidity
D
Void
Degree of saturation

@ Diffusion equation & relationship between relative humidity and degree of
saturation in concrete.



3. Concrete carbonation process in 3D domain (2)

Porous material Experlmental results
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S 20 days water cured : /
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g ity ¢ = .
¢: porocity ¢ (Unit Volume) o _ '
s: degree of saturation Hysteresis with anti-clockwise trend

_ (water region) Our aim Find mathematical formula of
(Void) this relationship




4. Multi-scale model(1): Outline

Concrete = Porous material
Macro-domain Micro-domain

Multi-scale model : ( Concrete building ) & ( One pore )

Diffusion equation 1D FBP
Let Q be a macro-domain in R3, bounded.

Concrete I
e wa

One pore

sft)




4. Multi-scale model(2): Domains and variables

Concrete
§ e

macro domain: £ € Q
relative humidity h = h(t,£) on Q
degree of saturation:
B _ (water region)
s =68 = o)

One pore

s(t)

wall

f >

x=0 x=1
micro domain: x € (0,1)
water region: [0,s(t)]
air region: [s(t), 1]
wall: x =0
Connection to macro domain: x = 1
relative humidity: u = u(t, &, x)



4, Multi-scale model(3): FBP in micro domain

Find u and s s.t. Time ¢

Water
pPalt — KUxx = 0 0N (S(t)a 1)a wall drop-zone ?lt(k;rl;):e;
u(t,1) = h(t),t > 0, X = s(t)
KUx(t,s(t)) = (o — pau(t,s(t)))s'(t), t > 0O, —>
s'(t) = a(u(t, s(t)) — »(s(t))), t > 0, »A
s(0) = o, u(0,x) = Ug(x),So < x < 1. 0; |
pa, pi: density of H,0 in air, liquid (resp.) Zz
x: diffusion coefficient 0.2

O 02 04 06 08 1 x

a: a positive constant
p:R—-R



4, Multi-scale model(4): Free boundary condition

Key: s(t) — 1?
s'(t) = a(u(t,s(t)) — ¢(s(t))), t > 0.
Assumption: h < h* < ¢(1).
If s(t) — 1, then s'(t) = a(u(t,s) — ¢(s(t))) — a(u(t,1) — (1)) and s'(t) < 0.
Then, s does not touch the fixed boundary x = 1.

Tirne t
wall Water Other pores o1
drop-zone u(t,1) =h h.
x =s(t)
> x 1
1




4. Multi-scale model(5): Numerical result

Numerical result Experlmental result
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4. Multi-scale model(6): Previous results on 1D FBP

@ Sato, A., Murase, Shirakawa(2013, 2014):
Derivation of the free boundary problem
Local existence in time and uniqueness
@ A, Murase(2017):
e Global existence, since s does not touch the fixed boundary x = 1.
e Convergence to the steady solution as t — oo,
namely, s(t) — s. and u(t) — u. ast — oo, where s, and u,. are constants.
@ Sato, A.(2018):
If the boundary function h is periodic in time, then the FBP has a periodic
solution in time. The uniqueness of periodic solutions is an open problem.



4, Multi-scale model(7): Mathematical formulation (Macro Scale)

Q C R3. We suppose that h = h(t, &) on Q(T) := (0, T) x Q satisfies

pihe — dive(g(h)Veh) = sf in Q(T).
h=hy, on(0,T)x0Q, h(0)=hy onQ.

f:Q(T) — [0,00): generation rate of g : (0,00) — R, continuous
H,0 by chemical reaction(given) 5r)
hy, ho: given

90




4. Multi-scale model(8): Mathematical formulation

Find h = h(t,&) and s = s(t,£) on Q(T) := (0,T) x Q,
u=u(t,&,x)onX4(T) ={(t,£,x)|0 <t <T,&€Q,s(t,&) <x<1};

pihy — dive(g(h)V¢h) = sf in Q(T),

h=h, on(0,T)x0Q, h(0)=hy onQQ,

Palt — KUy = 0 0n (5(t,€),1),

u(t,&,1) = h(t, &) for (t,&) € Q(T),

(pt = pau(t, €, (1, €)))s'(t, §) = rux(t, &, s(t)) fort > 0,
s'(t,€) = a(u(t, &, s(t, €)) — ¢(s(t, £))) for (t,€) € Q(T),
5(0,&) = So(&),u(0,&,x) = up(&,x) forsg < x <1,£ € Q.



4. Multi-scale model(9): Mathematical results on Multi-scale

model

@ Kumazaki(2016, 2017): Measurability of s w.r.t. (t, &) for given h.
@ Kumazaki, A., Murase, Sato(2017): Local existence in time and uniqueness
@ Kumazaki(2019): Global existence in time and uniqueness:
Assume f = (1—1(h))v, v € L>(Q(T)) n W"?(0,T; H'(Q)), v > 0,
and ¢ : R — R, continuous, 0 < ¢ <1onR, ¢(r) =1forr > h*.
If hy < h* and hy < h*, then the multi-scale problem has a unique solution
on [0, T] forany T > 0.



5. Summary, future works (1): Summary

@ (Concrete carbonation process in 3D domain)
= (Moisture transport) & (Diffusion CO,)
@ (Moisture transport)
@ Nonlinear diffusion H,0
© Hysteresis relationship between degree of saturation and relative humidity
— 1D FBP
@ Moisture transport by multi-scale model
— Global Existence (by Kumazaki)

pthy — div (g(h)Vh) =s(1—1(h))v on Q.



5. Summary, future works (2): Future problems

As a next step, we would like to consider the system of moisture transport and
CO, diffusion. For example: v: concentration of CO,.

pihe — div((g(h) + ¢(v)(1 = 5))Vh) = s(1 = 4(h))v,
(p(v)(1 —s)v): — div ((1—5)VVv) = —kvw,

where ¢ is the porosity and a function of v, kR is a positive constant and w is a
given function.

Thus we need the estimate for g—z



5. Summary, future works (3): Estimate for Vs

palt — KUy = 0 0N (s(t,§)
u(t,&,1) = h(t, &) for (t,£) € Q(

(Pt — pati(t, §,5(t, €)))s'(t, €) = rux(t, &, s(t)) for t > 0,
s'(t,§) = a(u(t, &, s(t, €)) — o(s(t, £))) for (t,€) € Q(T),
5(0,&) = So(£),u(0,&,x) = up(&,x) forsg < x <1,£ € Q.

1),
€ Q(T),
)

Lemma (A., Kumazaki)
If Veh, Vehe € L2(0,T), Veso € R and Veup € W'2(s, 1), then Ves € W'?(0,T) and

IVeSlwaon < C(1+ [Veh|om + [Veht|zon + [VeSo| + |Velolwia(syny)-



5. Summary, future works (4): Future works

The above estimate may not be enough to deal with the system of moisture
transport and CO, diffusion.

@ To solve the system we need to modify:
e FBP, particularly, u(t,1) = h(t).
e Equation for moisture transport.
e Diffusion equation for CO,.

@ Uniqueness of periodic solutions of 1D FBP
© Construction of a weak solution of 1D FBP



