
Student thesis proposal:

A study on scaling and load balancing for 5G

core network using Kubernetes

November 30th, 2019

1 Objective

Investigate and develop new scaling or load balancing strategies for the 5G Core
network, in particular its control plane functions (e.g., MME), in a container-
based environment orchestrated by Kubernetes.

2 Background

Scaling refers to adding or removing resources from a system to increase the
system resource efficiency as well as the system performance. Load balancing
refers to efficiently distributing incoming network traffic across a group of back-
end servers (aka a server pool). A good load balancing algorithm will help
increase the overall system performance. Therefore, these play a crucial role in
providing scalability and efficiency of any system such as cloud-based systems.

Taking advantages of virtualization, telco operators and providers have been
migrating their network functions from running on dedicated specialized hard-
ware to virtual applications or services on top of cloud infrastructure. The
virtual applications or services can be deployed on Virtual Machines (VM) man-
aged by cloud manager tools such as OpenStack [2] or Containers managed by
container orchestration systems such as Kubernetes [1]. Currently, containers
have become a dominant force in cloud-native development due to its light-
weight, less starting time, and native performance over VM-based approaches.

The goal of this thesis is to first examine how well we can do autoscaling
and load balancing for network functions of 5G core network in a cloud-native
way using Kubernetes and then derive a new improved scaling/load balancing
solution.

1



3 Research Work

• Deploy Open5GCore on Kubernetes (K8s)

• Run experiments with the K8s existing scaling solutions such as horizontal
pod autoscaling (HPA), etc.

• Literature review of the existing solutions for container-based horizontal
scaling load balancing

• Propose and implement an improved scaling/load balancing of MMEs

• Testing with the Open5GCore benchmarking tool with the control plane
traffic

4 Requirements

• Prerequisites: Python programming, basic container/docker, Linux

• Deliverables: scaling/load balancing operations of one of Open5Gore com-
ponents on K8s

• Duration: 5-6 months

References

[1] Kubernetes. https://kubernetes.io/.

[2] Openstack. https://www.openstack.org/.

2


