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The problem

Propose microscopic models to derive Fick and Fokker–Planck diffusion
laws.

Motivation:

– study diffusion in presence of space inhomegeneities;

– in applied sciences two different macroscopic equations are used: the
Fick and the Fokker–Planck equations;

– give e microscopic interpretations of the two macroscospic equations;

– relate the macroscopic behavior to the microscopic structure of the
space inhomogeneities.
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Macroscopic equations



The Fick law for space homogeneous systems

Matter diffuses in the region Ω ⊂ R3 and u(x , t) is the density inside Ω.

Matter is conserved:
∂u

∂t
+∇ · J = 0

where J is the flux.

The flux is related to the density profile by the Fick’s law

J = −D∇u

where the “constant” D > 0 is called diffusion coefficient.

Combining the two equations find the Fick diffusion or heat equation

∂u

∂t
+∇ · (−D∇u) = 0 =⇒ ∂u

∂t
= D∆u .
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The Fick law for space inhomogeneous systems

The diffusion coefficient D(x) is a function of the space variable x .

The Fick’s law for the flux reads

J(x , t) = −D(x)∇u(x , t) .

Combining with the continuity equation

∂u

∂t
+∇ · (−D∇u) = 0 =⇒ ∂u

∂t
= ∇ · (D∇u) ,

namely, the Fick diffusion law or equation.
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The Fokker–Planck diffusion equation

Assume the flux is given by

J(x , t) = −∇(D(x)u(x , t)) ,

note that the two approches coincide when D is constant.

Combining with the continuity equation

∂u

∂t
+∇ · (−∇(Du)) = 0 =⇒ ∂u

∂t
= ∆(Du) ,

namely, the Fokker–Planck diffusion law or equation.
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Basic question

Which is the correct expression for the flux in presence of space
inhomogeneities?

−D(x)∇u(x , t) or −∇(D(x)u(x , t))

P.T. Landsberg, Dgrad v or grad(Dv)? Journal of Applied Physics 56,
1119 (1984).

Note that

−∇(D(x)u(x , t)) = −D(x)∇u(x , t)− u(x , t)∇D(x)

in the Fokker–Planck case a drift term with velocity −∇D is added to
the Fick’s flux.
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Examples in Ω = [0, 1]

Consider

Dc(x) = −1

2
cos(2πx) +

3

2

and

Dd(z) =

{
2 + tanh(50(x − 0.2)) x ≤ 0.5
2− tanh(50(x − 0.8)) x > 0.5 .
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Black curve for Dc and gray curve for Dd (mimics the discontinuous
case).
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Examples in Ω = [0, 1]
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Solution of the periodic Fokker–Planck (left) and Fick (right) problem
with diffusion coefficient Dc. The five curves report the solution at times
t = 0, 0.001, 0.01, 0.1, 1, larger the time higher the value at the
boundaries. The two curves corresponding to times 0.1 and 1 are
coincident. The initial condition is u0(z) = 6z(1− z)
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Examples in Ω = [0, 1]
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Solution of the periodic Fokker–Planck (left) and Fick (right) problem
with diffusion coefficient Dd. The five curves report the solution at times
t = 0, 0.001, 0.01, 0.1, 1, larger the time higher the value at the
boundaries. The two curves corresponding to times 0.1 and 1 are
coincident. The initial condition is u0(z) = 6z(1− z)
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Remark on the stationary solution

Fick

�
��S
SS

∂u

∂t
= ∇ · (D∇u) =⇒ ustat(x) = const

Fokker–Planck

�
��S
SS

∂u

∂t
= ∆(Du) =⇒ D(x)ustat(x) = const =⇒ ustat(x) =

const

D(x)
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Examples in Ω = [0, 1]
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Microscopic model



Inhomogeneous Simple Random Walk

Consider a Random Walk on the graph V = {0, 1, . . . ,N} with rates
r(x , y), namely,

r(x , y)dt is the probability that the particle jumps from
site x to site y in the interval of time (t, t + dt).

Assume the rate r(x , y) = 0 if x and y are not nearest neighbors, namely
y 6= x ± 1.

t t t t t t t0

x

N

periodic boundary

�
r(x,x+1)
-

r(x,x−1)

Assume that the rates have the structure

r(x , y) = α(x)Q({x , y}) .

Note that this is the most general reversible random walk.
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Two special cases

SIRW. Site Inhomogeneous Random Walk: r(x , y) = α(x), Q = 1.

t t t t t t tt t� -
� -

EIRW. Edge Inhomogeneous Random Walk: r(x , y) = Q({x , y}), α = 1.

t t t t t t t� -
� -
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Schnitzer’s example (1993)

A diluted gas moves in a closed box through a dense mesh of iron wool.

Model one: the iron wool density is uniform and the box experiences a
fixed temperature gradient (the typical particle speed varies continuously
throughout the box).

Model two: the temperature is uniform, but the iron wool density varies
continuously in the box.

They derive Fokker–Planck for model one and Fick for model two.

Analogies with our models: model one is inhomogeneous but locally
isotropic (SIRW), whereas model two is not (EIRW).

t t��
@
@

t �
�

@
@

t
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Many particles

Model for M independent and indistinguishable particles: η(x) is the
number of particles at site x ∈ V .

The rate at which one particle jumps from site x to its nearest neighbor
y is

η(x)r(x , y) = η(x)α(x)Q({x , y}).

More formally, a configuration of particles is an element of the set
Ω := {η ∈ NV ,

∑
x∈V η(x) = M}.

If x , y are neighbors and η ∈ Ω such that η(x) ≥ 1, the configuration
ηx,y is obtained by η letting one particle jump from x to y .

The stochastic evolution is encoded by the generator

Lf (η) =
∑

(x,y): x,y are n.n.

cx,y (η) [f (ηx,y )− f (η)]

with cx,y (η) = η(x)α(x)Q({x , y}).
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Construction of the dynamics in a simulation

At time t extract an exponential random time τ with parameter the total
rate

N∑
x=0

α(x)[Q({x − 1, x}) + Q({x , x + 1})]ηx(t)

and set the time equal to t + τ .

Associate to each site y ∈ V the probability

α(y)[Q({y − 1, y}) + Q({y , y + 1})]ηy (t)∑N
x=0 α(x)[Q({x − 1, x}) + Q({x , x + 1})]ηx(t)

.

Select at random a site according to such a distribution.

Move a particle from the selected site y to the left with probability
Q({y − 1, y})/(Q({y − 1, y}) + Q({y , y + 1})) and to the right with
probability Q({y , y + 1})/(Q({y − 1, y}) + Q({y , y + 1})).
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Hydrodynamic limit for the SIRW

Set zx = x/N ∈ [0, 1], consider a positive function D ∈ C 2([a, b]) and set
α(x) = D(zx) for x ∈ V .

The change of the number of particles at site x in a small interval ∆t
can be computed as

ηx(t + ∆t)− ηx(t)
= −2α(x)ηx(t)∆t + α(x − 1)ηx−1(t)∆t + α(x + 1)ηx+1(t)∆t.

Rewrite as

ηx(t + ∆t)− ηx(t)

∆t/N2

=
[α(x + 1)ηx+1(t)− α(x)ηx(t)]− [α(x)ηx(t)− α(x − 1)ηx−1(t)]

1/N2

Rescaling time as t/N2 → t, in the limit N →∞ the particle density
ηx(t)/(1/N) tends to a function u(z , t) solving

∂u

∂t
=
∂2Du

∂z2
(Fokker–Planck).
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Hydrodynamic limit for the EIRW

Let Q({x , x + 1}) = D((zx + zx+1)/2) be the rate associated with the
edge {x , x + 1} for x ∈ V , where {N,N + 1} is identified with {N, 0}.
The change of the number of particles at site x in a small interval ∆t
can be computed as

ηx(t + ∆t)− ηx(t) = −(Q({x − 1, x}) + Q({x , x + 1}))ηx(t)∆t

+(Q({x − 2, x − 1}) + Q({x − 1, x}))

× Q({x − 1, x})
Q({x − 2, x − 1}) + Q({x − 1, x})

ηx−1(t)∆t

+(Q({x , x + 1}) + Q({x + 1, x + 2}))

× Q({x + 1, x})
Q({x , x + 1}) + Q({x + 1, x + 2})

ηx+1(t)∆t
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Hydrodynamic limit for the EIRW

Hence

ηx(t + ∆t)− ηx(t)
= −(Q({x − 1, x}) + Q({x , x + 1}))ηx(t)∆t

+ Q({x − 1, x})ηx−1(t)∆t + Q({x + 1, x})ηx+1(t)∆t .

Rewrite

ηx(t + ∆t)− ηx(t)

∆t/N2

=
Q({x , x + 1})[ηx+1(t)− ηx(t)]− Q({x − 1, x})[ηx(t)− ηx−1(t)]

1/N2
.

Rescaling time as t/N2 → t, in the limit N →∞ the particle density
profile ηx(t)/(1/N) tends to a function u(z , t) solving the equation

∂u

∂t
=

∂

∂z

(
D
∂u

∂z

)
(Fick).

Microscopic modelling the hydrodynamic limit page 23/27



Recalling the diffusion coeffients

Consider

Dc(x) = −1

2
cos(2πx) +

3

2

and

Dd(z) =

{
2 + tanh(50(x − 0.2)) x ≤ 0.5
2− tanh(50(x − 0.8)) x > 0.5 .
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Black curve for Dc and gray curve for Dd (mimics the discontinuous
case).
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The SIRW case
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Particle profile of the Random Walk problem multiplied times N/M and
solution of the Fokker–Planck problem with diffusion coefficient Dc on
the left and Dd on the right.

Black, gray, and light gray curves and dots refer to times 0.003005,
0.009221, 0.022273 (left) and 0.001967, 0.006207, 0.015688 (right).

Solid curves are the solution of the Fokker–Planck problem with initial
condition u0(z) = 6z(1− z), yielding a unitary total mass.

Black and gray dots report the states of the corresponding Random Walk
problem with the same initial condition, N = 101 and M = 10041.
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The EIRW case
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Particle profile of the Random Walk problem multiplied times N/M and
solution of the Fick problem with diffusion coefficient Dc on the left and
Dd on the right.

Black, gray, and light gray curves and dots refer respectively to times
0.002991, 0.009102, 0.021696 (left) and 0.001916, 0.005856, 0.014081
(right).

Solid curves are the solution of the Fick problem with initial condition
u0(z) = 6z(1− z), yielding a unitary total mass.

Black and gray dots report the states of the corresponding Random Walk
problem with the same initial condition, N = 101 and M = 10041.
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Comments

– the Fick and Fokker–Planck diffusion equations are possible
macroscopic models for diffusion in presence of spatial
inhomogeneities;

– we derive these two equations starting from stochastic microscopic
particle models via the hydrodynamic limit;

– we associate the Fokker–Planck diffusione equation to local isotropy
and the Fick equation to absence of local isotropy;

– if α(x) = D(zx) and Q({x , x + 1}) = G ((zx + zx+1)/2), for the
stochastic general model we find the equation

∂u

∂t
=

∂

∂z

(
G
∂Du

∂z

)
.
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Avanzo/Addenda
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Focus on
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