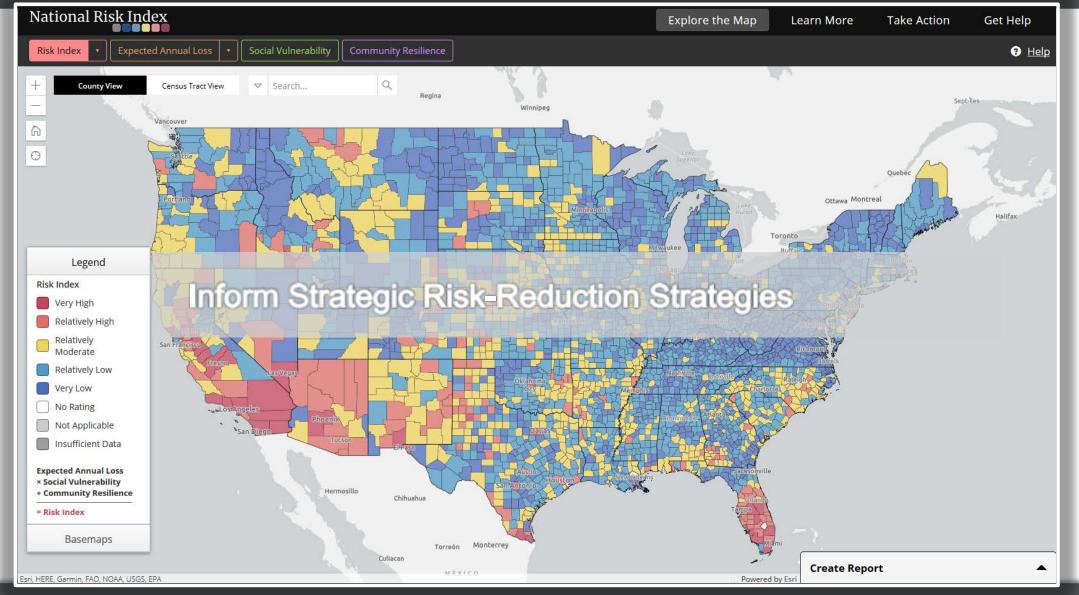
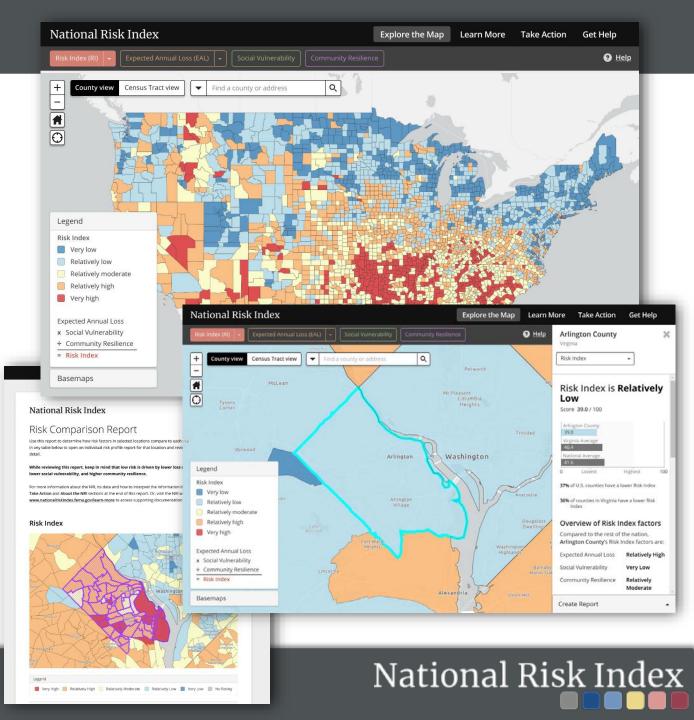
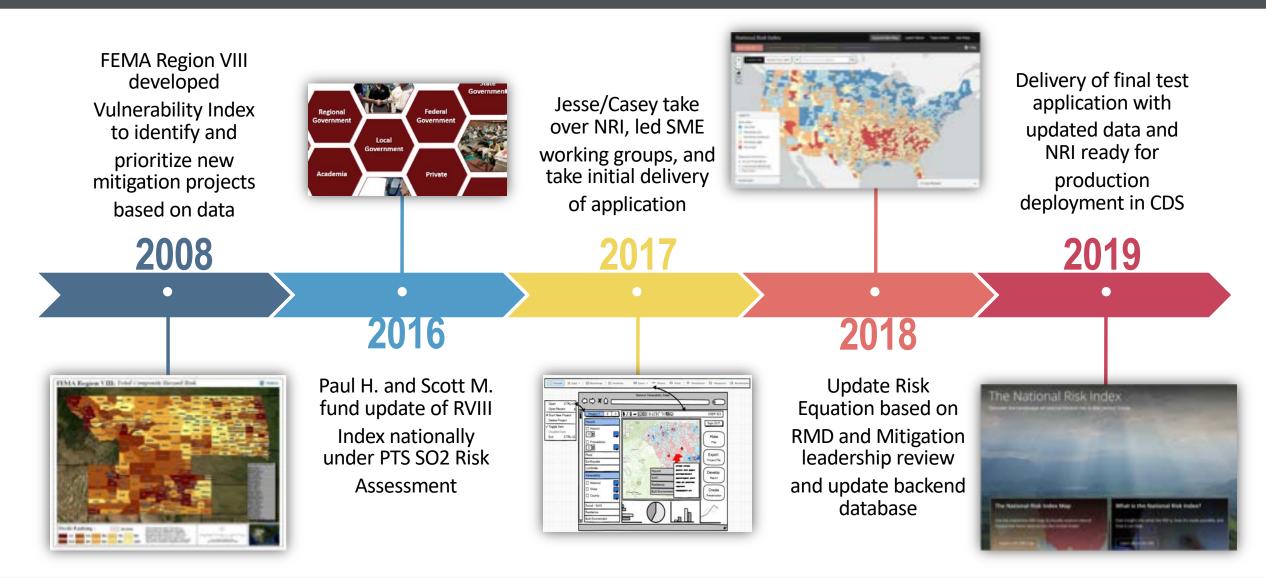
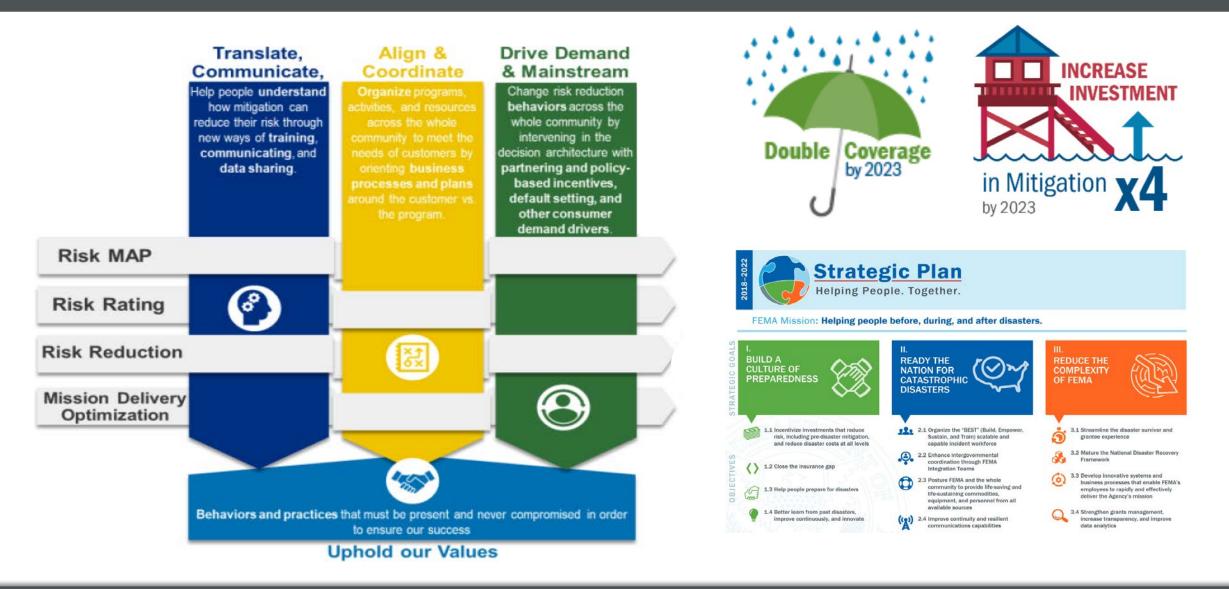
The National Risk Index Discover the landscape of natural hazard risk


Casey Zuzak, GISP Senior Risk Analyst

FEMA Natural Hazards Risk Assessment Program



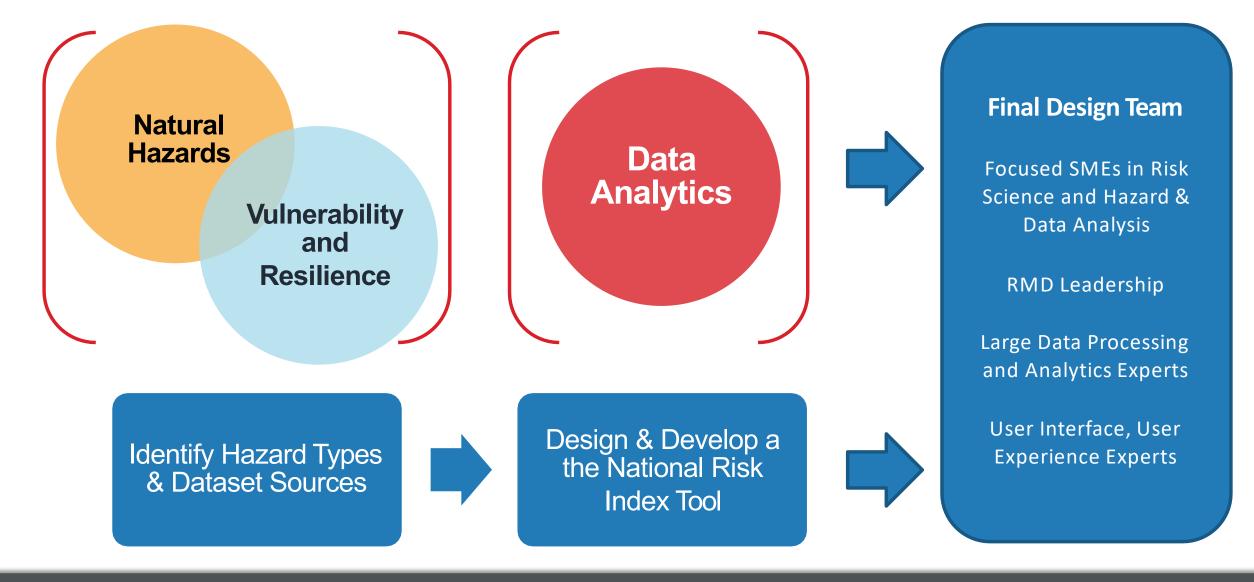

What is the National Risk Index?

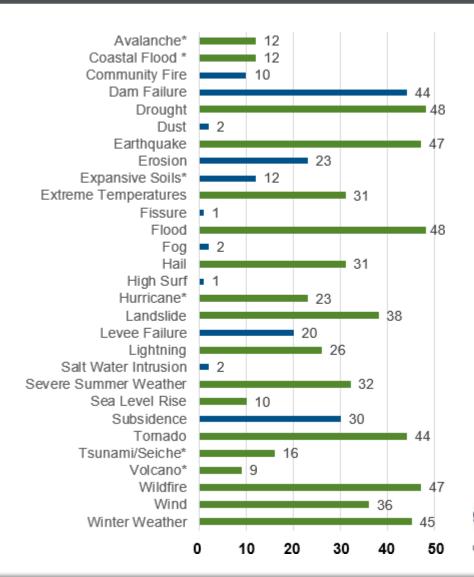

- Began as a strategy for reducing cost and eliminating inconsistent risk assessments in planning
- Identifies areas that offer high return on mitigation investment
- Reduces the cost of risk assessment allowing community planners to prioritize action
- Provides pre-calculated, topdown national baseline risk assessment

NRI Development History (2008; 2016-2019)

Transformative Work Achieving Strategic Goals

National Risk Index Contributors




National Risk Index Contributors

National Risk Index Working Groups

National Risk Index Hazard Selection

- Reviewed the 50 State Hazard Mitigation Plans
 - Initial list developed from rate of occurrence in each state plan
- Natural hazards only

Center

Storm

Center

e

Prediction

 Man-made hazards or hazards related to anthropogenic activities not included

science for a changing world

NDMC

SITY OF NE

Colorado Avalanche

Information Center

- Hazard Excluded from Analysis
- * Significant Regional Hazard for Consideration

NOTES:

- Coastal Flood and Sea Level Risk Hazards were combined
- Extreme Temperature is both Hot and Cold
- Severe Summer Weather is covered by Wind, Hail, Tornado, and Lightning

FEMA

US Army Corps

of Engineers.

National Risk Index

• Winter Weather is both Snow and Ice

Natural Hazards Data Sources

Hazard	Source	Hazard	Source		
Avalanche	CO Avalanche Information Center	Landslide	U.S. Geological Survey		
Coastal Flood	NOAA National Weather Service, Storm Events Database, and Coastal sea level rise	Lightning	NOAA Severe Weather Data Inventory, Storm Events Database, and National Center for Environmental Information		
Cold Wave	NOAA North American Climate Extremes Monitoring, National Weather Service, and Storm Events Database	Riverine Flood	FEMA Special Flood Hazard Exposure Map and National Flood Hazard Layer		
Drought	National Drought Mitigation Center	Snowstorm/Blizzard	NOAA Storm Events Database and National Operating Hydrologic Remote Sensing Center		
Earthquake	National Earthquake Hazards Reduction Program	Strong Wind	NOAA Storm Prediction Center and Storm Events Database		
Hail	NOAA Storm Prediction Center and Storm Events Database	Tornado	NOAA Storm Prediction Center and Storm Events Database		
Heat Wave	NOAA North American Climate Extremes Monitoring and Storm Events Database	Tsnuami/Seiche	NOAA National Center for Environmental Information, individual state sponsored datasets from HI, CA, OR, WA, and		
Hurricane	NOAA National Hurricane Center and Storm Events Database,		AK		
numente	Hazus Wind Probabilistic Geodatabase	Volcano	UN Office for Disaster Risk Reduction		
Ice Storm	U.S. Army Corps of Engineers	Wildfire	U.S. Geological Survey and U.S. Forest Service		

Social Vulnerability and Community Resilience

Social Vulnerability Index: SoVI 2010-2014

- Developed by the University of South Carolina's HVRI
- Grouped into 7 components with 29 variables (SoVI 2010):
 - 1. Race and class (7 variables)
 - 2. Wealth (5 variables)
 - 3. Elderly residents (6 variables)
 - 4. Hispanic ethnicity (5 variables)
 - 5. Special needs individuals (2 variables)
 - 6. Native American ethnicity (1 variables)
 - 7. Service industry employment (2 variables)
- Comparative index at the county or subcounty level
- Positive and negative component loading

Baseline Resilience Indicators for Communities: BRIC 2010-2014

- Developed by the University of South Carolina's HVRI
- 6 resilience category scores, plus total score
 - 1. Social
 - 2. Economic
 - 3. Community capital
 - 4. Institutional
 - 5. Infrastructural
 - 6. Environmental
- Comparative indicators at the county level
- Indicators analyze the relationship between resilience,

vulnerability, and the relative impact of disasters on rural and urban places

UNIVERSITY OF SOUTH CAROLINA

Determining Risk

National Risk Index = Expected Annual Loss X Social Vulnerability ÷ Community Resilience

Expected Annual Loss = Natural Hazard Exposure **X** Natural Hazard Frequency **X** Historical Loss

- Risk is defined as the potential for negative impacts as a result of a natural hazard
- Considers the probabilities or frequencies of 18 natural hazards, and the population, property value, and crop value exposed within hazard extents
- Expected Annual Loss is calculated separately for each natural hazard, then summed to generate a composite score for all 18 natural hazards
- Equation supports traditional hazards risk approach of risk being defined as the product of Hazard, Vulnerability, and Exposure

Learn More / Determining Risk Determining Risk Determining Risk Marking Risk Equation is an additive equation that resulted from standardizing four factors: a natural hazard filelihood factor, two consequence factors and a risk reduction factor. As part of the standardization process, the datasets supporting each factor were normalized using a Max/Min approach to generate composite score the approach was selected because it properly maintains relationships between factors. Risk Index = Expected Annual Loss * Social Vulnerability + Community Resilience Expected Annual Loss * Natural Hazard Exposure * Natural Hazard Frequency * Historical Loss Cataled approach was be an atord hazard, then sumward to prevate composite score for 41 material hazard	Community Residence						
Cancustes separately for each natural nazare, then summer to generate a compose score stor at its natural nazare. For the NRI, Risk is defined as the potential for negative impacts as a result of a natural hazard	NRI Contributors Data Resources						
The Factors							
Spatial Hazard Events and Losses Databas for the United States							

Risk Calculation

Risk = Expected Annual Loss x Social Vulnerability ÷ Community Resilience

Expected Annual Loss (EAL) Calculation Considerations

Option 1. Initial Approach: Hazard Dependent Consequence

- Uses either building damage or population as consequence type for a given hazard
- EALs are not directly comparable across hazards because consequences types vary; so, EAL scores are normalized to all other counties for that hazard
- Normalized values are summed across hazards to represent the "all hazard" EAL
 - Treats all hazards as having equivalent EALs
 - Historical loss for hazards spans 4 orders of magnitude (Hurricane >8000x higher than Volcano loss)

Option 2. Current Approach: Consequence Equivalency

- Apply Value of Statistical Life (VSL) to combine property, people, & crop into one loss metric
- Sum un-normalized EALs across hazards to represent the "all hazard" EAL

Value of Statistical Life (VSL)

• Use VSL to convert fatalities to dollars \$7.4M/life

Table 5: AIS Injury Severity Levels, Fraction of VSL, and Economic Values (2015 Dollars)

AIS Code	Description of Injury	Fraction of VSL	Economic Value
AIS 1	Minor	.0020	\$14,000
AIS 2	Moderate	.0155	\$107,000
AIS 3	Serious	.0575	\$397,000
AIS 4	Severe	.1875	\$1,294,000
AIS 5	Critical	.7625	\$5,261,000
AIS 6	Fatal	1.0000	\$6,900,000

Source for Fraction of VSL: FAA, 2008.

• Enables combined expected loss for property damage, crop loss, and fatalities

BENEFIT-COST SUSTAINMENT AND ENHANCEMENTS

CONTRACT #: HSFEHQ-10-D-0806 TASK ORDER #: HSFE60-16-J-1424

Baseline Standard Economic Value Methodology Report July 28, 2016

Federal Emergency Management Agency Department of Homeland Security 500 C Street, SW Washington, D.C. 20472

EAL Calculation Options

EALProperty = Annualized Frequency * ExposureProperty * Historic Loss RatioProperty

EALPeople = Annualized Frequency * ExposurePeople * Historic Loss RatioPeople

EALCrop = Annualized Frequency * ExposureCrop * Historic Loss RatioCrop

Option 1. Initial Approach: Hazard Dependent Consequence

EAL= EALProperty or EALPeople

Option 2. Current Approach: Consequence Equivalency EAL= EALProperty+ (EALPeople * \$7.4M) + EALCrop

*Notes

- Drought EAL only considers EALCrop
- EALCrop is only included for select hazards: Hail, Wind, & Riverine Flood

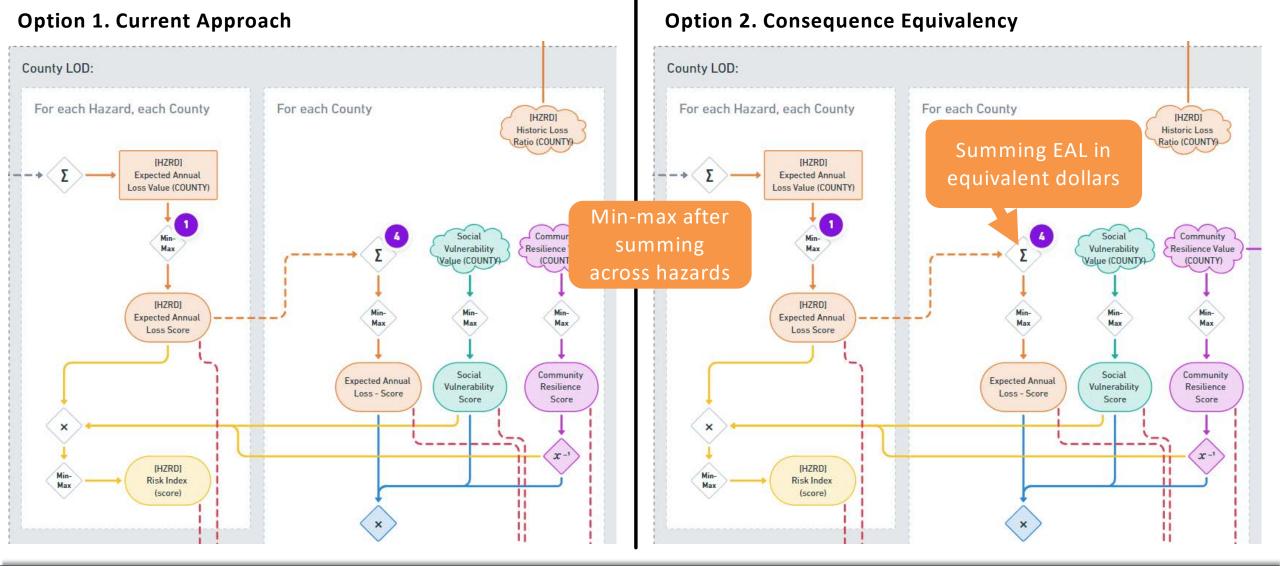
Summary of SHELDUS Loss Data (1995-2016)

Hazard	Property Damage	Crop Losses	Fatalities		
Hurricane/Tropical Storm	\$179,279,932,143	\$1,392,092,788	1045		
Flooding	\$107,680,427,740	\$1,614,273,548	1852	Property	Mathadalagu
Tornado	\$ 36,265,848,108	\$18,757,422	1680	Value	Methodology
Severe Storm/Thunder Storm	\$13,031,736,421	\$32,705,029,493	378		Consequences
Wind	\$17,432,750,117	\$3,748,517,418	1018	Area	
Winter Weather	\$11,629,438,042	\$6,102,536,349	1125	//	le.
Coastal	\$1,780,325,862	\$23,843	875	Peop	le
Lightning	\$1,156,774,567	-	858		
Landslide	\$4,829,570,018		181		
Earthquake	\$4,159,099,805	\$4,583,019	//		
Tsunami/Seiche	\$65,732,837		11/		
Volcano	\$15,020,996	\$127,469			
Hail	\$28,744,435,195	\$8,971,453,803	25		
Heat	\$49,401,721	\$5,922,995,923	3827		
Avalanche	\$12,021,312		305		
Drought	\$2,826,919,900	\$48,537,462,507	66		
Wildfire	\$13,315,293,019	\$21,709,345	132		

Combined Loss Using VSL

- Denominator for crop losses
- Look at peril level for hail & thunderstorm to determine

- Move wildfire to property damage vs. crop
- Run sensitivity analysis w/VSL

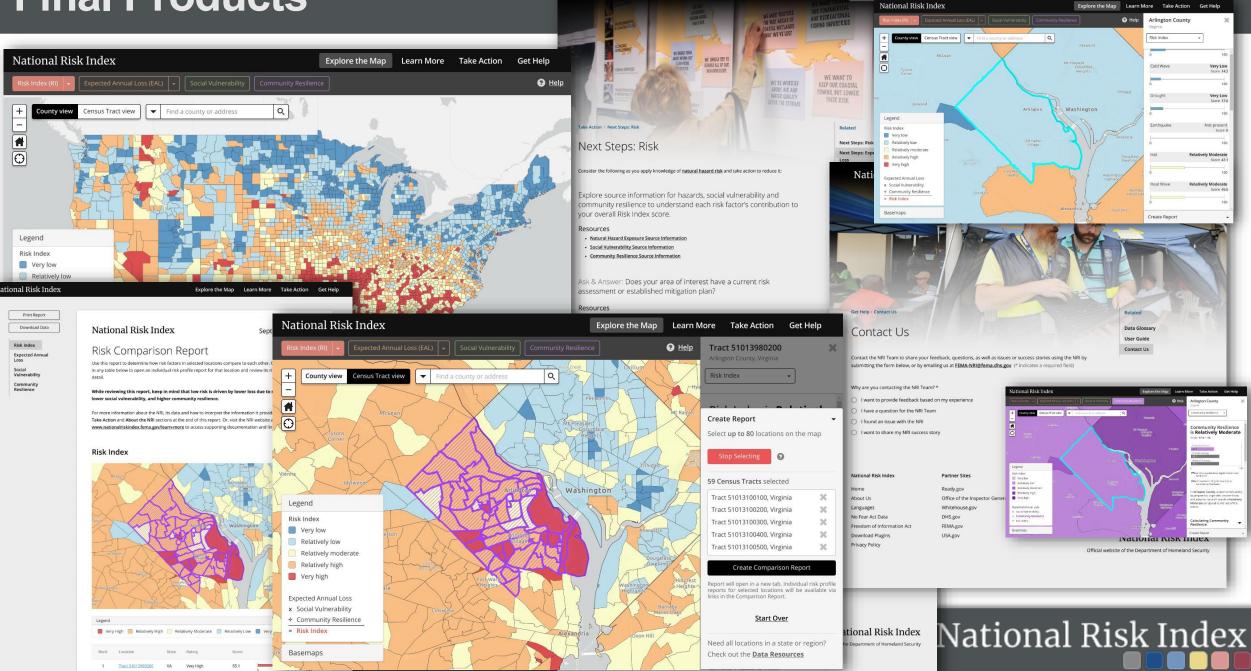

Hazard	Property Damage	Crop Losses	Fatality Monetized	Combined Loss	Methodology Consequence %	
Hurricane/Tropical Storm	\$179,279,932,143	\$1,392,092,788	\$7,732,926,000	\$188,404,950,931	95%	
Flooding	\$107.680.427.740	\$1.614.273.548	\$13,702,913,000	\$122,997,614,288	88%	
Drought	\$2.826.919.900	\$48.537.462.507	\$491,989,000	\$51,856,371,407	94%	
Tornado	\$36.265.848.108	\$18,757,422	\$12,430,248,642	\$48,714,854,172	74%	
Severe Storm/Thunder Storm	\$13,031,736,421	\$32,705,029,493	\$2.795.855.568	\$48,532,621,482	27%	
Hail	\$28,744,435,195	\$8,971,453,803	\$187.565.210	\$37,903,454,208	0%	
Heat	\$49.401.721	\$5,922,985,923	\$28.323.167.000	\$34,295,554,644	83%	
Wind	\$17,432,750,117	\$3,748,517,418	\$7,535,826,926	\$28,717,094,461	61%	
Winter Weather	\$11,629,438,042	\$6,162,536,349	\$8,324,149,000	\$26,116,123,391	45%	
Wildfire	\$13,315,293,	\$21,709,345	\$976,726,000	\$14,313,728,364	0%	
Coastal	\$1,780,325,862	\$23,843	\$6,472,237,358	\$8,252,587,063	22%	
Lightning	\$1,156,774,567	\$ -	\$6,346,240,000	\$7,503,014,567	15%	
Landslide	\$4,829,570,018	\$ -	\$1,339,252,000	\$6,168,822,018	78%	
Earthquake	\$4,159,099,805	\$4,583,019	\$51,726,000	\$4,215,408,824	99%	
Avalanche	\$12.021.312	\$ -	\$2.257.296.000	\$2,269,317,312	99%	
Tsunami/Seiche	\$65.732.837	\$ -	\$7,400,000	\$73,132,837	90%	
Volcano	\$15,020,996	\$127,469	\$7,400,000	\$22,548,465	67%	

Sequence of min-max can Dramatically Impact Results

	Expected Annual Loss: Combined					Min-max	Expected Annual Loss: Hazard Normalized				Min-max	
County	Hurricane	Flood	Drought	Hail	Total	Total	Hurricane	Flood	Drought	Hail	Total	Total
A	5,301	436	19	84	5,840	0.57	0.55	0.98	0.09	0.34	1.96	0.72
В		221	55	28	304	0.01		0.50	0.26	0.11	0.87	0.15
С	1,999	165			2,164	0.20	0.21	0.37			0.58	0.00
D	2,059	17		111	2,187	0.20	0.21	0.04		0.44	0.70	0.06
E		360	25	230	615	0.04		0.81	0.12	0.92	1.85	0.66
F		444	26	13	483	0.02		1.00	0.12	0.05	1.17	0.31
G	2,586	76	212		2,874	0.27	0.27	0.17	1.00		1.44	0.45
Н	5,946			18	5,964	0.59	0.61			0.07	0.69	0.06
I				250	250	0.00				1.00	1.00	0.22
J	9,672		191	148	10,011	1.00	1.00		0.90	0.59	2.49	1.00

Normalization Sequence for Methodologies 1 and 2

Stakeholder Use



- Multiple states, including, New York, Virginia, Florida, and Pennsylvania, want to use the NRI for local planning efforts to increase community resilience
- Online real estate tools are exploring incorporating NRI data into their interfaces to increase risk awareness to potential home buyers and renters

National Risk Index

 Support continued baseline hazard risk assessments for both public and private planning and awareness campaigns

National Risk Index

Explore the Map Learn More Take Action Get Help

http://nationalriskindex-test.fema.gov

Questions?

Casey Zuzak, GISP Senior Risk Analyst **FEMANHRAP** Casev.Zuzak@fema.dhs.gov This is very much a work on progress website, loaded with basic datasets that may not represent the final product.

The National Risk Index

Explore the NRI map

Discover the landscape of natural hazard risk in the United States

The National Risk Index Map Use the interactive NRI map to visually explore natural hazard risk factor data across the United States how it can help

What is the National Risk Index?

Gain insight into what the NRI is, how it's made possible, and

Learn about the NRI