Task Design with Focus on Exploration, Explanation and Generalization using GeoGebra

The Seventh Nordic GeoGebra Conference
Trondheim, September 25th, 2016
Mats Brunström and Maria Fahlgren

The original proof task

Let P be an arbitrary point on the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and let $F(a e, 0)$ be a focus.
Let M be the midpoint of FP. Prove that the locus of M is an ellipse.

A mathematical situation - a sequence of tasks

Let P be an arbitrary point on an ellipse. Let M be the midpoint between P and one of the foci.
(a) Make an appropriate construction in GeoGebra and study the position of point M for different positions of point P.
Formulate a conjecture.
(b) Are you convinced of the truth of your conjecture? If not, try to use GeoGebra to support your conjecture. When you are convinced, go to the next task.
(c) Explain in your own words why your conjecture is true.
(d) Construct a proof.
(e) Investigate if your conjecture can be generalized. Perform the tasks above with new premises, by using appropriate techniques, such as posing what if? or what if not? questions.

Let P be an arbitrary point on an ellipse. Let M be the midpoint between P and one of the foci.
(a) Make an appropriate construction in GeoGebra and study the position of point M for different positions of point P.
Formulate a conjecture.
If P is an arbitrary point on an ellipse and M is the midpoint between P and one of the foci F, then the locus of M is an ellipse
(b) Are you convinced of the truth of your conjecture? If not, try to use GeoGebra to support your conjecture. When you are convinced, go to the next task.

(c) Explain in your own words why your conjecture is true.
 (d) Construct a proof.

(e) Investigate if your conjecture can be generalized. Perform the tasks above with new premises, by using appropriate techniques, such as posing what if? or what if not? questions.

What if M is not the midpoint between P and F ?

If P is an arbitrary point on an ellipse and M an arbitrary point on the line through P and one of the foci F (so that the ratio $F M / F P$ is constant) then the locus of M is an ellipse

What if P is a point on another conic section?

If P is an arbitrary point on a conic section and M is an arbitrary point on the line through P and one of the foci F (so that the ratio $F M / F P$ is constant) then the locus of M is a conic section of the same kind

What if M is a point between P and an arbitrary point (instead of F)?

If P is an arbitrary point on a conic section and M is an arbitrary point on the line through P and an arbitrary point Q (so that the ratio $Q M / Q P$ is constant) then the locus of M is a conic section of the same kind

Is this about conic sections at all?
 What if P is a point on another geometrical object?

If P is an arbitrary point on an arbitrary geometrical object and M is an arbitrary point on the line through P and an arbitrary point Q (so that the ratio $Q M / Q P$ is constant) then the locus of M is similar to this geometrical object.

In mathematical theory this is a transformation termed homothety (a special case of similarity)

A model for task design with focus on exploration, explanation, and generalization in GeoGebra

Description of the mathematical situation
(a) Make an appropriate construction in GeoGebra. Formulate a conjecture.
(b) Are you convinced of the truth of your conjecture? If not, try to use GeoGebra to support your conjecture. When you are convinced, go to the next task.
(c) Explain in your own words why your conjecture is true.
(d) Construct a proof.
(e) Investigate if your conjecture can be generalized. Perform the tasks above with new premises, by using appropriate techniques, such as posing what if? or what if not? questions.

One further example

Let E be the extreme point of the function $f(x)=x^{2}+b x$, where b is a real number.
(a) Make an appropriate construction in GeoGebra and study the position of point E, for different values of the parameter b. Make a conjecture.

The subsequent tasks (b) - (e) could be the same as before.

Thank you for your attention!

Fahlgren, M. \& Brunström, M. (2014). A model for task design with focus on exploration, explanation, and generalization in a dynamic geometry environment. Technology, Knowledge and Learning, 19(3), 287-315.

