Konstantinos Karagiorgos

Using different sources of rain data to model urban flooding
Introduction

- Floods
 - Extremely complex phenomenon to model

- Key challenges
 - 1. Data
 - 2. Methods
 - 3. Applications
Introduction – flood hazard analyses

○ Why?
 • Describe areas of high and low flood risk
 • Produce a range of probabilities described by return period

○ How?
 • Hydrology
 - How much water?
 • Hydraulic modelling
 - Where does the water go?
Model - workflow

Hydrometeorological data (Precipitation / Stream Flow)

- Rainfall - Runoff Models
- Statistical Analysis
- Land-use / Geology data

Q (m³/sec)

HEC-HMS

Basemaps And Surveys

Hydraulic Models

Water Surface Elevation

DEMs DTMs

Flood Maps

HEC-RAS
Model - calibration

1. Start
2. Raw Data
 - Method selection
 - Parameterization
 - Model Run
 - Model Output
 - Evaluate Performance Metrics
 - Acceptable
 - Not Acceptable
 - Calibration
3. End
Model – Calibration / Validation

- Event based models
 - 3 Events Calibration
 - 2 Events Validation

- Probabilistic models
Data - Radar

- Swedish Meteorological and Hydrological Institute
- Sweden
- 2008 – Current
- *.png - *.tif
- ArcMap – HEC-DSS
- Grid format - 5 minutes time step
Data – Time Series

- Jönköping Municipality
- 20 Stations
- 1990 – Current
- *.csv
- time – series analysis
- Interpolation - Grid files
Data – Satellite data

- Center for Hydrometeorology and Remote Sensing (CHRS) - University of California
- World
- 2003 – Current
- *.tif
- Arcmap – HEC-DSS
- Grid format – 1 hour time step
Data – NetAtmo

- Personal Weather Station
- Cheap / User-friendly / grown rapidly network
- NetAtmo platform (+ Wundermap etc)
- 5min interval
- Measurement range 0.2 – 150 mm h⁻¹
- Comparison with gauge data (Karlstad airport)
Next Steps

- **Flood hazard maps**
 - Event 26/07/13
 - Return periods 2/5/10/20/50/100 years

- **Vulnerability analysis**
 - Stage-Damage Curves
 - SoVI

- **Risk Maps**
 - Insurance / Decision makers / Population
Tack!