Linearization and domain decomposition methods for porous media flows

Iuliu Sorin Pop Computational Mathematics, Faculty of Sciences Hasselt University Porous Media Group, Department of Mathematics, University of Bergen

Joint work with D. Seus, C. Rohde (Stuttgart), K. Mitra (INRIA),

S. Lunowa (Hasselt), K. Kumar, F.A. Radu (Bergen), F. List (Sydney/Hasselt)

FACULTY OF SCIENCES

Motivation

Societal relevance

- Goundwater management;
- Geological CO₂ storage;
- Oil recovery.

Mathematical challenges

- Nonlinear, possibly degenerate equations;
- Heterogeneous media (jump-type discontinuities).

British Geological Survey https://www.bgs.ac.uk/ research/images/ manageTheSubsurface.jpg

Outline

Motivation

Unsaturated/partially saturated flow

INASSELT

- Linear iterative schemes
- Domain decomposition

The Richards equation

*Standard, equilibrium-based model; non-equilibrum features (hysteresis, dynamic capillarity) can be included

Pressure based formulation

$$\partial_t \theta(\psi) - \nabla \cdot (k_r(\theta(\psi))\nabla(\psi+z)) = 0$$

Features:

- ► Doubly degenerate problem, slow and fast diffusion $(\theta' = 0, \text{ or } \theta' = \infty, k_r = 0)$
- Change of type, free boundaries, lack in regularity, infinite gradients
- $\blacktriangleright \ \psi \text{-more regular than } \theta$

Pressure based formulation

$$\partial_t \theta(\psi) - \nabla \cdot (k_r(\theta(\psi))\nabla(\psi+z)) = 0$$

Features:

- ► Doubly degenerate problem, slow and fast diffusion $(\theta' = 0, \text{ or } \theta' = \infty, k_r = 0)$
- Change of type, free boundaries, lack in regularity, infinite gradients
- ψ -more regular than θ

Results:

- Existence, uniqueness of weak solutions: van Duijn, Peletier '82, Alt, Luckhaus '83, Otto '96 [...]
- Numerical schemes*: Euler implicit + FEM/MFEM, FV, MPFA, DG, GDM

UHASSEL

* Nochetto, Verdi '88, Jäger, Kačur '91, '95, Arbogast, Wheeler, Zhang '96, Riviere, Wheeler, Banas '00, '02, Radu,

P., Knabner '04, '09, Wheeler, Yotov '05, Eymard, Vohralik, Hilhorst '06, Klausen, Radu '08, Bause '08, Vohralik,

Wheeler '14, Cancés, P., Vohralik '14, Droniou et al. '20

Outline

- Motivation
- Unsaturated/partially saturated flow

IDHASSELT

- Linear iterative schemes
- Linear domain decomposition

Linear iterative schemes

Pressure-based formulation

 $\partial_t \theta(\psi) - \nabla \cdot (k_r(\theta(\psi))\nabla(\psi+z)) = 0$

Regularization parameter: $\varepsilon \geq 0$

$$\theta_{\varepsilon}(\psi) = \int_{0}^{\psi} \min\{\max\{\varepsilon, \theta'(z)\}, \frac{1}{\varepsilon}\} dz \text{ and } k_{r,\varepsilon}(\psi) = k_{r}(\psi) + \varepsilon$$

Note: If $\varepsilon > 0$ then $k_r \ge \varepsilon > 0$ and $0 < \varepsilon \le \theta' \le \frac{1}{\varepsilon} < \infty$

Linear iterative schemes

Pressure-based formulation

 $\partial_t \theta(\psi) - \nabla \cdot (k_r(\theta(\psi))\nabla(\psi+z)) = 0$

Regularization parameter: $\varepsilon \geq 0$

$$\theta_{\varepsilon}(\psi) = \int_{0}^{\psi} \min\{\max\{\varepsilon, \theta'(z)\}, \frac{1}{\varepsilon}\} dz \text{ and } k_{r,\varepsilon}(\psi) = k_{r}(\psi) + \varepsilon$$

Note: If $\varepsilon > 0$ then $k_r \ge \varepsilon > 0$ and $0 < \varepsilon \le \theta' \le \frac{1}{\varepsilon} < \infty$

Euler implicit discretisation:

 $n \in \mathbb{N}, \ \tau = T/n, \ t_k = k \tau, \ k = \overline{1, n}, \ \psi(t_k) \approx \psi^k$

$$\partial_t heta(\psi)(t_k) pprox rac{ heta_arepsilon(\psi^k) - heta_arepsilon(\psi^{k-1})}{ au}$$

 $heta_arepsilon(\psi^k) - heta_arepsilon(\psi^{k-1}) = au
abla \cdot ig(k_{r,arepsilon}(heta_arepsilon(\psi^k))
abla(\psi^k+z)ig)$

+ your favourite spatial discretisation (FV, MPFA, FEM, MFEM, DG, GDM)

▶ UHASSELT

Iterative schemes: Newton

With i > 0, assume $\psi^{k,i-1}$ and ψ^{k-1} given. Solve $\theta'_{\varepsilon}(\psi^{k,i-1})(\psi^{k,i} - \psi^{k,i-1}) + \theta_{\varepsilon}(\psi^{k,i-1}) - \theta_{\varepsilon}(\psi^{k-1})$ $= \tau \nabla \cdot (k_{r,\varepsilon}(\theta_{\varepsilon}(\psi^{k,i-1}))\nabla(\psi^{k,i} + z))$ $+\tau \nabla \cdot (k'_{r,\varepsilon}(\theta_{\varepsilon}(\psi^{k,i-1}))\theta'_{\varepsilon}(\psi^{k,i-1})\nabla(\psi^{k,i-1} + z)(\psi^{k,i} - \psi^{k,i-1})).$

▶▶ UHASSELT

Iterative schemes: Newton

With i > 0, assume $\psi^{k,i-1}$ and ψ^{k-1} given. Solve

$$\begin{split} \theta_{\varepsilon}'(\psi^{k,i-1})(\psi^{k,i}-\psi^{k,i-1}) + \theta_{\varepsilon}(\psi^{k,i-1}) &- \theta_{\varepsilon}(\psi^{k-1}) \\ &= \tau \nabla \cdot \left(k_{r,\varepsilon}(\theta_{\varepsilon}(\psi^{k,i-1}))\nabla(\psi^{k,i}+z)\right) \\ &+ \tau \nabla \cdot \left(k_{r,\varepsilon}'(\theta_{\varepsilon}(\psi^{k,i-1}))\theta_{\varepsilon}'(\psi^{k,i-1})\nabla(\psi^{k,i-1}+z)(\psi^{k,i}-\psi^{k,i-1})\right). \end{split}$$

¹Radu, P, Knabner '05

Iterative schemes: Newton

With i > 0, assume $\psi^{k,i-1}$ and ψ^{k-1} given. Solve

$$\begin{split} \theta_{\varepsilon}'(\psi^{k,i-1})(\psi^{k,i}-\psi^{k,i-1}) + \theta_{\varepsilon}(\psi^{k,i-1}) &- \theta_{\varepsilon}(\psi^{k-1}) \\ &= \tau \nabla \cdot \left(k_{r,\varepsilon}(\theta_{\varepsilon}(\psi^{k,i-1}))\nabla(\psi^{k,i}+z)\right) \\ &+ \tau \nabla \cdot \left(k_{r,\varepsilon}'(\theta_{\varepsilon}(\psi^{k,i-1}))\theta_{\varepsilon}'(\psi^{k,i-1})\nabla(\psi^{k,i-1}+z)(\psi^{k,i}-\psi^{k,i-1})\right). \end{split}$$

Rem: Quadratic convergence is guaranteed (mathematically rigorous) if¹:

- 1. θ' is Lipschitz, the model is regularised, $\varepsilon > 0$,
- 2. the initial guess is $\psi^{k,0} = \psi^{k-1}$, and
- 3. the time step is subject to severe constraints, $\tau = O(\varepsilon^3 h^d)$ (*h* being the mesh size).

¹Radu, P, Knabner '05

Iterative schemes: Picard-type

With i > 0, assume $\psi^{k,i-1}$ and ψ^{k-1} given. Solve¹ $\theta'_{\varepsilon}(\psi^{k,i-1})(\psi^{k,i} - \psi^{k,i-1}) + \theta_{\varepsilon}(\psi^{k,i-1}) - \theta_{\varepsilon}(\psi^{k-1})$ $= \tau \nabla \cdot (k_{r,\varepsilon}(\theta_{\varepsilon}(\psi^{k,i-1}))\nabla(\psi^{k,i} + z)).$

¹Celia et al. '90 ²Radu, P, Knabner '05

Iterative schemes: Picard-type

With i > 0, assume $\psi^{k,i-1}$ and ψ^{k-1} given. Solve¹

$$\begin{split} \theta_{\varepsilon}'(\psi^{k,i-1})(\psi^{k,i}-\psi^{k,i-1}) + \theta_{\varepsilon}(\psi^{k,i-1}) &- \theta_{\varepsilon}(\psi^{k-1}) \\ &= \tau \nabla \cdot (k_{r,\varepsilon}(\theta_{\varepsilon}(\psi^{k,i-1})) \nabla (\psi^{k,i}+z)). \end{split}$$

Rem: Convergence is linear. It is guaranteed (mathematically rigorous) if²:

- 1. the model is regularised, $\varepsilon > 0$,
- 2. the initial guess is $\psi^{k,0} = \psi^{k-1}$, and
- 3. the time step is subject to severe constraints, $\tau = O(\varepsilon^3 h^d)$ (*h* being the mesh size).

¹Celia et al. '90 ²Radu, P, Knabner '05

Iterative schemes: L-scheme

With i > 0, assume $\psi^{k,i-1}$ and ψ^{k-1} given. Solve¹

 $L(\psi^{k,i} - \psi^{k,i-1}) + \theta(\psi^{k,i-1}) - \theta(\psi^{k-1}) = \tau \nabla \cdot (k_r(\theta(\psi^{k,i-1})) \nabla(\psi^{k,i} + z)),$

where $L \geq \frac{1}{2}L_{\theta}$ (assume θ - Lipschitz and increasing, i.e. $0 \leq \theta' \leq L_{\theta}$)

¹P, Yong '97, P, Radu, Knabner '04, Radu, List '16, Radu et al '15, '18

▶ UHASSELT

Iterative schemes: L-scheme

With i > 0, assume $\psi^{k,i-1}$ and ψ^{k-1} given. Solve¹

 $L(\psi^{k,i} - \psi^{k,i-1}) + \theta(\psi^{k,i-1}) - \theta(\psi^{k-1}) = \tau \nabla \cdot (k_r(\theta(\psi^{k,i-1}))\nabla(\psi^{k,i} + z)),$

where $L \geq \frac{1}{2}L_{\theta}$ (assume θ - Lipschitz and increasing, i.e. $0 \leq \theta' \leq L_{\theta}$)

Rem: Convergence is linear: fixed point, less restrictive conditions!

- The time step is subject to mild constraints, τ ≤ C (not depending on h the mesh size!);
- 2. No regularisation needed, $\varepsilon = 0$;
- No restriction for the initial guess;
- 4. Convergence rate $\rho = \|\psi^{k,i} \psi^k\| / \|\psi^{k,i-1} \psi^k\|$ decreases with L, $\rho = L/(L + C\tau)$;
- 5. Works for Hölder-continuous θ (e.g. $\theta(\psi) = C\psi^{\alpha}$ for some $\alpha \in (0, 1)$), worse convergence rate.

¹P, Yong '97, P, Radu, Knabner '04, Radu, List '16, Radu et al '15, '18

▶▶ UHASSELT

Iterative schemes: Modified L-scheme

Assume that $\Lambda > 0$ exists s.t. $\|\psi^k - \psi^{k-1}\|_{L^{\infty}(\Omega)} \leq \tau \Lambda$. With $\psi^{k,0} = \psi^{k-1}$ and for i > 0, given $\psi^{k,i-1}$ and ψ^{k-1} , solve¹

 $L_{k}^{i}(\psi^{k,i}-\psi^{k,i-1})+\theta_{\varepsilon}(\psi^{k,i-1})-\theta_{\varepsilon}(\psi^{k-1})=\tau\nabla\cdot\big(k_{r,\varepsilon}(\theta_{\varepsilon}(\psi^{k,i-1}))\nabla(\psi^{k,i}+z)\big),$

where $L_k^i = \max\{\theta_{\varepsilon}'(\psi^{k,i-1}) + \mathcal{M}\tau, 2\mathcal{M}\tau\}$ and $\mathcal{M} \ge \Lambda \|\theta''\|_{\infty}$.

Iterative schemes: Modified L-scheme

Assume that $\Lambda > 0$ exists s.t. $\|\psi^{k} - \psi^{k-1}\|_{L^{\infty}(\Omega)} \leq \tau \Lambda$. With $\psi^{k,0} = \psi^{k-1}$ and for i > 0, given $\psi^{k,i-1}$ and ψ^{k-1} , solve¹ $L_{k}^{i}(\psi^{k,i} - \psi^{k,i-1}) + \theta_{\varepsilon}(\psi^{k,i-1}) - \theta_{\varepsilon}(\psi^{k-1}) = \tau \nabla \cdot (k_{r,\varepsilon}(\theta_{\varepsilon}(\psi^{k,i-1}))\nabla(\psi^{k,i} + z)),$ where $L_{k}^{i} = \max\{\theta_{\varepsilon}^{i}(\psi^{k,i-1}) + \mathcal{M}\tau, 2\mathcal{M}\tau\}$ and $\mathcal{M} \geq \Lambda \|\theta^{\prime\prime}\|_{\infty}$.

Lemma: Assume $\theta \in C^2$, smooth initial data and that the problem is regular(ized). One has $\|\psi^{k,i} - \psi^k\|_{L^{\infty}(\Omega)} \leq \tau \Lambda$ for all *i*.

Iterative schemes: Modified L-scheme

Assume that $\Lambda > 0$ exists s.t. $\|\psi^k - \psi^{k-1}\|_{L^{\infty}(\Omega)} \leq \tau \Lambda$. With $\psi^{k,0} = \psi^{k-1}$ and for i > 0, given $\psi^{k,i-1}$ and ψ^{k-1} , solve¹ $L_k^i(\psi^{k,i} - \psi^{k,i-1}) + \theta_{\varepsilon}(\psi^{k,i-1}) - \theta_{\varepsilon}(\psi^{k-1}) = \tau \nabla \cdot (k_{r,\varepsilon}(\theta_{\varepsilon}(\psi^{k,i-1}))\nabla(\psi^{k,i} + z)),$ where $L_k^i = \max\{\theta'_{\varepsilon}(\psi^{k,i-1}) + \mathcal{M}\tau, 2\mathcal{M}\tau\}$ and $\mathcal{M} \geq \Lambda \|\theta''\|_{\infty}$.

Lemma: Assume $\theta \in C^2$, smooth initial data and that the problem is regular(ized). One has $\|\psi^{k,i} - \psi^k\|_{L^{\infty}(\Omega)} \leq \tau \Lambda$ for all *i*.

Theorem: The modified L-scheme converges linearly in H^1 with convergence rate

$$o = \sqrt{\mathcal{M}/(\mathcal{M}+\mathcal{C}_1)},$$

for some $C_1 > 0$. In the non-degenerate case a $C_2 > 0$ exists s.t.

$$\rho = \min\{\rho, C_2\tau\}.$$

UHASSE

¹Mitra, P. '19

Numerical example

Richards equation (2D)

• Domain and coefficient functions $(m = \frac{2}{3}, n = \frac{1}{1-m})$:

$$egin{aligned} \Omega &= (0,1) imes (0,1), \, k_r(heta) = heta^{1/2} ig(1 - (1 - heta^{1/m})^mig)^2, \, heta(\psi) = \ & \left\{egin{aligned} & (1 + (-\psi)^n)^{-m}, & \psi < 0, \ & 1, & \psi \geq 0. \end{aligned}
ight. \end{aligned}$$

• Boundary/initial data and source term s.t. the solution is

$$\psi(t, x, y) = 1 - (1 + t^2)(1 + x^2 + y^2).$$

Influence of the spatial mesh

• For
$$t = 0.5$$
, $M = 10$, $L = 1$

Influence of the spatial mesh

• For
$$t = 0.5$$
, $\mathcal{M} = 10$, $L = 1$

▶▶ UHASSELT

Influence of the timestep

• For
$$t = .5$$
, $h = 0.05$, $\mathcal{M} = 10$

▶ UHASSELT

Influence of ${\cal M}$

►► UHASSELT

Outline

- Motivation
- Unsaturated/partially saturated flow

IDHASSELT

- Linear iterative schemes
- Linear domain decomposition

Domain decomposition

Why?

- Same model but different properties (e.g. k_{r,1} ≠ k_{r,2})
- Different models on $\Omega_1 \neq \Omega_2$
- Parallelization
- Boundary/interface conditions: possible discontinuities in the capillary pressure.

Wheeler, Yotov '98, Gander, Vanderwalle '07, Skogestad, Keilegavlen, Nordbotten '13, 16, Berninger et al. '15

Simplified problem, two sub-domains

Find a pair (ψ_1,ψ_2) satisfying

 $\begin{aligned} \partial_t \theta_\ell(\psi_\ell) &= \nabla \cdot (k_{r,\ell}(\theta_\ell(\psi_\ell)) \nabla \psi_\ell) & \text{ in } \Omega_\ell \times [0, T] \\ k_{r,1}(\theta_1(\psi_1)) \nabla \psi_1 \cdot \mathbf{n}_1 &= -k_{r,2}(\theta_2(\psi_2)) \nabla \psi_2 \cdot \mathbf{n}_2 & \text{ on } \Gamma \times [0, T] \\ \psi_1 &= \psi_2 & \text{ on } \Gamma \times [0, T] \\ \psi_\ell &= 0 & \text{ on } \partial \Omega_\ell \times [0, T] \end{aligned}$

and the initial conditions $\psi_{\ell}(\cdot, \mathbf{0}) = \psi_{\ell,0}$ on Ω_{ℓ} $(\ell = 1, 2)$.

►► UHASSELT

Time discretization

Let
$$n \in \mathbb{N}$$
, $\tau := \frac{T}{n}$, $t^k := k\tau$, $k \in 0, 1, ..., n$

 ψ_ℓ^k : pressure on Ω_ℓ at time-step t^k

Time discretization

Let
$$n \in \mathbb{N}$$
, $\tau := \frac{T}{n}$, $t^k := k\tau$, $k \in 0, 1, ..., n$

 ψ_ℓ^k : pressure on Ω_ℓ at time-step t^k

Semi-discrete problem

Given $(\psi_1^{k-1}, \psi_2^{k-1})$, find (ψ_1^k, ψ_2^k) s.t. $\theta_\ell(\psi_\ell^k) - \theta_\ell(\psi_\ell^{k-1}) - \tau \nabla \cdot (k_{r,\ell}(\theta_\ell(\psi_\ell^k))\nabla \psi_\ell^k) = 0$ in Ω_ℓ $k_{r,1}(\theta_1(\psi_1^k))\nabla \psi_1^k \cdot \mathbf{n}_1 + k_{r,2}(\theta_2(\psi_2^k))\nabla \psi_2^k \cdot \mathbf{n}_2 = 0$ on Γ $\psi_1^k = \psi_2^k$ on Γ $\psi_\ell^k = 0$ on $\partial \Omega_\ell$

Challenge: nonlinear, coupled problems

Decoupling¹ ($\lambda > 0$)

Assume ψ_{ℓ}^{k-1} given. Let

$$\begin{array}{lcl} \psi_{\ell}^{k,0} & := & \psi_{\ell}^{k-1} \\ g_{\ell}^{k,0} & := & -\tau^{\frac{1}{2}} k_{r,\ell}(\theta_{\ell}(\psi_{\ell}^{k-1})) \partial_{\mathbf{n}_{\ell}} \psi_{\ell}^{k-1} - \lambda \psi_{\ell}^{k-1} \end{array}$$

Iteration over *i*:

For $i \in \mathbb{N}$ given $\{\psi_{\ell}^{k,j}\}_{j=0}^{i-1}$ and $\{g_{\ell}^{k,j}\}_{j=0}^{i-1}$. Find $(\psi_{1}^{k,i}, \psi_{2}^{k,i})$ s.t. $(\ell = 1, 2)$ $\theta_{\ell}(\psi_{\ell}^{k,i}) - \theta_{\ell}(\psi_{\ell}^{k-1}) = \tau \nabla \cdot \left(k_{r,\ell}(\theta_{\ell}(\psi_{\ell}^{k,i})) \nabla \psi_{\ell}^{k,i}\right)$ in Ω_{ℓ} $-\tau^{\frac{1}{2}}k_{r,\ell}(\theta_{\ell}(\psi_{\ell}^{k,i}))\partial_{\mathbf{n}_{\ell}}\psi_{\ell}^{k,i} = \lambda \psi_{\ell}^{k,i} + g_{\ell}^{k,i}$ in Γ where $g_{\ell}^{k,i} = -2\lambda \psi_{3-\ell}^{k,i-1} - g_{3-\ell}^{k,i-1}$.

¹Lions '88

Linearization (LⁱDD scheme)

Add the ("asymptotically zero") term

$$L^{k,i}_\ell \psi^{k,i}_\ell - L^{k,i}_\ell \psi^{k,i-1} o 0 \quad ext{ if } \quad \psi^{k,i}_\ell o \psi^k_\ell$$

with $L_{\ell}^{k,i} = \max\{\theta_{\ell}'(\psi_{\ell}^{k,i-1}) + \mathcal{M}\tau, 2\mathcal{M}\tau\}.$ Note: In the LDD-scheme $L_{\ell}^{k,i} = L_{\ell} \ge L_{\theta}$ (constant w.r.t. k, i) and $\mathcal{M} = 0$, while $g_{\ell}^{k,i} = -k_{r,\ell}(\theta_{\ell}(\psi_{\ell}^{k,i}))\partial_{n_{\ell}}\psi_{\ell}^{k,i} - \lambda\psi_{\ell}^{k,i}$

Linearization (LⁱDD scheme)

Add the ("asymptotically zero") term

$$L^{k,i}_\ell \psi^{k,i}_\ell - L^{k,i}_\ell \psi^{k,i-1} o 0 \quad ext{ if } \quad \psi^{k,i}_\ell o \psi^k_\ell$$

with $L_{\ell}^{k,i} = \max\{\theta'_{\ell}(\psi_{\ell}^{k,i-1}) + \mathcal{M}\tau, 2\mathcal{M}\tau\}.$ Note: In the LDD-scheme $L_{\ell}^{k,i} = L_{\ell} \ge L_{\theta}$ (constant w.r.t. k, i) and $\mathcal{M} = 0$, while $g_{\ell}^{k,i} = -k_{r,\ell}(\theta_{\ell}(\psi_{\ell}^{k,i}))\partial_{n_{\ell}}\psi_{\ell}^{k,i} - \lambda\psi_{\ell}^{k,i}$

Linear iteration (iteration index i)

For $i \in \mathbb{N}$ given $\{\psi_{\ell}^{k,j}\}_{j=0}^{i-1}$ and $\{g_{\ell}^{k,j}\}_{j=0}^{i-1}$, find $(\psi_{1}^{k,i}, \psi_{2}^{k,i})$ s.t. $(\ell = 1, 2)$

$$\begin{split} L_{\ell}^{k,i}\psi_{\ell}^{k,i} &- \tau \nabla \cdot \left(k_{r,\ell}(\theta_{\ell}(\psi_{\ell}^{k,i-1}))\nabla \psi_{\ell}^{k,i}\right) &= L_{\ell}^{k,i}\psi_{\ell}^{k,i-1} - (\theta_{\ell}(\psi_{\ell}^{k,i-1}) - \theta_{\ell}(\psi_{\ell}^{k,-1})), \\ &- \tau^{\frac{1}{2}}k_{r,\ell}(\theta_{\ell}(\psi_{\ell}^{k,i-1}))\partial_{\mathbf{n}_{\ell}}\psi_{\ell}^{k,i} &= \lambda \psi_{\ell}^{k,i} + g_{\ell}^{k,i}, \\ & \text{ where } g_{\ell}^{k,i} &= -2\lambda \psi_{3-\ell}^{k,i-1} - g_{3-\ell}^{k,i-1}. \end{split}$$

Here $\psi_\ell^{k,0} := \psi_\ell^{k-1}, g_\ell^{k,0} := -\tau^{\frac{1}{2}} k_{\mathsf{r},\ell} (\theta_\ell(\psi_\ell^{k-1})) \partial_{\mathsf{n}_\ell} \psi_\ell^{k-1} - \lambda \psi_\ell^{k-1}$

▶▶ UHASSELT

Convergence idea

If $\psi_{\ell}^{k,i} \to \psi_{\ell}^{k}$ and $g_{\ell}^{k,i} \to g_{\ell}^{k}$ then $L_{\ell}^{k,i}\psi_{\ell}^{k,i} - \tau \nabla \cdot \left(k_{r,\ell}(\theta_{\ell}(\psi_{\ell}^{k,i-1}))\nabla \psi_{\ell}^{k,i}\right) = L_{\ell}^{k,i}\psi_{\ell}^{k,i-1} - (\theta_{\ell}(\psi_{\ell}^{k,i-1}) - \theta_{\ell}(\psi_{\ell}^{k-1})),$ $-\tau^{\frac{1}{2}}k_{r,\ell}(\theta_{\ell}(\psi_{\ell}^{k,i-1}))\partial_{n_{\ell}}\psi_{\ell}^{k,i} = \lambda\psi_{\ell}^{k,i} + g_{\ell}^{k,i},$ where $g_{\ell}^{k,i} = -2\lambda\psi_{3-\ell}^{k,i-1} - g_{3-\ell}^{k,i-1}.$

Convergence idea

$$\begin{split} & \text{If } \psi_{\ell}^{k,i} \rightarrow \psi_{\ell}^{k} \text{ and } g_{\ell}^{k,i} \rightarrow g_{\ell}^{k} \text{ then} \\ & L_{\ell}^{k,i} \psi_{\ell}^{k,i} - \tau \nabla \cdot \left(k_{r,\ell} (\theta_{\ell}(\psi_{\ell}^{k,i-1})) \nabla \psi_{\ell}^{k,i} \right) = L_{\ell}^{k,i} \psi_{\ell}^{k,i-1} - (\theta_{\ell}(\psi_{\ell}^{k,i-1}) - \theta_{\ell}(\psi_{\ell}^{k-1}))), \\ & -\tau^{\frac{1}{2}} k_{r,\ell} (\theta_{\ell}(\psi_{\ell}^{k,i-1})) \partial_{n_{\ell}} \psi_{\ell}^{k,i} = \lambda \psi_{\ell}^{k,i} + g_{\ell}^{k,i}, \\ & \text{where } g_{\ell}^{k,i} = -2\lambda \psi_{3-\ell}^{k,i-1} - g_{3-\ell}^{k,i-1}. \\ & \downarrow i \rightarrow \infty \\ & \theta_{\ell}(\psi_{\ell}^{k}) = \theta_{\ell}(\psi_{\ell}^{k-1}) - \tau \nabla \cdot \left(k_{r,\ell} (\theta_{\ell}(\psi_{\ell}^{k})) \nabla \psi_{\ell}^{k} \right), \\ & -\tau^{\frac{1}{2}} k_{r,\ell} (\theta_{\ell}(\psi_{\ell}^{k})) \partial_{n_{\ell}} \psi_{\ell}^{k} = \lambda \psi_{\ell}^{k} + g_{\ell}^{k}, \\ & \text{where } g_{\ell}^{k} = -2\lambda \psi_{3-\ell}^{k} - g_{3-\ell}^{k}. \end{split}$$

►► UHASSELT

Interface conditions

$$egin{aligned} g_1^k &= -2\lambda\psi_2^k - g_2^k \ g_2^k &= -2\lambda\psi_1^k - g_1^k \end{aligned}$$

▶ UHASSELT

Interface conditions

$$egin{aligned} g_1^k &= -2\lambda\psi_2^k - g_2^k \ g_2^k &= -2\lambda\psi_1^k - g_1^k \end{aligned}$$

Subtracting the above gives

 $\psi_1^k = \psi_2^k$

INTERPORT

Interface conditions $g_1^k = -2\lambda\psi_2^k - g_2^k$ $g_2^k = -2\lambda\psi_1^k - g_1^k$ Subtracting the above gives $\psi_1^k = \psi_2^k$ Adding the above gives

$$g_1^k + g_2^k = -\lambda(\psi_1^k + \psi_2^k)$$

Interface conditions $g_1^k = -2\lambda\psi_2^k - g_2^k$ $\varphi_2^k = -2\lambda \psi_1^k - \varphi_1^k$ Subtracting the above gives $\psi_1^k = \psi_2^k$ Adding the above gives $g_1^k + g_2^k = -\lambda(\psi_1^k + \psi_2^k)$ Finally, since $-\tau^{\frac{1}{2}}k_{r,\ell}(\theta_{\ell}(\psi_{\ell}^{k,i-1}))\partial_{\mathbf{n}_{\ell}}\psi_{\ell}^{k,i} = \lambda\psi_{\ell}^{k,i} + g_{\ell}^{k,i}$. $-\tau^{\frac{1}{2}}k_{r,1}(\theta_1(\psi_1^k))\partial_{\mathbf{n}_1}\psi_1^k - \tau^{\frac{1}{2}}k_{r,2}(\theta_2(\psi_2^k))\partial_{\mathbf{n}_2}\psi_2^k = \lambda(\psi_1^k + \psi_2^k) + (g_1^k + g_2^k) = \mathbf{0}$

▶▶ UHASSELT

Convergence result: LDD

Theorem¹: Assume that

- 1. (ψ_1^n, ψ_2^n) exists²,
- **2.** $\psi_{\ell}^{n} \in W^{1,\infty}(\Omega_{\ell})^{3}$,
- 3. $k_{r,\ell}$ and θ_{ℓ} are Lipschitz continuous with Lipschitz constants $L_{k,\ell}$ and $L_{\theta,\ell}$, and $k_{r,\ell}(\cdot) \ge m > 0$

Then for $L_{ heta,\ell} < 2L_\ell$, $M \geq \|\nabla \psi_\ell^n\|_{\mathsf{L}^\infty} + 1$ and au so that

$$au < rac{2m}{L_{k,\ell}^2 M^2} ig(rac{1}{L_{ heta,\ell}} - rac{1}{2L_\ell}ig)$$

one obtains the following:

- 1. Existence and uniqueness of a solution for each L-scheme iteration step.
- 2. The sequence $\{\psi_{\ell}^{n,i}\}_{i\in\mathbb{N}}$ converges to ψ_{ℓ}^{n} $(\ell=1,2)$.

 $^1 Seus$ et al. '18 $^2 J \ddot{a} ger,$ Kutev '98, Eymard et al. '14, Berninger '14, P. et al. '17, List et al. '20 $^3 Cao,$ P. '15

UHASSEL

Convergence result: LⁱDD

Theorem: Assume that

- **1.** (ψ_1^k, ψ_2^k) exists,
- 2. $\psi_\ell^k \in W^{1,\infty}(\Omega_\ell)$,
- 3. $k_{r,\ell}$, θ_ℓ and θ'_ℓ are Lipschitz continuous and $k_{r,\ell}(\cdot) \ge m > 0$,

4.
$$\|\psi_{\ell}^{k} - \psi_{\ell}^{k-1}\|_{L^{\infty}(\Omega_{\ell})} \leq \tau \Lambda_{\ell}$$
 for some $\Lambda_{\ell} > 0$.

Then for τ small enough and with $L_{\ell}^{k,i} = \max\{\theta_{\ell}'(\psi_{\ell}^{k,i-1}) + \mathcal{M}_{\ell}\tau, 2\mathcal{M}_{\ell}\tau\}$ and $\mathcal{M}_{\ell} \geq \Lambda_{\ell} \|\theta_{\ell}''\|_{\infty}$ one obtains the following:

- 1. Existence and uniqueness of a solution for each Lⁱ-scheme iteration step.
- 2. The sequence $\{\psi_{\ell}^{k,i}\}_{i\in\mathbb{N}}$ converges to ψ_{ℓ}^{k} $(\ell=1,2)$.

Numerical example: domain

▶ UHASSELT

Numerical example: Richards equation

• Domain and coefficient functions ($\ell = 1, \ldots, 4$):

$$k_{r,\ell}(heta)= heta^\ell,\ heta_\ell(\psi)=\left\{egin{array}{cc} (1-\psi)^{-rac{1}{\ell+1}}, & \psi<0,\ 1, & \psi\geq 0. \end{array}
ight.$$

• Boundary/initial data and source term s.t. the solution is

$$\psi(t,x,y) = \begin{cases} 1 - (1+t^2)(1+x^2+y^2), & x \in (-1,0), y \in (-1,1), \\ 1 - (1+t^2)(1+y^2), & x \in (0,1), y \in (-1,1). \end{cases}$$

Comparison of different schemes

Convergence behaviour of the LDD scheme compared with the monolithic versions of the L-scheme, Newton, or Picard, and for different meshes

▶▶ UHASSELT

Effect of the time step and of L

▶ UHASSELT

Effect of the initial guess

▶ UHASSELT

Computational time												
Time Speedup	1 CPU 753s -	2 CPUs 411s 1.83	4 CPUs 207s 3.64	4,000 © 201	τ)	r = 0.001, 2	$\Delta x = 0.02$	2 - Newtor - Picard - LDD - LFV - LDD p	n parallel			
Speedup for 2 4, $h = 0.05$, $\ \psi(t_k) - \psi'$	2/4 CPUs. $\tau = 0.002$ $k_{-}L^{2} \le 10^{-1}$	Here $L_{\ell} :=$ 1. Stopping $^{-6}$ at $t = 1$.	$0.25, \lambda_{\ell} =$ criterion is	E 2,000	0 200	400	600	800	1.000			

Fig. 8. Time performance of the LDD, L-FV and the Newton-FV schemes.

number of time steps

UHASSELT

 $h = 0.05, \tau = 0.01, t = 0.2, L = 0.25$ (left) resp. M = 1 (right)

Numerical example: comparing schemes

timestep (τ)	LDD	LiDD	Newton DD iteration	Newton total iteration
0.01	77	20	53	295
0.05	62	46	53	316
0.10	67	70	56	360

 $h = 0.05, \ \mathcal{M} = 20, \ L = 0.25, \ \lambda = 4 \ (LDD \ and \ Newton)$

$$\begin{split} \text{Stopping criterium: } & \sum_{\ell,\rho} \| \boldsymbol{g}_{\ell,\rho}^k - \boldsymbol{g}_{\rho,\ell}^k \|_{L^2(\Gamma_{\rho,\ell})} \leq 10^{-6} \text{ (DD); } \\ \| \boldsymbol{\psi}_{\ell}^{k,i} - \boldsymbol{\psi}_{\ell}^{k,i-1} \|_{L^2(\Omega_{\ell})} \leq 10^{-6} \text{ (Newton).} \end{split}$$

Non-standard models

Non-equilibrium effects in the $\psi - \theta$ relationship

 $\psi =$ $p_c(\theta)$ "Standard" capillary pressure

¹Bottero, 2009, PhD thesis ²Bottero et al., 2011, Water Resour. Res. ³Lunowa et al. '19, '20

IDHASSELT

Non-standard models

Non-equilibrium effects in the $\psi - \theta$ relationship

*Results*³: Rigorous convergence proof for two LDD-type schemes.

▶ UHASSEL1

¹Bottero, 2009, PhD thesis ²Bottero et al., 2011, Water Resour. Res. ³Lunowa et al. '19, '20

Non-standard models

Non-equilibrium effects in the $\psi - \theta$ relationship

*Results*³: Rigorous convergence proof for two LDD-type schemes.

UHASSEL

¹Bottero, 2009, PhD thesis ²Bottero et al., 2011, Water Resour. Res. ³Lunowa et al. '19, '20

Fractured media: thin, equidimensional fracture

$$\begin{cases} \partial_t \theta_m(\psi_{m_j}^{\varepsilon}) - \nabla \cdot \left(k_{r,m}(\theta_m(\psi_{m_j}^{\varepsilon})) \nabla \psi_{m_j}^{\varepsilon}\right) = f_{m_j} & \text{in } \Omega_{m_j}^T, \\ \partial_t(\varepsilon^{\kappa} \theta_f(\psi_f^{\varepsilon})) - \nabla \cdot \left(\varepsilon^{\lambda} k_{r,f}(\theta_f(\psi_f^{\varepsilon})) \nabla \psi_f^{\varepsilon}\right) = f_f^{\varepsilon} & \text{in } \Omega_f^T, \\ v_{m_j}^{\varepsilon} \cdot \mathbf{n} = v_f^{\varepsilon} \cdot \mathbf{n} & \text{on } \Gamma_j^T, \\ \psi_{m_j}^{\varepsilon} = \psi_f^{\varepsilon} & \text{on } \Gamma_j^T, \end{cases}$$

* Pressure continuity: Martin, Jaffré & Roberts '05, Knabner & Roberts '14 Nonlinear transmission condition (entry pressure models): van Duijn et al ('95, '02, '16), Schweizer et al. ('07, '11), Cances et al. ('10, '12), Jäger & Simon '02, P, Bogers, Kumar '17

Reduced dimensionality: Morales, Showalter '10, '12, Ahmed et al. '17, Kumar et al. '20, List et al. '20

▶ UHASSELT

Note: Results depend on κ and λ ; here $\kappa = \lambda = -1$ (rigorous convergence proof¹)

UHASSEL¹

¹List et al. '20

Note: Results depend on κ and λ ; here $\kappa = -1 < \lambda$ (rigorous convergence proof¹)

UHASSELT

¹List et al. '20

Note: Results depend on κ and λ ; here $\kappa > \lambda = -1$ (rigorous convergence proof¹)

¹List et al. '20

UHASSELT

Conclusions and perspectives

Mathematical model for unsaturated porous media flows

- Euler implicit approach
- Linear domain decomposition, incorporating a robust linearization -(modified) L-scheme:
 - robust scheme (no restrictions on the initial guess);
 - mild condition on the time step;
 - applicable in combination with (M)FEM, FV, MPFA, dG, GDM...
- Convergence for Hölder continuous, non-decreasing functions
- More complex models, multi-phase flows

Joint work with

- K. Mitra, INRIA/Hasselt
- S. Lunowa, Hasselt
- F. List, Sydney/Hasselt
- J. Bogers, ASML

- D. Seus, Stuttgart
- C. Rohde, Stuttgart
- F. Radu, Bergen
- K. Kumar, Bergen

Thank you!

