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Abstract The increasing availability of new technologies in schools provides new 
possibilities for the integration of technology in mathematics education. However, 
research has shown that there is a need for a new kind of tasks that utilize the 
affordances provided by new technology. Numerous studies have demonstrated 
that dynamic geometry environments provide opportunities for students to engage 
in mathematical activities such as exploration, conjecturing, explanation, and 
generalization. In this paper, we introduce a model for design of tasks that 
promote these kinds of mathematical activities. Especially, tasks that foster 
students to make generalizations are emphasized. The model is primarily 
developed to suit geometrical locus problems. The construction of the model is 
based on previous literature. The model is demonstrated with a concrete example 
and tested out empirically in a case study with two doctoral students. Findings 
from the case study are used to revise the initial model. Finally, the revised model 
is introduced and discussed.  

1 Introduction 
The availability of different kinds of technologies in mathematics classrooms is 
increasing. In Sweden, more and more schools provide students with a computer 
of their own. This entails new possibilities for the integration of technology in 
mathematics education, but it requires change in teaching and learning practice 
(Drijvers et al. 2010; Pierce & Ball 2009). For example, there is a need for a new 
kind of tasks to utilize the features afforded by new technology (Doorman et al. 
2007; Hitt & Kieran 2009; Laborde 2002). 

It is well substantiated that dynamic geometry environments (DGE) provide 
opportunities for mathematical activities such as exploration, conjecturing, 
verification and explanation (e.g. Arzarello et al. 2002; Hanna 2000; Healy & 
Hoyles 2002). These kinds of activities have also been illuminated by several 
authors in relation to proof and proving (e.g. De Villiers 1990; Hanna & Jahnke 
1996; Stylianides & Ball 2008). In particular, the link between the empirical and 
the theoretical domains in the proving process has been in focus (Baccaglini-
Frank & Mariotti 2010; Hadas et al. 2000; Healy & Hoyles 2002; Hoyles & Jones 
1998; Leung & Lopez-Real 2002; Olivero & Robutti 2007). In numerous of these 
studies, the proving process begins with a phase of exploration and ends with a 
phase that includes explanation. However, less attention has been paid to the issue 
of task design in these studies.  

This study is situated in the context of task design. Especially, design of tasks 
appropriate for DGE, and that foster students’ ability to explore, conjecture, 
verify, explain and make generalizations. Despite its importance, the formal proof 
construction is not our main concern in this paper. Instead, the focus is on the 
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phases before and after the proof construction with emphasis on further 
generalizations.  

In close connection to this field, Leung (2011) suggests an epistemic model of 
task design. His model is situated in a technology-rich environment, in particular a 
DGE. Leung draws attention to three aspects in relation to task design: 
exploration, re-construction (or re-invention) and explanation. According to him, 
tasks should enable students to engage in activities that blend these aspects. 
However, further generalizations are not considered in his paper.  

In this paper, we suggest a model for design of task-situations1 in the context 
of a DGE. The model is developed to suit geometrical locus problems. Previous 
literature serves as rationales for the construction of the model. We use a concrete 
example to demonstrate and examine the model. Then, the model is tried out 
empirically in a case study with two doctoral students in mathematics. We 
identify key findings in the case study and use them to improve the model. 
Finally, we propose and discuss a revised model for design of task-situations. 

2 Theoretical Background 
In this section the main notions that frames the model is introduced. The literature 
review is organized in the following way. The first part concerns activities related 
to the phase before a formal proof construction. The next part deals with further 
generalizations (after a proof construction), and the last part relates to task design. 

2.1 From Exploration to Explanation 

Researchers agree that one of the most appreciated affordances provided by DGE 
is the possibility to make explorations (e.g. Baccaglini-Frank & Mariotti 2010; 
Edwards 1997; Hanna 2000; Hoyles & Jones 1998; Santos-Trigo & Espinosa-
Perez 2002; Öner 2008). Edwards (1997) used the metaphor “territory before 
proof” (p. 187) when discussing a comprehensive set of potential activities that 
could precede a formal proof construction.  

It is during this exploratory and testing phase that learners and expert 
mathematicians alike apply their intuitions in seeking patterns, follow 
hunches, testing ideas, and formulating generalizations that may become 
conjectures (Edwards 1997, p. 190) 
DGE provide a wide range of tools for exploring different properties and 

relations between mathematical objects. First and foremost, the dragging function 
is emphasized as the defining feature of a DGE (Arzarello et al. 2002; Baccaglini-
Frank & Mariotti 2010; Hölzl 2001; Laborde 2002; Leung 2011). Furinghetti and 
Paola (2003) reported on a case study with the aim to investigate how a DGE 
(Cabri) can influence students’ reasoning when they work with a conjecturing 
task. Initially, the students used the dragging tool. Furinghetti and Paola noticed 
that the students’ mode of dragging shifted from dragging more or less randomly 
to a more focused way of dragging. 

Hölzl (2001) mainly discussed two different ways in which dragging can be 
used: drag to check, e.g. whether a construction has a desired property, and drag 
to search for new properties. The latter is a way to use a DGE to explore 
mathematical relations. The purpose of this kind of dragging is to search for 
                                                 
1 A task-situation consists of a sequence of tasks. The notion “task-situation” is adopted from 
Kieran and Saldanha (2008).  
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regularities and invariants (Hölzl 2001; Olivero & Robutti 2007). Arzarello et al. 
(2002) introduced a hierarchy of different dragging modalities: wandering 
dragging, bound dragging, guided dragging, dummy locus dragging, line 
dragging, linked dragging and dragging test. They observed that students used 
different dragging modalities depending on purpose (Arzarello et al. 2002). For 
instance, to investigate and explore students used wandering dragging, bound 
dragging and guided dragging. By wandering dragging, a basic point is moved 
randomly on the screen “…in order to discover interesting configurations or 
regularities in the drawings.” (p. 67). In bound dragging, the point that is dragged 
is a “semi-dragable point”2. Guided dragging is used in order to give a drawing a 
particular shape, by moving one of its basic points (Arzarello et al. 2002). 

Baccaglini-Frank and Mariotti (2010) advance the research on different 
dragging modalities by introducing a model, the maintaining dragging model. In 
their research they focused on students’ cognitive processes when they engage in 
explorations within a DGE (Cabri) during the production of conjectures. One of 
the dragging modalities utilized in this study is dragging with trace activated.  
Baccaglini-Frank and Mariotti refer to this form of dragging as a combination of 
two Cabri tools: ““dragging” plus “trace”, which together constitute a new global 
tool that can be used in the process of conjecture-generation.” (pp. 230-231). This 
tool is also discussed by Santos-Trigo and Espinoza-Perez (2002). They pointed 
out that “…a powerful tool to identify and explore mathematical relationships is 
to trace the locus of any specified object.” (p. 47). They used three locus problems 
to show the power of a DGE as a means to “identify and examine geometric 
properties” (p. 38). However, dragging is not the only feature provided by a DGE 
in connection to exploration activities. For example, Olivero and Robutti (2007) 
discussed the affordances provided by different measuring tools. 

When, for example a pattern has been noticed, it should be described in a way 
that could be shared by others, e.g. in words, mathematical notions, pictures or 
diagrams (Edwards 1997). If students expect that the pattern is valid in general, 
they are prepared to state a conjecture. Furinghetti and Paola (2003) found that the 
students in their study stopped to explore after a while and instead began to reflect 
on what they had done and then they formulated a conjecture. The possibility that 
DGE offer students to check their conjectures is commented on by several 
authors. For example, Marrades and Gutiérrez (2000) mentioned the possibility to 
get a wide range of example as a main advantage of DGE. 

Convinced of the truth of their conjecture, the students in the study performed 
by Furinghetti and Paola (2003) were motivated to explain why the conjecture is 
true. To convince oneself about the truth of a statement before starting with the 
formal proof construction, also resembles how a mathematician works (De 
Villiers 1990; Hanna 2000). Further, to have a plan or an idea of how to construct 
the proof before starting with the proof construction is characterizing for a 
semantic proof production (Weber & Alcock 2004; Weber 2005). According to 
Weber and Alcock, this plan or idea could be found when using intuitive and 
informal representations to convince oneself why the statement is true. 
Analogically to semantic proof production, Raman (2003) discussed proofs based 
on key ideas. A key idea is an idea based on informal understanding which leads 
to a formal proof.  

                                                 
2 Arzarello et al. (2002) use the notion “semi-dragable  point” when they refer to a point that 
belongs to an object. 
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To find ways to explain why a conjecture is true may be a crucial step in the 
proving process. For example, Hölzl (2001) found that the main challenge for 
students was to find appropriate construction elements to add. He claimed that it is 
unlikely that only dragging objects around will give students ideas for 
explanations. The usefulness of auxiliary constructions to get ideas is also 
discussed in other studies (e.g. Santos-Trigo & Espinosa-Perez 2002).  

Healy and Hoyles (2002) found that interacting with a DGE (Cabri) “…can 
help learners to explore, conjecture, construct and explain geometrical 
relationships, and can even provide them with a basis from which to build 
deductive proofs…” (p. 18). That DGE could provide a base for explanation has 
also been demonstrated in other studies (Edwards 1997; e.g. Jones 2000). For 
example, Furinghetti and Paola (2003) noted that students referred to their 
exploration on the computer when they constructed a formal proof in writing. 

2.2 Further generalizations 

In contrast to traditional teaching of geometry in which the deductive proof is the 
final goal, Chazan (1990a) suggested that students could continue to explore after 
they have completed a proof. He proposed some questions that students could be 
asked: “For what geometrical objects does it hold? Can it be generalized?” (p. 20) 
Furthermore, Chazan (1990b) referred to Brown and Walter’s (1983)  “what if 
not” strategy to help students make generalizations. With this strategy students are 
encouraged to systematically vary key aspects of geometrical or other 
mathematical situations.  

Yerushalmy (1993) elaborated on the terms generalization, induction and 
conjecturing. For example, she pointed out that the term generalization is used 
both as a process and as the product of the process. Moreover, the product of an 
induction is also labeled a generalization. Conjectures then, “can be developed by 
both induction and generalization” (p. 57). However, 

In induction, the generalization is created from the examination of instances 
or examples. (…) Generalization, on the other hand, is a process acted out 
on a statement (either a conjecture or a proven statement). (…) Thus, in 
generalization, a more specific statement becomes a more general statement. 
(Yerushalmy   1993, p. 58). 
Yerushalmy (1993) referred to a teaching experiment with two groups of 

students (ninth graders) working within a DGE (Supposer). One of the groups was 
taught how to make generalizations. The strategy used by the teacher was the one 
mentioned above, the “what if not” strategy introduced by Brown and Walter 
(Yerushalmy   1993). The findings of this experiment indicated a significant 
difference in the ability to generalize between the two groups.  

Generalizations is also part of the last phase in the problem solving process, 
suggested by Pólya (1945). He emphasized that it is important for students not to 
abandon a problem when they think they have solved it. Instead they should 
utilize the opportunity to elaborate the problem further, and try to learn more from 
the result and the method they used. It is instructive for students to investigate if 
there are related problems and if it is possible to generalize the result. The 
importance of this phase is also illuminated by Mason, Burton and Stacey (2010), 
although they call it ‘review’. They suggested that there is a great opportunity to 
pose questions, e.g. questions like “What if … “, when one just has solved a 
problem. This is closely linked to what Furinghetti and Paola (2003) found in their 
study. When the students had made a formal proof, they went back to the original 
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problem and began a new process of exploration (in Cabri), now in a more 
systematic way.  

2.3 Task Design 

According to Hölzl (2001), the focus in many tasks presented in the context of 
DGE is to find ways of using DGE to verify a statement. He stated that 
“…learners are just supposed to vary geometric configurations and confirm 
empirically more or less explicitly stated facts.” (p. 65). He discussed some 
frequently used examples and argued that the way these tasks are posed only 
promote limited exploration activities. Hölzl (2001) suggested  “contrasting” uses 
of DGE. For example, he proposed tasks that enable students to experience 
moments of surprise or astonishment.   

In several studies in the context of proof and proving, different phases in the 
proving process can be discerned (e.g. Christou et al. 2004; De Villiers 2004; 
Edwards 1997; Furinghetti & Paola 2003; Marrades & Gutierrez 2000; Olivero & 
Robutti 2007). For instance, Marrades and Gutiérrez (2000) utilized activities 
structured in three phases when they investigated ways of using DGE to improve 
students’ proving skills. In the first phase students were asked to create a figure 
(in Cabri) and explore it. In the next phase, students generated conjectures and in 
the third phase they justified their conjectures. Marrades and Gutiérrez (2000) 
pointed out that a request for a justification includes an explanation of why the 
conjecture is true. In their conclusion they stressed, among other things, the 
importance of “carefully organized sequences of problems” (p. 120) to evolve 
students’ abilities to make elaborated types of justifications. Furinghetti and Paola 
(2003) distinguished six different phases that students should pass through when 
they work with a (proof) problem. Principally, these phases include activities such 
as exploration, conjecturing, construction of a formal proof, and exploration for 
further generalizations.  

Open problems are suggested to create teaching and learning environments that 
allow students to explore and produce conjectures (Baccaglini-Frank & Mariotti 
2010; Furinghetti & Paola 2003; Mogetta et al. 1999).  According to Mogetta, 
Olivero, and Jones (1999) some characterizing properties of an open problem are 
that they 

…usually consists of a simple description of a configuration and a generic 
request for a statement about relationships between elements of the 
configuration or properties of the configuration. (…) The requests are 
different from traditional closed expressions such as “prove that…”, which 
present students with an already established result. (pp. 91-92)  
One way to create open problems that exploit the features provided by DGE 

could be to turn traditionally closed tasks into open ones (Hadas et al. 2000; 
Mogetta et al. 1999). 

Sinclair (2003) discussed the relation between the design of a task and the 
exploration process. In a case study, she used students’ work with pre-constructed 
dynamic geometry sketches and accompanying lab sheets to find important design 
considerations. For example, Sinclair found that open-ended questions invite 
students to explore. 

Kieran and Saldanha (2008) discussed how to design tasks for the co-
development of conceptual and technical knowledge in CAS (Computer Algebra 
System) activities. Even if the task design that they elaborated concerned a CAS 
technology environment, there are some design principles that might be 
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worthwhile to consider even in the context of a DGE. For instance, students were 
asked to interpret their work in writing to make it explicit for further reflection. 
Thus, the tasks contained a mix of paper-and-pencil work, and computer 
activities.  “Reflection” is also highlighted by Lin et al. (2012) in their discussions 
about task design principles that promote conjecturing. By reflection, students get 
ideas for further explorations to improve their conjectures. 

2.3.1 An Example of a Task Design Model 

In a discussion paper, Leung (2011) proposes three aspects that could serve as 
guiding principles for task design in the context of technology-rich environments: 
exploration, re-construction and explanation. With the terminology techno-
pedagogic mathematics task design model, Leung (2011) refers to a model of task 
design “…in which learners are empowered with amplified abilities to explore, re-
construct (or re-invent) and explain mathematical concepts…” (p. 327). He 
proposes a task design model composed of three epistemic modes that reflect the 
aspects mentioned above. He designates these modes as Establishing Practices 
Mode (PM), Critical Discernment Mode (CDM), and Establishing Situated 
Discourse Mode (SDM).  

Leung (2011) describes the Establishing Practices Mode (PM) as a mode of 
exploration in a technology-rich environment, in particular a DGE. One intention 
with this mode is to make students acquainted with the software and give them 
possibilities to develop interacting modalities with the DGE. The mathematical 
objects that are manipulated could be pre-designed or demanded to be constructed 
in the task. Leung (2011) states that “Constructing or manipulating virtual 
mathematical objects is a meaningful way to learn to turn virtual tools into 
pedagogical instruments.” (p. 327).  

Gradually, as the students become comfortable in using the software, their 
focus of attention may shift ”…from establishing routine tool usage to meaning 
construction.” (p. 328). This shift of attention will lead students to the next mode, 
the Critical Discernment Mode (CDM).  In this mode 

 …construction of mathematical meaning mediated by the instruments 
shaped in the Establishing Practices Mode takes centre stage, in another 
word, empirical experiences are being mathematized. (Leung 2011, p. 328) 
This mode is characterized by activities such as observing and recording 

patterns of variation or invariants to get ideas for conjecture formation. This mode 
may encourage students to develop abilities to communicate their mathematical 
reasoning and argumentation (Leung 2011). In the next mode, the Establishing 
Situated Discourse Mode (SDM), students are supposed to express what they have 
discovered in the preceding modes. The explorations in prior modes support an 
inductive approach. Thus, when entering this mode students may “Develop 
inductive reasoning leading to making generalized conjecture” (p. 328). 
Thereafter, students could “Develop discourses and modes of reasoning to explain 
or prove” (p. 328). Leung points out that this mode (SDM) may serve as a bridge 
between empirical experiences and formal mathematical reasoning.  

4 Method 
Our study consists of two phases. In the first phase, we constructed a model for 
design of task-situations based on previous literature. To illustrate and examine 
the model a concrete example was used. Each task in the example was examined, 
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and predictions about student performances were made. The first phase is 
described in detail in section 5. 

In the second phase, the example was tested out empirically in a case study. 
The case study participants were two Ph.D. students in mathematics, C and E. 
They were familiar with the mathematical content, in this case conic sections. 
However, the students were not used to work in a DGE. Therefore, they were 
introduced shortly to GeoGebra, the software used in the case study. In this 
introduction the most important tools that were needed to perform the task-
situation in the example were introduced. The task-situation was presented on a 
worksheet and the participants were asked to work together and to write their 
answers on the worksheet. There was no time limit for the students’ work with the 
task-situation.  

To capture the students’ work, we used video recordings. The position of the 
camera was at an angle behind the students to capture the screen and also how 
students pointed at the screen. All the GeoGebra files that were produced by the 
students were saved. In these files it was possible to follow the students’ 
constructions step by step. The data were transcribed and the transcripts were used 
together with the video to analyze the students’ performances. 

Results from the case study are reported in section 6. Main findings from the 
case study were used to revise the initial model. According to Alcock and Inglis 
(2008), it is widely accepted to study the behavior of high achieving students for 
the design of mathematical activities. The revised model is introduced and 
discussed in the last section. 

5 A Model for Design of Task-situations 
5.1 Description of the Model 

The following guiding principles were considered when the initial model was 
developed.  First, students shall be asked to formulate their conclusions in writing. 
In this way their work can come to surface, and thus become object of reflection 
(Kieran & Saldanha 2008). Second, the tasks shall be sequenced in such a way 
that they provide students with a logical flow throughout the proving process, 
from exploration to explanation. Finally, students shall be encouraged to make 
further generalizations. Based on the latter principles, we have chosen to sequence 
the model as follows: exploring and conjecturing, verifying, explaining, and 
generalizing. Furthermore, the task-situation has to be introduced by a description 
of the mathematical situation. In the following, each part of the model is 
discussed and suggestions for formulations of the tasks are outlined. 
  
5.1.1 Description of the mathematical situation 

The description must include the conditions that define the mathematical situation 
under consideration. One way to construct suitable task-situations could be to 
reformulate existing problems. For instance, if a traditional proof task is used as a 
base, the explicit request “prove that…” could be excluded. In this way the 
original task is transformed into an open problem (Mogetta et al. 1999).   

5.1.2 Exploring and conjecturing 

To give students opportunities to get acquainted with both the DGE and the 
mathematical situation, students should make their own constructions, as far as 
possible. In the case of locus problems, it is particularly important for students to 
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be aware of dependent and independent objects. Moreover, if students are 
supposed to make further investigations later on in the task-situation, it is 
important for them to know how to utilize the technology. When a construction is 
made, students can begin to explore the mathematical situation under 
consideration. In these explorations different dragging modalities provided by 
DGE might be helpful (Arzarello et al. 2002; Baccaglini-Frank & Mariotti 2010; 
Hölzl 2001; Laborde 2002; Leung 2011). In the case of geometrical locus 
problems the most useable dragging modalities are bound dragging and dragging 
with trace activated (Santos-Trigo & Espinosa-Perez 2002). 

 To encourage students to make a construction, initiate an exploration of the 
relationship between the objects involved, and formulate a conjecture we suggest 
the following task. 

Task a) Make an appropriate construction in [the DGE, e.g. GeoGebra] 3 
and study the position of [a dependent object, e.g. a point], for 
different positions of [an independent object]. Make a conjecture. 

5.1.3 Verifying 

Different features of the DGE can be used to verify (or refute) the truth of a 
conjecture. For example, the possibility to investigate several examples rapidly 
on the computer has been documented in the literature (Edwards 1997; Hadas 
et al. 2000; Hanna 2000; Marrades & Gutierrez 2000). To foster students to 
convince themselves of the truth of their conjecture before trying to prove it, 
the next task is proposed.  

Task b) Use [the DGE] to support or refute your conjecture. 

5.1.4 Explaining 

Convinced of the truth of their conjecture, the students might be motivated to 
explain why it is true. Before a request for a formal proof, we suggest the 
following task. 

Task c) Explain in your own words why your conjecture is true. 
With the request to explain in “your own words”, we intend to promote a 
semantic proof production where informal and intuitive representations are 
important (Weber & Alcock 2004; Weber 2005). Very likely there will emerge 
a need to add some more construction elements to explore and discover 
underlying properties that could be used to explain the conjecture (Hölzl 2001; 
Santos-Trigo & Espinosa-Perez 2002). When the students have found the key 
ideas (Raman 2003), they might be well prepared for the next task. 

Task d) Construct a proof. 

5.1.5 Generalizing 

Traditionally, the proof construction is the final step in a proving process. 
However, it could be instructive to elaborate the problem further and try to 
generalize the result (e.g. Chazan 1990a; Furinghetti & Paola 2003; Mason et al. 
2010). We want to foster students to explore the mathematical situation further by 
using the affordances provided by DGE. Therefore we propose the final task to be 

                                                 
3 The text within square brackets should be adapted to the circumstances under consideration. 
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Task e) Make new related investigations. Make conjectures, support or 
refute, explain and prove.  

5.1.6 A summary of the model 

The initial model is summarized in table 1. 
Table 1 The initial model 

Description of the mathematical situation. 

(a) Make an appropriate construction in [the DGE, e.g. GeoGebra] and study the 
position of [a dependent object, e.g. a point], for different positions of [an 
independent object]. Make a conjecture. 

(b)  Use [the DGE] to support or refute your conjecture. 
(c)  Explain in your own words why your conjecture is true. 
(d)  Construct a proof. 
(e) Make new related investigations. Make conjectures, support or refute, explain 

and prove.  

    
5.2 An Example 

To demonstrate how the model could be utilized, we introduce a concrete 
example. As a basis, we used a proof task formulated in a traditional way, i.e. 
“prove that…” followed by a statement to prove.  The proof task, a geometrical 
locus problem, was originally formulated in the following way: 

Let P be an arbitrary point on the ellipse, 12

2

2

2

=+
b
y

a
x  and let F(ae,0) be a 

focus. Let M be the midpoint of FP. Prove that the locus of M is an ellipse. 
 
When the initial model (table 1) is used to reformulate the original proof task, 

the task-situation in table 2 is obtained. 

 Table 2 An example of a task-situation 

Let P be an arbitrary point on an ellipse. Let M be the midpoint between P and one of 
the foci.   

(a)  Make an appropriate construction in GeoGebra and study the position of point M 
 for different positions of point P. Make a conjecture.  

(b)  Use GeoGebra to support or refute your conjecture. 
(c)  Explain in your own words why your conjecture is true. 
(d)  Construct a proof. 
(f) Make new related investigations. Make conjectures, support or refute, explain 

and prove.  

 
In the following, the tasks are elaborated and predictions about student 
performances are made. 

5.2.1 Task a: Make an appropriate construction in GeoGebra and study 
the position of point M for different positions of point P. Make a conjecture. 

In this example the construction is straightforward because there are special tools 
available both for conic sections and midpoints in GeoGebra. Dragging 
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modalities that could be used to study what happens with the position of M as P is 
dragged along the ellipse are bound dragging and dragging with trace activated. 
When P is dragged along the ellipse, it can be observed that M seems to move 
along an ellipse as well. With trace activated, this is made quite obvious (figure 
1).  

In GeoGebra the locus of M could also be obtained by using the inbuilt locus 
tool. Thus, the last part of this task: “Make a conjecture” is fairly simple to 
perform, and a conditional statement could be expressed as follows: If P is an 
arbitrary point on an ellipse and M is the midpoint between P and one of the foci 
F, then the locus of M is an ellipse. However, there are further properties to 
discover, e.g. which are the foci of this (new) ellipse?  

 

  

Fig. 1 The locus of M seems to be an ellipse 

5.2.2 Task b: Use GeoGebra to support or refute your conjecture. 

One way to verify the truth of the conjecture could be to construct some more 
ellipses and use the dragging tool in the same way as in task (a). Another way 
could be to construct a new smaller ellipse (in the same window) by selecting two 
foci, A and B, and one point C on the ellipse. By moving the points A, B and C, it 
is possible to make the new ellipse coincide with the locus of M (figure 2). This 
kind of guided dragging (Arzarello et al. 2002) can be compared to what Lopez-
Real and Leung (2006) calls “drag to fit”. 

 

        
  
 
 Fig. 2 The locus of M (thick grey line) coincide with the ellipse (dotted line) with 

the foci A and B, and the point C on it 
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If students make the construction illustrated in figure 2, they might discern that 
the foci of the new ellipse are the points F and the midpoint between F and F’. 
However, without the construction in figure 2, it could be a challenge to discover 
this property. In case students find this property and make a refined conjecture, 
further confirmation of the truth of the conjecture could be made. For instance, the 
conjecture could be supported by measuring distances (by using the tool for 
distance measurement) and using the distance property of an ellipse4.   

5.2.3 Task c: Explain in your own words why your conjecture is true. 

The performance of this task depends on what has occurred in the preceding tasks. 
If students want to use the distance property to explain their conjecture, they need 
the foci of the small ellipse. In case the refined conjecture described in task (b) not 
has been found yet, the challenge to find these foci remains. If students search 
actively to find these foci, it should not be too difficult to hypothesize that the 
point F is a focus point of the small ellipse as well (see figure 1). If the position of 
one focus point is known it should be possible to estimate the position of the other 
one, and further to hypothesize that it is the midpoint between F and F’.  

If students manage to find the new foci and want to use the distance property, 
they might obtain a drawing like the one in figure 3a. Then, it might be natural to 
come up with the idea to construct the corresponding segments to AM and MF in 
the initial ellipse, i.e. F’P and PF (figure 3b). Further, it should be possible to 
imagine that a segment between F’ and F would give two similar triangles (figure 
3c). This is rather easy to confirm since both M and A are midpoints.  

 

 
 (a) (b) (c) 

 Fig. 3 The emergence of two similar triangles 

5.2.4 Task d: Construct a proof 

Our expectation for this task is that the final proof construction will be influenced 
by the informal reasoning in the preceding task and the explorations in the DGE. 
In this example, the key idea is the similarity described above.  

5.2.5 Task e: Make new related investigations. Make conjectures, support 
or refute, explain and prove.  

In this example there are several opportunities to generalize the conjecture.  In 
table 3 suggestions of questions that might be posed are introduced. 

Table 3 Questions of the type “what if…” that could be posed to find further generalizations 

(i) What if M is not the midpoint between P and F, i.e. PM/MF ≠ 1? 

                                                 
4 The sum of the distances from a point on the ellipse to the two foci is independent of the choice 
of point, i.e. the sum is constant. 
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(ii) What if P is a point on another conic section? 
(iii) What if M is a point between P and an arbitrary point (instead of F)? 

 

In the following the questions in table 3 are elaborated one by one. 
 

(i) What if M is not the midpoint between P and F? 
We assume that students will try to use GeoGebra to investigate this question. 

Most probably they will begin to investigate the case when FM < FP (figure 4a). 
To do this in GeoGebra they first must construct a segment or a line between the 
points F and P and then place the point M somewhere between F and P on this 
segment/line. If they chose to use a line there is a good chance that they also will 
investigate the case when M is placed outside the original ellipse, i.e. FM > FP 
(figure 4b).  

 

 Fig. 4a FM < FP Fig. 4b FM > FP 

If these investigations are performed, the following generalization of the 
conjecture could be stated: If P is an arbitrary point on an ellipse and M an 
arbitrary point on the line through P and one of the foci F (so that the ratio 
FM/FP is constant) then the locus of M is an ellipse5. To support this generalized 
conjecture GeoGebra can be used in the same ways as in task (b) above. The 
explanation and proof construction can be based on similar triangles in the same 
way as before.  

(ii) What if P is a point on another conic section? 
If students pose this question, it is straightforward for them to use GeoGebra to 

explore both hyperbolas and parabolas (figures 5a-b).  

                                                 
5 The foci are F and a point A on the line through F and F’, where FA/AF’=FM/MP. 
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 Fig. 5a The case of hyperbola Fig. 5b The case of parabola 

 

The outcomes from these investigations might result in the following 
generalization: If P is an arbitrary point on a conic section and M is an arbitrary 
point on the line through P and one of the foci F (so that the ratio FM/FP is 
constant) then the locus of M is a conic section of the same kind.                        

(iii) What if M is a point between P and an arbitrary point (instead of F)? 
Perhaps it is less likely that students will pose this question. However, if they 

do they might be surprised by the result that F can be replaced by any point. This 
is straightforward to discover in GeoGebra (see figure 6). Thus, a further 
generalization can be stated: If P is an arbitrary point on a conic section and M is 
an arbitrary point on the line through P and an arbitrary point Q (so that the ratio 
QM/QP is constant) then the locus of M is a conic section of the same kind. 

 

      
Fig. 6 M is an arbitrary point on the line through P and an arbitrary point Q  

If a drawing like the one in figure 6 is obtained, it will probably throw a new 
light on the situation. Is this about conic sections at all? What if P is a point on 
another geometrical object? If students chose to investigate these questions, they 
will probably discover the most general case: If P is an arbitrary point on an 
arbitrary geometrical object and M is an arbitrary point on the line through P and 
an arbitrary point Q (so that the ratio QM/QP is constant) then the locus of M is 
similar to this geometrical object. In mathematical theory this is a transformation 
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termed homothety6. In figure 7, an irregular polygon is used to illustrate the 
generalization above. 

   

 Fig. 7 An illustration of the generalized statement 

6 The Case Study 
In this section, we present the results of the case study.  

6.1 Results  

The students spent about one hour and a half working with the task-situation. 
Most of the time (about 70 minutes) was spent to find further generalizations. In 
the following we report the students’ performance of each task one by one. 
Transcripts are used in order to highlight interesting sequences. 

6.1.1 Task a: Make an appropriate construction in GeoGebra and study 
the position of point M for different positions of point P. Make a conjecture. 

Before the students made the construction in GeoGebra, they guessed that the 
point M would follow the path of a circle or an ellipse. As was predicted, they 
used the tools for ellipse and midpoint to make an initial construction. They chose 
to put trace on the point M before they dragged the point P along the ellipse. Thus, 
they used the two dragging modalities that were predicted, i.e. bound dragging 
and dragging with trace activated, in order to explore the path that M follows as P 
                                                 

6 A homothety is a transformation determined by a certain point Q that carries each point P into a 
point M on the straight line PQ in accordance with the rule QM = kQP, where k is a constant 
number, not equal to zero. The homothetic image of a figure F is the figure formed by the set of all 
points M homothetic to the points which constitutes the figure F. A homothety is a special case of 
a similarity. 

 

http://eom.springer.de/s/s085160.htm
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is dragged. The students obtained the drawing in figure 8 and they stated that their 
initial guess was decent.   

 

  Fig. 8 The initial drawing obtained by the students 
 
C suggested that the point F (figure 8) could be one of the foci (of the small 

ellipse), but the students were not convinced about this and left it for a while. 
Instead they changed the shape of the original ellipse (to get one more example) 
and verified that the locus of M still was an ellipse.  However, they now rejected 
the suggestion that F is a focus point of the small ellipse. They read the task 
description once again and wrote on the worksheet:  “Conjecture The locus of M 
is another ellipse!”. The students only expressed the conclusion in their written 
conjecture, i.e. they did not express the premises in writing.  

6.1.2 Task b: Use GeoGebra to support or refute your conjecture. 

When C and E read the instruction for task (b), they noted that this was something 
that they already had done and they stated that they made the tasks (a) and (b) at 
the same time. They then proceeded with the next task (c). Even if the students 
began the speculation of whether F could be one of the foci of the small ellipse, 
they did not carry it out at this moment. Therefore, they had not refined their 
conjecture (i.e. hypothesized about the foci of the small ellipse) before they 
started to work on the next task.  
 
6.1.3 Task c: Explain in your own words why your conjecture is true. 
 
At this moment, they added some further construction elements with the 
motivation: “Just to see how things are about there” (minute 6:35).  They 
constructed lines and midpoints between F’ and P and P and F respectively. They 
activated trace on the midpoints and dragged point P and received the drawing in 
figure 9, i.e. they obtained two new ellipses. It was more or less a coincidence that 
they received two ellipses (instead of one).  
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Fig. 9 The point P is dragged with trace activated on the two midpoints A and M  

Their discussion proceeded as follows. 

Transcript Interpretation 
(8:01) E: What is the defining characteristic of 
 an ellipse? [C describes the distance 
 property] 
 E: That´s probably useful. 
 
(8:53) C: I now still wonder if this can be the 
 focus [C points to the point F in figure 
 9] 
 
(9:04) C: I wonder if the midpoint between F’ 
 and F could be a common focus point of 
 the two smaller ellipses. 
 
(9:15) C: Maybe we can construct another 

ellipse that we can control with the slider 
and try to let the program construct those 
two, to support this or not. 

 E: Clever idea. 
 
   
 
[They construct a new ellipse with a more 

circular shape than in figure 8] 
 
(9:50) E: Now it seems more likely, yes. Maybe 

the proportion fooled us in the previous 
one. 

They referred to mathematical theory.  
 
 
 
 
Again they reflected on the possibility for F to 
be a focus point of the small ellipse. 
 
 
A refinement of the initial conjecture was 
discussed.  
 
 
To convince themselves of the truth of the 
refined conjecture they wanted to change the 
shape of the ellipse to examine several 
examples. However, they did not make this 
construction (with the slider tool) probably 
because they did not know how to do it in 
GeoGebra. 

 
 
 
They supported the refined conjecture, by 
investigating a further example.  

When C and E wanted to use the distance property to explain their conjecture 
they realized that they needed the new foci. They hypothesized about the positions 
of these foci but the utterance “it seems more likely” (9:50) indicates that they not 
were completely convinced at this moment. To find further support for their 
conjecture about the foci of the two small ellipses (figure 9), the students used a 
special case: the case of a circle. They changed the shape of the ellipse (by using 
guided dragging) into a circle and found that F’ and F coincide into a single point. 
Then they noted that this point was the midpoint of both the original circle and the 
small circle (the locus of A and M). This fact made them convinced about the truth 
of their refined conjecture and they continued to think about how to explain why it 
is true. E came up with the idea of adding segments to see if they could “find 
some similarity properties of triangles or something” (12:28). Then they 
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constructed a midpoint (B) between F’ and F and segments F’F and AB (figure 
10).  

 

 Fig. 10 Construction elements added to the drawing 

They used the image on the screen (figure 10) to convince themselves that 
triangle F’BA is similar to triangle F’FP since the points A, B and M all are 
midpoints. This is in line with our prediction (see figure 3). Further, they stated 
that the ellipses are similar as well. At this moment they began to write on the 
worksheet. However, they were confused about what they were supposed to write 
in task (c) since they did not realize the difference between this task and the next 
one, task (d). The reason for this was probably that they felt that they already had 
proved the conjecture. Finally, they wrote: “Reason: similar triangles Two 
ellipses”.  

6.1.4 Task d: Construct a proof. 

This task was straightforward for the students, and their proof construction was 
based on the similarity that was found in the preceding task. As anticipated, 
similarity was the key idea in this example. 
  
6.1.5 Task e: Make new related investigations. Make conjectures, support 
or refute, explain and prove.  
 
Rather soon, one of the students suggested that they should investigate a parabola 
since “a parabola is an ellipse with the other focus in infinity” (20:31). This 
suggestion corresponds to the second question that was predicted (see table 2). 
They opened a new window and used the inbuilt tools to construct a parabola, a 
point P on this parabola, and the midpoint M between P and the focus point. Then, 
they put trace on M and dragged P along the parabola. They obtained a drawing 
like the one in figure 5b, and it was obvious for them that the locus of M was a 
parabola. After this they opened a new window, and made the same investigation 
with a hyperbola. At this moment they began to formulate a generalized 
conjecture and wrote: “Conjecture: For any conic section (non-degenerate), the 
locus is another conic of the same type!”. They stated that this would be 
straightforward to prove and opened a new window to construct a new parabola. 
However, this time they did not use the inbuilt tool. Instead, they made a 
construction based on the defining properties of a parabola to find how to explain 
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the conjecture. In an analogical way to the case with the ellipse their explanation 
was based on similar triangles. As the students noted that they were supposed to 
prove their generalization, the observer gave them the instruction to give priority 
to further generalizations.  

At this moment E stated “What we have done now is that we have checked the 
conic sections”, and asked “What can we vary?” (39:22). “We can vary the 
position of M. It doesn’t need to be the midpoint. It can be another point on the 
line, I guess” (39:35), C responded. This is coherent with the first question that 
was predicted (table 2). They performed, what C suggested, by going back to an 
earlier window (figure 10) and place a point M so that FM/FP = 1/4 (instead of 
one half). They dragged point P with trace activated on M and stated that M still 
follows an ellipse. They repeated this procedure with the point M placed randomly 
on the segment between the point P and one of the foci and noticed a second 
generalization. They realized that this generalization could be explained and 
proved in an analogical way as in earlier cases. This second generalization was 
formulated and explained, and the students continued their search to find further 
generalizations.  
 
Transcript Interpretation 
(45:02) C: Can we do something more? 

(45:08) E: We have changed this guy [points at 
 the word “ellipse” in the initial 
 statement (on the worksheet)], and we 
 have changed this guy [points at the 
 word “midpoint”]. 
 
(45:19) E: The problem if we change this guy 
 [points at the word “foci”] we probably 
 will destroy our proof. 
 
(45:37) C: Ok, just for fun. [opens a new 
 window  and constructs an ellipse and 
 an arbitrary point D inside the ellipse 
 (figure 11), and drags the point P]. 
 
(46:35) C: Again, it looks like an ellipse. 
 E: What peculiar. 

 

The students went back to the original 
description, and summarized the premises they 
had varied so far. 

 

They begin to consider if M could be a point 
between P and another point (instead of F). 
Compare with the prediction in table 2. 
  
It seemed like C found it easy to make 
constructions to investigate different conditions 
within GeoGebra.  
 
 
The utterance “what peculiar” indicates that they 
have found something astonishing. 

       

 Fig. 11 A random point D instead of one of the foci  
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As predicted, a third generalization was found by the students. They noted that 
it still “looks like an ellipse” (46:35), when M is the midpoint between P and 
another point instead of F. Thereafter, C asked “What can we say about the foci of 
this ellipse?” (47:05). This question was their main concern during almost half an 
hour. They added further construction elements, investigated special cases, and 
went back and forth between different constructions (saved in different windows).  
Finally, they concluded that E (the midpoint between D and F’) and Q (the 
midpoint between D and F) must be the foci due to similar triangles (see figure 
12).  

    

 Fig. 12 The foci of the locus of M are E and Q  

Next, they went back to the worksheet and began to formulate the third 
generalization in writing. 

Transcript Interpretation 
 (1:12:40) C: So the most general conjecture is 
 that: If we choose a random point 
 which is not necessarily the 
 focus…inside the ellipse… actually 
 what about outside? [laughing] 

(1:12:47) E: Just thought about it…when you 
 said inside. So the most general 
 conjecture will be a random point in 
 the plane. [laughing] 

(1:12:53) C: Well, but let´s keep it inside. 
 
[…] 
 
(1:18:40) E: … so remaining problems… future 
 work: Other non-degenerate conic 
 sections and the big guy: outside 
 ellipse [writes all this on the 
 worksheet] 
 
(1:19:21) C: Let´s just try outside ellipse, I´m 
 curious. 
 E: I´m curious as well. 
 [they open a new window and make 
 the construction in figure 13] 

As they began to formulate the generalization in 
writing, they hesitated when they said “inside 
the ellipse” and reflected on what would happen 
if D is a point outside the ellipse.  

 
They found this rather fun and it seemed that 
they did not take this idea seriously at the 
moment.  
 

They left this speculation for a while.  
 
 
 
At this moment they began to reflect on future 
work. Once again, they reflected on what will 
happen if the random point D is placed outside 
the ellipse. 
 
 
As noticed before (45:37), it seemed that C 
found it easy to make constructions to 
investigate different conditions within 
GeoGebra. 
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 Fig. 13 The random point D placed outside the ellipse 

At this moment, the students concluded that the locus of M still is an ellipse, 
even if the random point D is located outside the (original) ellipse. Next, they 
wrote on the worksheet: “Conjecture: Outside ellipse gives analogous results”. 
Thereby a refinement of the third generalization was stated. After a while, C 
stated that “This is just a transformation of the original curve”. Then, he pointed at 
the GeoGebra tool labeled with the following description: “Enlarge Object from 
Point by Factor”. C began to elucidate how the transformation works by using 
paper and pencil. He drew a triangle, a point and a smaller triangle, similar to the 
bigger one. He further said that the point directs everything. The following 
excerpt shows how they made connections between the drawing on the paper and 
an earlier construction in GeoGebra (figure 12). 

Transcript Interpretation 
(1:27:56) C: Is this the point D? Could it be the 
 point D? [points at the point on the 
 paper and compares it with the point 
 D in figure 12] 
 E: Maybe 
[…] 
 
(1:28:40) C: It is really this mapping [points at 
 the GeoGebra tool] So, one 
 conjecture is…  can be that … 
 
(1:29:37) E: So, let’s try to produce it…if you 
 take this one [points to the 
 original ellipse] 
 
(1:29:50) C: Click on it and it will say what we 
 are supposed to do [points at the text 
 in GeoGebra]. Object to enlarge 
 [reads the text laud] so it is the 
 ellipse, yes. Then click on the point 
 D. [a small window appears with the 
 text: “Number”] 
 
(1:30:30) C: Number. Ok, let’s try…the 
 number is DE over DF’…one half in 
 this case. 
 E: Yes 
  

C started to compare his sketch on the paper 
with the drawing in figure 12.   

 
 
 
 
It seems like C has convinced himself of his 
“transformation theory”. 
 
 
E suggested that they could make the 
transformation by using the GeoGebra tool. 
 
 
They utilized an affordance provided by the 
software, namely the help text: “Select object to 
enlarge, then centre point and enter factor” 
 
 
 
 
 
They calculated the scale factor. 
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(1:30:43) C: And we got it! [the new object 
 coincide with the trace in figure 12] 

Once again, they have convinced themselves of 
a further generalization. 

A discussion followed about whether this transformation has a special name. 
The observer informed the students about the term “homothety” and the students 
went to Google to get a description of it. The students also discussed how they 
should prove this even if they never wrote it down. At this stage, the participants 
were rather sure that there were nothing more to change (in the original 
description), or as E expressed it: “I think our imagination is exhausted”. But only 
a few seconds after this, C made the following utterances: “Maybe you can 
change the curve completely.” (1:34:11) and “Yes, it is so. It is like a definition of 
this transformation.”(1:34:43). Finally, they wrote this most general conjecture on 
the worksheet and their work with the task-situation was finished. 

6.2 Summary of the results  

When we compared our predictions about student performances with the results 
from the case study we found both agreements and differences. The main 
agreements are that the students 

• added construction elements to explore and explain geometrical properties 
and relations. This was made even more frequently than expected. 

• exploited the simplicity to check different examples and test ideas 
provided by the DGE. For example, they used the following dragging 
modalities: bounded dragging, guided dragging and dragging with trace 
activated.  

• made further reflections when they formulated their conclusions in 
writing. 

• found the most general case by changing the premises in the initial 
description. However, they did this in a more systematic way than 
expected. 

The main unexpected results are that the students 

• performed task (a) and task (b) at the same time. 

• found it hard to distinguish between task (c) and task (d).  

Some further observations are that the students 

• expressed their written answers rather shortly. For example, they did not 
express the premises in their conjectures, they only wrote the conclusions. 

• frequently opened a new window (and saved the old constructions) when 
they started with a new construction. This made it possible for them to 
switch between different windows to get ideas and support for their 
mathematical reasoning. 

• used special cases to explore and confirm conjectures. 

• spent almost 80% of the time on the last task, i.e. further generalizations.  

7 Conclusion and Discussion  
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In this section we first introduce the revised model and discuss each task in the 
model. Then, we discuss how the model could  be used.  

7.1 The Revised Model 

Results from the case study have been considered in the revision of the initial 
model (table 1). A suggestion of a revised model is introduced in table 4.  
 
Table 4 The revised model with the modifications highlighted in bold. 

Description of the mathematical situation  

(a) Make an appropriate construction in [the DGE, e.g. GeoGebra] and study the 
position of [a dependent object, e.g. a point], for different positions of [an 
independent object]. Make a conjecture.  

(b) Are you convinced of the truth of your conjecture? If not, try to use [the 
DGE] to support your conjecture. When you are convinced, go to the next 
task.7  

(c) Explain in your own words why your conjecture is true.  
(d) Construct a formal proof. 
(e) Investigate if your conjecture can be generalized. Perform the tasks above 

with new premises. 

 
7.1.1 Task a: Make an appropriate construction in [the DGE, e.g. 

GeoGebra] and study the position of [a dependent object, e.g. a 
point], for different positions of [an independent object]. Make a 
conjecture.  

The first task is the same as in the initial model. This task presupposes that 
students have been introduced to the software in use. The students in the case 
study were introduced to GeoGebra very shortly, and different dragging 
modalities were demonstrated some days before the study. Furthermore, one of 
them spent some hours “playing” with the software. These preparations were 
sufficient for them to be able to work with this task and the subsequent tasks. 
During their work with the tasks, the students got more and more acquainted with 
the software. This was a good preparation for their work with generalizations in 
the last task.  

An alternative to the formulation “Make an appropriate construction” would 
have been to give detailed descriptions of the different steps in the construction as 
in the examples discussed by Leung (2011). We argue that it might be instructive 
for students to reflect on what an “appropriate construction” should include and 
how it should be made. However, the level of guidance should be adapted to both 
how difficult the construction is and the students’ abilities.  

One important principle in our model is that students should make their own 
conjectures. This is consistent with the notion open problem (e.g. Mogetta et al. 
1999). To make the problem even more open, the instruction “study the position 
of…” could be replaced with “search for mathematical properties”. This 
formulation had probably worked equally well for the students in our case study 
since they are high achieving students. The level of openness in the instruction 

                                                 
7 We take for granted that students will make a new conjecture in case their conjecture turns out to 
be false. We have omitted the words “or refute” in the initial model. 
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should be adapted to the mathematical situation under consideration and the 
students’ abilities. 

In our model the request “make a conjecture” is formulated in the first task. In 
Leung’s model, on the other hand, this request is explicitly stated in the last mode, 
the Situated Discourse Mode (SDM). One reason for this difference between our 
model and Leung’s model could be that the models are based on different types of 
mathematical problems. In geometrical locus problems, DGE often provide a 
quick visualization of a conjecture as in the example (see table 2). 

We argue that it might be important for students to formulate their conjectures 
in writing early in the process. In this way their conjectures could serve as a base 
for further reflections (Kieran & Saldanha 2008). These reflections could lead to 
further explorations and improved conjectures (Lin et al. 2012). That the request 
for written answers could make students to reflect further was also shown in our 
case study. For example, when the students were to write “inside the ellipse” they 
hesitated and said “actually what about outside?” (minute 1:12:40). 

7.1.2 Task b: Are you convinced of the truth of your conjecture? If not, try 
to use [the DGE] to support your conjecture. When you are 
convinced, go to the next task.  

The formulation of this task is changed completely. When the students in the case 
study read the instruction for task (b) they felt that they already had performed it. 
The reason for this was that they supported their conjecture by investigating a 
further example before they formulated the conjecture in writing. To avoid this 
kind of confusion, we chose to reformulate task (b) so that students can proceed 
with the next task in case they already are convinced of the truth of their 
conjecture. 

7.1.3 Task c: Explain in your own words why your conjecture is true. 

The formulation of this task is unchanged.  This task is challenging for many 
students (Hölzl 2001). However, for the students in our case study it was not too 
hard to explain their conjecture. The strategies they used were that they 

• referred to mathematical theory, in this case the definition of an ellipse 
• added construction elements frequently to find and investigate different 

ideas 
• used special cases to find and investigate different ideas 

It might be useful for teachers to have these strategies in mind when guiding and 
supporting students.  

7.1.4 Task d: Construct a formal proof. 

In this task we have added the word “formal” to elucidate the difference between 
this task and the preceding one. For the students in the case study there were no 
difference between task (c) and task (d). For them, the conjecture was already 
proved when they had performed the explanation in task (c). To make a formal 
proof construction was not a challenge for them. However, for many students this 
is a challenge. 

This task could be omitted without affecting the rest of the task-situation. The 
purpose with the task-situation and the students’ abilities should guide the 
decision whether to include this task or not.  This aligns with Leung’s model 
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(Leung 2011) where the last instruction “to explain or prove” (p. 328) indicates 
that the proof construction might be excluded.  

7.1.5 Task e: Investigate if your conjecture can be generalized. Perform 
the tasks above with new premises. 

We decided to change the formulation of this task because we wanted to focus 
even more on the process of generalization. The students in the case study worked 
in a systematic way when they generalized their initial conjecture. They went back 
to the original description and looked for premises to vary. To direct students’ 
focus on their conjecture we decided to replace the original formulation “make 
new related investigations” with the formulation “Investigate if your conjecture 
can be generalized.” It might be easier for students to perform this task if they 
have formulated their conjecture as a conditional statement, i.e. with both 
premises and conclusion. If so, they can look for premises to vary in their 
conjecture instead of the original description. 

We realize that this reformulation implies a restriction of the model since there 
might appear situations when the initial conjecture not can be generalized. 
However, we want a model that fosters students to search for further 
generalizations. To find further generalizations students should be able to pose 
their own questions. Research (e.g. Sinclair 2003) indicates that this is a challenge 
for many students. The last sentence in this task could give students a clue of how 
to search for further generalizations, i.e. by defining and varying the premises in 
the conjecture. This general directive might not be sufficient for all students. To 
give further guidance, teachers could help students to pose questions like “What 
if…”. The importance of posing this kind of questions is highlighted by several 
authors (e.g. Chazan 1990a; Lin et al. 2012; Mason et al. 2010; Yerushalmy   
1993). 

7.2 How to use the model  

One way to use the model to design a task-situation is to emanate from a 
traditional proof task, as we do in section 5.2. However, it is possible to emanate 
from problems without the traditional formulation “prove that...”. For example, 
the following locus problem elaborated by Guven (2008) could be used. 

What is the locus of points determined by the intersection of the medians of 
a triangle as one of the vertices of the triangle traverses a circle? (p. 252). 
(See figure 14) 
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Fig. 14 Illustration of the problem introduced by Guven  

In table 5, we give a suggestion of how this problem can be reformulated by 
using the model. 
Table 5 An example of how the revised model can be used 

Let G be the intersection of the medians of triangle ABC and let vertex A traverse a 
circle. 

(a) Make an appropriate construction in GeoGebra and study the position of point G, 
for different positions of vertex A. Make a conjecture.  

(b) Are you convinced of the truth of your conjecture? If not, try to use GeoGebra to 
support your conjecture. When you are convinced, go to the next task.  

(c) Explain in your own words why your conjecture is true.  
(d) Construct a formal proof. 
(e) Investigate if your conjecture can be generalized. Perform the tasks above with 

new premises. 

This problem provides several opportunities for students to make further 
generalizations. There are several premises in the initial description that could be 
varied and investigated. Some interesting “what if…” questions that could be 
posed are 

• What if G is an arbitrary point on one of the medians? 

• What if G is an arbitrary point on an arbitrary segment between a 
vertex and its opposite side in the triangle?  

• What if A is a point on an arbitrary figure instead of a circle? 
The more generalizations made the better the chance to discover that the 

findings can be explained by homothety, also in this example. Though, even if this 
problem differs a lot from the example used in the case study, the problems can 
both be explained by the same mathematical property, i.e. homothety. Most likely 
it is possible to find other relations that can be discovered and generalized in a 
DGE and explained through homothety. We suggest that starting with a basic 
principle and trying to find special cases founded on this principle can be an 



26 

alternative way to find examples where the model can be used to design task-
situations that promote generalizations. 

 In this paper we have restricted our model to geometrical locus problems. 
However, with a minor revision of task (a) the model could be used to reformulate 
other types of locus problems. For example, consider the following problem from 
calculus:  

Investigate the locus of the extreme point of the function bxxxf += 2)(   when 
the parameter b changes.   

This problem could be reformulated in the following way by using the model 

Let E be the extreme point of the function bxxxf += 2)( , where b is a real 
number. 
(a)  Make an appropriate construction in GeoGebra and study the position 

of point E, for different values of the parameter b. Make a conjecture.  
 

The subsequent tasks (b) – (e) could be the same as before. In this problem, the 
slider tool could be used to vary the value of the parameter. This tool is not 
discussed in the literature referred to in this paper. However, Zehavi and Mann 
(2011) discuss this tool in connection to dynamical explorations in a CAS 
environment.  

It would be interesting to investigate the generality of our model. Foremost, it 
is the formulation in task (a) that restricts the model to geometrical locus 
problems. We suppose that the model could be used to design task-situations 
based on other kinds of problems if task (a) is reformulated. 
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