

Introduction

- Floods
 - Externely complex phenomenon to model

- Key challenges
 - 1. Data
 - 2. Methods
 - 3. Applications

Introduction – flood hazard analyses

- O Why?
 - Describe areas of high and low flood risk
 - Produce a range of probabilities described by return period
- O How?
 - Hydrology
 - How much water?
 - Hydraulic modelling
 - Where does the water go?

Model - workflow

Model - calibration

Model - Calibration / Validation

- Event based models
 - 3 Events Calibration
 - 2 Events Validation

Probabilistic models

Data - Radar

- Swedish Meteorological and Hydrological Institute
- Sweden
- o 2008 Current
- o *.png *.tif
- ArcMap HEC-DSS
- O Grid format 5 minutes time step

Data - Time Series

- Jönköping Municipality
- o 20 Stations
- o 1990 Current
- °.csv
- o time − series analysis
- Interpolation Grid files

Data – Satellite data

- Center for Hydrometeorology and Remote Sensing (CHRS) - University of California
- World
- 2003 Current
- *.tif
- Arcmap HEC-DSS
- Grid format 1hour time step

Data - NetAtmo

- Personal Weather Station
- O Cheap / User-friendly / grown rapidly network
- NetAtmo platform (+ Wundermap etc)
- o 5min interval
- O Measurament range 0.2 − 150 mm h⁻¹
- Comparison with gauge data (Karlstad airport)

Next Steps

- Flood hazard maps
 - Event 26/07/13
 - Return periods 2/5/10/20/50/100 years
- Vulnerability analysis
 - Stage-Damage Curves
 - SoVI
- Risk Maps
 - Insurance / Decision makers / Population

