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Abstract. In this work, we consider a Boltzmann equation for anyons. In particular, we study a general discrete velocity model
of the equation, where the velocity variable is assumed to only take values from a given finite - such that the (finite) number of
velocities is arbitrary - set of velocities. Included, as two limiting cases, is the discrete quantum Boltzmann equation (Nordheim-
Boltzmann/Uehling-Uhlenbeck equation) for bosons and fermions. Mass, momentum, and energy are assumed to be conserved
during collisions, and considering suitable discrete velocity models, they will also be the only collision invariants. The equilibrium
distributions will be given by a transcendental equation, and only in some few cases - including the two limiting cases where they
are Planckians - they will be explicitly expressed. However, there is an H-theorem, and therefore one can prove that for the spatially
homogeneous equation, as time tends to infinity, as well as, for the steady equation in a half-space with slab-symmetry, as the space
variable tends to infinity, the distribution function converges to an equilibrium distribution. Linearizing around an equilibrium
distribution in a suitable way, we find that the obtained linearized operator has similar properties as the corresponding linearized
operator for the discrete Boltzmann equation: e.g. it is symmetric and positive semi-definite. Hence, previously obtained results
for the spatially homogeneous Cauchy problem and the steady half-space problem in a slab symmetry for the discrete Boltzmann
equation, can be applied also in the considered quantum case.

INTRODUCTION

In quantum mechanics the elementary particles, quantum particles, are either bosons or fermions, if one consider a
space of three (or more) dimensions. However, in a space of dimension two (or one), there are also other possibilities,
as was first noted by Leinaas and Myrheim [1]. Those latter quantum particles, obeying a fractional statistics, were
by Wilczek [2] called ”anyons”. In 1928 Nordheim presented the Nordheim-Boltzmann equation [3], a semi-classical
quantum Boltzmann equation for bosons and fermions, also known as the Uehling-Uhlenbeck equation [4] in litera-
ture. In 1995, Bhaduri, Bhalerao, and Murthy generalized the Nordheim-Boltzmann equation for bosons and fermions,
to yield also for particles obeying Haldane statistics [5], or fractional exclusion statistics, by a suitable modification
[6]. For some mathematical studies of this equation, see e.g. [7, 8, 9]. In this paper we present a general discrete
velocity model (DVM) of Boltzmann equation for anyons - or Haldane statistics - and derive some properties for it
concerning: equilibrium distributions, H-theorem(s), trend to equilibrium for spatially homogeneous and planar sta-
tionary systems, respectively, linearized collision operator, Cauchy problem for the spatially homogeneous equation,
and steady half-space problems in a slab-symmetry. The approach is similar to the one for the ”classical” discrete
Boltzmann equation [10, 11, 12].

DISCRETE BOLTZMANN EQUATION FOR HALDANE STATISTICS

The discrete Boltzmann equation for anyons, or rather particles obeying Haldane statistics, reads

∂Fi

∂t
+ pi · ∇xFi = Qα

i (F), i = 1, ...,N, 0 < α < 1, (1)

where P = {p1, ...,pN} ⊂ Rd - with d = 1 or d = 2 in applications - is a finite set (N is an arbitrary positive integer) and

F = (F1, ..., FN), with Fi = Fi (x, t) = F (x, t,pi) and 0 ≤ Fi ≤
1
α

, is the distribution function. We will also consider the
limiting cases α = 0 (without any upper bound on Fi), corresponding to the discrete Nordheim-Boltzmann equation



for bosons, and α = 1, corresponding to the discrete Nordheim-Boltzmann equation for fermions. Unlike for the
intermediate cases, in the limiting cases for bosons and fermions, the three dimensional case d = 3 is highly relevant

in applications. Below we will, for brevity, make the technical assumption that 0 < Fi <
1
α

for i = 1, ...,N, if necessary,
without stating it explicitly.

Remark 1 For a function g = g(p) (possibly depending on more variables than p), we will identify g with its
restrictions to the points p ∈ P, i.e.

g = (g1, ..., gN) , gi = g (pi) , i = 1, ...,N.

The collision operators Qα
i (F), i = 1, ...,N, in the system (1) are given by

Qα
i (F) =

N∑
j,k,l=1

Γkl
i j

(
FkFlΨα (Fi) Ψα(F j) − FiF jΨα (Fk) Ψα (Fl)

)
=

N∑
j,k,l=1

Γkl
i jΨα (Fi) Ψα(F j)Ψα (Fk) Ψα (Fl)

(
Fk

Ψα (Fk)
Fl

Ψα (Fl)
−

Fi

Ψα (Fi)
F j

Ψα(F j)

)
,

Ψα (Fi) = (1 − αFi)α (1 + (1 − α) Fi)1−α (2)

where it is assumed that the collision coefficients Γkl
i j, 1 ≤ i, j, k, l ≤ N, satisfy the relations

Γkl
i j = Γkl

ji = Γ
i j
kl ≥ 0, (3)

with equality unless the conservation laws

pi + p j = pk + pl and |pi|
2 +

∣∣∣p j

∣∣∣2 = |pk |
2 + |pl|

2 (4)

are satisfied. For bosons (α = 0) and fermions (α = 1), we have the classical factors

Ψ0 (Fi) = 1 + Fi and Ψ1 (Fi) = 1 − Fi,

respectively, and e.g. for α = 1/2 (semions) we have the factor

Ψ1/2 (Fi) =

√
1 −

F2
i

4
.

One can easily show that, due to the relations (3), we have that

〈H,Qα (F)〉 =
1
4

N∑
i, j,k,l=1

Γkl
i jΨα (Fi) Ψα(F j)Ψα (Fk) Ψα (Fl)

(
Hi + H j − Hk − Hl

)
(

Fk

Ψα (Fk)
Fl

Ψα (Fl)
−

Fi

Ψα (Fi)
F j

Ψα(F j)

)
, (5)

where 〈·, ·〉 - here and below - denotes the standard scalar product on RN . Then, by substituting H = log
F

Ψα (F)
in

equality (5), we obtain that

〈
log

F
Ψα (F)

,Qα (F)
〉

=
1
4

N∑
i, j,k=1

Γkl
i jΨα (Fi) Ψα

(
F j

)
Ψα (Fk) Ψα (Fl)

(
log

(
Fi

Ψα (Fi)
F j

Ψα(F j)

)
− log

(
Fk

Ψα (Fk)
Fl

Ψα (Fl)

))
(

Fk

Ψα (Fk)
Fl

Ψα (Fl)
−

Fi

Ψα (Fi)
F j

Ψα(F j)

)
≤ 0. (6)



The inequality (6) is obtained by using the relation

(z − y) log
y
z
≤ 0,

with equality if and only if y = z, which is valid for all y, z ∈ R+. Hence, we have equality in the inequality (6) if and
only if

Fi

Ψα (Fi)
F j

Ψα(F j)
=

Fk

Ψα (Fk)
Fl

Ψα (Fl)
, (7)

for all indices such that Γkl
i j , 0.

A collision invariant is a function φ = φ (p), such that

φi + φ j = φk + φl, (8)

for all indices 1 ≤ i, j, k, l ≤ N, such that Γkl
i j , 0. The collision invariants are assumed to be of the form

φ = a + b · p + c |p|2 (9)

for some a, c ∈ R and b ∈ Rd. In general, DVMs can have other, so called spurious (or nonphysical), collision
invariants than the (physical) collision invariants (9). DVMs without spurious collision invariants are called normal
and methods of their construction are described in e.g. [13, 14, 15]. Our restriction to normal models is not necessary
in our general reasoning, but is motivated by the desire to have the same number of collision invariants as in the
continuous case. For normal DVMs the equation

〈Qα (F) , φ〉 = 0 (10)

has the general solution (9).
A Maxwellian distribution (or just a Maxwellian) is a function M = M(ξ), such that (for normal DVMs)

M = eφ = Keb·ξ+c|ξ|2 , K = ea > 0,

where φ is a collision invariant. There is equality in inequality (6), if and only if log
F

Ψα (F)
is a collision invariant

(take the logarithm of equality (7)), or equivalently, if and only if
F

Ψα (F)
is a Maxwellian M, i.e. the equilibrium

distributions P are given by the transcendental equation, cf. [16] for the continuous case,

P
Ψα (P)

= M. (11)

Note that, by solving equation (11), for bosons and fermions, one obtain the Planckians

P =
M

1 − M
and P =

M
1 + M

,

respectively (observe that for bosons there is the restriction Mi < 1, i = 1, ...,N, on the Maxwellians, since
Pi

1 + Pi
< 1),

and for semions (α = 1/2) the equilibrium distribution

P =
1√

1
4

+ M−2

.



H-THEOREM AND TREND TO EQUILIBRIUM

We define anH-function

H[F] = H[F](x) =

N∑
i=1

p1
i µ(Fi(x)),

where, cf. [8],

µ(y) =


y log y + (1 − αy) log (1 − αy) − (1 + (1 − α) y) log (1 + (1 − α) y) if 0 < y <

1
α

0 if y = 0 or (if α , 0) y =
1
α

. (12)

For the planar stationary system

B
dF
dx

= Qα (F) , with B = diag(p1
1, ..., p1

N), x ∈ R+, (13)

we obtain anH-theorem

d
dx
H[F] =

N∑
i=1

p1
i

dFi

dx
log

Fi

Ψα (Fi)
=

〈
log

F
Ψα (F)

,Qα (F)
〉
≤ 0,

with equality if, and only if, F is an equilibrium distribution. We introduce the moments
j1 = 〈B1, F〉
ji+1 =

〈
Bpi, F

〉
, i = 1, ..., d

jd+2 =
〈
B |p|2 , F

〉 , 1 = (1, ..., 1) ∈ RN . (14)

By applying relation (10) for the system (13), one obtain that j1, ..., jd+2 are independent of x in the planar stationary
case. For some fixed j1, ..., jd+2, we denote by P the manifold of all equilibrium distributions F = P (given by equation
(11)) with the moments (14). Then one can show the following theorem by arguments similar to the ones used for the
discrete Boltzmann equation in [17] (or, also [18]).

Theorem 1 If F = F(x) is a solution to the system (13), such that 0 ≤ Fi ≤
1
α

(Fi are non-negative bounded
functions for α = 0), then

lim
x→∞

dist(F(x),P) = 0,

where P is the manifold of equilibrium distributions associated with the invariants (14) of F. If there are only finitely
many equilibrium distributions in P, then there is an equilibrium distribution P in P, such that lim

x→∞
F(x) = P.

Remark 2 A key point in the proof of Theorem 1 (as well as - with x replaced with t - for Theorem 2 below), cf.
[17],[18], is that

∞∫
0

d
dx
H[F] dx = lim

x→∞
H[F](x) −H[F](0)

is a finite non-positive number, since H[F] = H[F](x) is bounded - µ(y) is non-positive and bounded below, since

µ(0) = µ(
1
α

) = 0, while µ′(y) is strictly increasing for 0 < y <
1
α

- and differentiable almost everywhere in R+, with
d
dx
H[F] non-positive. Then the theorem is proven by a proof of contradiction. For complete arguments and more

details see [17],[18].



For the spatially homogeneous system

dF
dt

= Qα (F) , t ∈ R+, (15)

we obtain similar results for the trend to equilibrium, presented in Theorem 2 below, by repeating the same arguments
(see also Remark 2 above), but with a modifiedH-function

H[F] = H[F](t) =

N∑
i=1

µ(Fi(t)),

with µ given by the expression (12), and the moments
j̃1 = 〈1, F〉
j̃i+1 =

〈
pi, F

〉
, i = 1, ..., d

j̃d+2 =
〈
|p|2 , F

〉 , 1 = (1, ..., 1) ∈ RN . (16)

Then we obtain theH-theorem

d
dt
H[F] =

N∑
i=1

dFi

dt
log

Fi

Ψα (Fi)
=

〈
log

F
Ψα (F)

,Qα (F)
〉
≤ 0.

By applying relation (10) for the system (15), one obtain that j̃1, ..., j̃d+2 are independent of t in the spatially homo-
geneous case, and for some fixed numbers j̃1, ..., j̃d+2, we denote by P̃ the manifold of all equilibrium distributions
F = P (given by equation.(11)), with moments (16).

Theorem 2 If F = F(t) is a solution to the system (15), such that 0 ≤ Fi ≤
1
α

(Fi is a non-negative bounded
function if α = 0), then

lim
t→∞

dist(F(t), P̃) = 0,

where P̃ is the manifold of equilibrium distributions associated with the invariants (16) of F. If there are only finitely
many equilibrium distributions in P̃, then there is an equilibrium distribution P in P̃, such that lim

t→∞
F(t) = P.

Remark 3 Let IN = {1, ...,N} and 1 ≤ m ≤ n ≤ N − m, and denote

Qα
i (F) =

∑
1≤m≤n≤N−m

amnQα,mn
i (F) , amn ≥ 0,

Qα,mn
i (F) =

∑
I′,I′′⊂IN

|I′ |=n, |I′′ |=m

ΓI′′
I′

∑
k∈I′

δik −
∑
k∈I′′

δik


∏

j∈I′
F j

∏
j∈I′′

Ψα

(
F j

)
−

∏
j∈I′′

F j

∏
j∈I′

Ψα

(
F j

) (17)

=
∑

I′,I′′⊂I
|I′ |=n, |I′ |=m

ΓI′′
I′

∑
k∈I′

δik −
∑
k∈I′′

δik

 ∏
j∈I′∪I′′

F j

∏
j∈I′

F j

Ψα

(
F j

) −∏
j∈I′′

F j

Ψα

(
F j

)  , (18)

Ψα (Fl) = (1 − αFl)α (1 + (1 − α) Fl)1−α . (19)

where ΓI′′
I′ = 0, if the relations ∑

k∈I′
pk =

∑
k∈I′′

pk and
∑
k∈I′
|pk |

2 =
∑
k∈I′′
|pk |

2

are not satisfied (can be changed to other collision invariants). Then, in a similar way as above, we can obtain
corresponding results for the system (1). However, if at least one amn such that m , n is nonzero, then the collision
invariants (for normal DVMs) will be of the form

φ = b · p + c |p|2 ,



and we will have to exclude the moments j1 and j̃1 from the moments (14) and (16), respectively, for Theorem 1 and
Theorem 2 to stay valid. A drawback is that, in general, it will not be clear how to construct the sets P to obtain
normal DVMs. An example when such generalizations (with α = 0) are of interest is for excitations in a Bose gas
interacting with a Bose-Einstein condensate [19, 20, 21, 22, 23, 24]. However, even if the momentum is still assumed
to be conserved during a collision, the energy conserved will (in the general case) be different from the kinetic one
conserved by the relations (4). Furthermore, the equation will (in the general case) also be coupled by a Gross-
Pitaevskii equation for the density of the condensate.

LINEARIZED COLLISION OPERATOR

For any α, 0 ≤ α ≤ 1, one can derive that

Ψ′α (y) = −α2 (1 − αy)α−1 (1 + (1 − α) y)1−α + (1 − α)2 (1 − αy)α (1 + (1 − α) y)−α

= Ψα (y)
(

1 − 2α − α (1 − α) y
(1 − αy) (1 + (1 − α) y)

)
= Ψα (y)

(
1 − 2α − α (1 − α) y

1 + y (1 − 2α − α (1 − α) y)

)
,

and, hence, that
Ψα (Pi) − Ψ′α (Pi) Pi

PiΨα (Pi)
=

1
Pi (1 − αPi) (1 + (1 − α) Pi)

. (20)

Furthermore, if we denote

F = P + R1/2 f , with R = P (1 − αP) (1 + (1 − α) P) and
P

Ψα (P)
= M, (21)

in the system (1), and ignore all terms of second order; we obtain

∂ fi
∂t

+ pi · ∇x fi + (L f )i = 0

where L is the linearized collision operator (N × N matrix) given by

(L f )i =

N∑
j,k,l=1

Γkl
i j

R1/2
i

(Pkl
i j fi + Pkl

ji f j − Pi j
kl fk − Pi j

lk fl), i = 1, ...,N. (22)

Note that for bosons and fermions, we obtain (cf. [12])

R = P(1 + P) and R = P(1 − P),

respectively, and for semions (α = 1/2) we obtain

R = P
(
1 −

P2

4

)
.

Here we, by denoting
Πkl

i j (g) = gig jΨα (gk) Ψα (gl) − gkglΨα (gi) Ψα

(
g j

)
,

have that

Pkl
i j =

∂Πkl
i j

(
P + R1/2 f

)
∂ fi

∣∣∣∣∣∣∣∣
f =0

= R1/2
i

(
P jΨα (Pk) Ψα (Pl) − PkPlΨ

′
α (Pi) Ψα

(
P j

))
=

PiP jΨα (Pk) Ψα (Pl)

R1/2
i

Ψα (Pi) − Ψ′α (Pi) Pi

PiΨα (Pi)
Ri =

PiP jΨα (Pk) Ψα (Pl)

R1/2
i

, (23)



since, by the relations (20) and (21),
Ψα (Pi) − Ψ′α (Pi) Pi

PiΨα (Pi)
Ri = 1. (24)

By the relations (4) and (11), we obtain the relation

PiP jΨα (Pk) Ψα (Pl) = PkPlΨα (Pi) Ψα

(
P j

)
(25)

for Γkl
i j , 0. and hence, by relations (3), (22), (23), and (25), we obtain the equality

〈g, L f 〉 =
1
4

N∑
i, j,k,l=1

Γkl
i jPiP jΨα (Pk) Ψα (Pl)

 fi
R1/2

i

+
f j

R1/2
j

−
fk

R1/2
k

−
fl

R1/2
l


 gi

R1/2
i

+
g j

R1/2
j

−
gk

R1/2
k

−
gl

R1/2
l

 . (26)

Then it is immediate that the matrix L is symmetric and positive semi-definite, i.e.

〈g, L f 〉 = 〈Lg, f 〉 and 〈 f , L f 〉 ≥ 0,

for all g = g(p) and f = f (p).
Furthermore, by the relation (26), 〈 f , L f 〉 = 0 if and only if

fi
R1/2

i

+
f j

R1/2
j

=
fk

R1/2
k

+
fl

R1/2
l

(27)

for all indices satisfying Γkl
i j , 0. We denote f = R1/2φ in equality (27) and obtain the relation (8). Hence, since L is

semi-positive,
L f = 0 if and only if f = R1/2φ,

where φ is a collision invariant (8). Hence, for normal models the null-space N(L) is

N(L) = span
(
R1/2,R1/2 p1, ...,R1/2 pd,R1/2 |p|2

)
, R = P (1 − αP) (1 + (1 − α) P) . (28)

Remark 4 More generally, we can consider the collision operator (19) and obtain corresponding results for the
linearized collision operator L by similar arguments. In particular, the linearized operator L is symmetric and positive
semi-definite. However, if at least one amn such that m , n is nonzero then for normal models the following holds

N(L) = span
(
R1/2 p1, ...,R1/2 pd,R1/2 |p|2

)
, R = P (1 − αP) (1 + (1 − α) P) .

Linearized Spatially Homogeneous Equation
The Cauchy problem for linearized spatially homogeneous equation reads

d f
dt

+ L f = 0, f (0) = f0,

for some f0 ∈ RN , and has a bounded solution
f (t) = e−tL f0,

such that, for any orthogonal basis {y1, ..., yd+2} of the null-space N(L) of L (28),

f (t)→
d+2∑
i=1

〈yi, f0〉
〈yi, yi〉

yi, as t → ∞.



Linearized Half-Space Problems
The linearized steady system in a slab-symmetry reads

B
d f
dx

+ L f = 0, f (0) = f0, with B = diag(p1
1, ..., p1

N),

for some f0 ∈ RN , where
x = (x = x1, x2, ..., xd) and p = (p1, ..., pd).

Due to the matrix B, here the situation will be much more intricate than for the spatially homogeneous equation.
However, since above, some general properties of the ”classical” discrete Boltzmann equation (obtained by letting
Ψα = 1 in the collision operator (2)), have been shown also for the discrete quantum Boltzmann equation, the general
results obtained for linearized half-space problems for the discrete Boltzmann equation obtained in [10, 11] (also cf.
[24]) hold also for the discrete quantum Boltzmann equation presented here. We note that the numbers of positive,
negative, and zero eigenvalues, respectively, of the symmetric (d + 2) × (d + 2) matrix K with elements

ki j =
〈
yi, By j

〉
,

where {y1, ..., yd+2} is any basis of the null-space N(L) of L (28), is of great importance for these results (see for
example [10, 11, 24, 12]).

CONCLUDING REMARKS

We have presented a general discrete velocity model (DVM) of Boltzmann equation for anyons (or Haldane statistics),
and considered it in the lines of previous studies of the ”classical” discrete Boltzmann equation , see e.g. [10, 11, 12].
As two limiting cases the Nordheim-Boltzmann equation for bosons and fermions are also included. The equilibrium
distributions are shown to satisfy a transcendental equation (11) (a corresponding equation for the continuous case
was first presented in [16]). In certain cases the equation can be analytically solved; we have presented the results in
the simplest cases: for bosons, fermions, and so called semions. By a suitable choice of H-function(s), we obtained
H-theorem(s), and, thereby could state trend to equilibrium in the spatially homogeneous, as well as, in the planar
stationary case. By linearizing around an equilibrium distribution, in a suitable way, we obtained a linearized opera-
tor with similar properties to the linearized operator for the classical discrete Boltzmann operator, i.e. a symmetric,
positive semi-definite operator, with a null-space of the same dimension as the vector space of the collision invari-
ants. Then the solution of the Cauchy problem for linearized spatially homogeneous equation was immediate, while
the results for the linearized steady half-space problems in a slab-symmetry are more intricate. However, while they
are not presented here, the results can be found in [10, 11, 24], where they were presented for linearized operators
of other discrete Boltzmann equations, but with similar properties. Note that half-space problems for the non-linear
Nordheim-Boltzmann equation (i.e. for bosons and fermions) are considered in [12]. We refer the reader to [12] for
the obtained results. However, in the general case there are no such results (for the non-linear equation) yet. We also
stress that all results presented here are independent of the (finite) number of velocities considered.

All results are in general not depending on which collision invariants that are assumed, so for example other
conserved energies than the assumed kinetic one can be considered. However, in implementations, it might be a
difficulty to find ”good” velocity sets, not to have extra (spurious) collision invariants in plus to the desired (physical)
collision invariants (9). On the other hand, for the collision invariants considered, there are well-known procedures to
obtain DVMs without spurious collision invariants, see e.g. [13, 14, 15]. The results can also be generalized to more
general collision operators (28), cf. Remarks 3 and 4, where in many cases mass will not be conserved, and therefore
one might obtain similar difficulties to find ”good” velocity sets as in the case of exchanging energy. On the other
hand from a theoretical point of view there is nothing preventing such generalizations.

We also want to stress that the results presented here can be generalized to mixtures, and particles with a discrete
number of different energy levels, with the approaches presented in [25, 26, 12, 27].

Finally, up to our knowledge and belief, corresponding results - to the ones presented here for DVMs - are also
valid in the case of a continuous velocity variable (with a suitable choice of collision kernels). However, even if some
of them - in a clear way - can be obtained (correspondingly) as above, some others will be more demanding to show.



ACKNOWLEDGMENTS

The author would like to thank Y. Wondmagegne and M. Vinerean Bernhoff for their comments on the manuscript,
and L. Arkeryd for valuable discussions.

REFERENCES

[1] J. Leinaas and J. Myrheim, Nuovo Cim. B 37, 1–23 (1977).
[2] F. Wilczek, Phys. Rev. Lett. 49, 957–959 (1982).
[3] L. W. Nordheim, Proc. Roy. Soc. London Ser. A 119, 689–698 (1928).
[4] E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552–561 (1933).
[5] F. D. Haldane, Phys. Rev. Lett. 67, 937–940 (1991).
[6] R. K. Bhaduri, R. S. Bhalerao, and M. V. N. Murthy, J. Stat. Phys. 82, 1659–1668 (1996).
[7] L. Arkeryd, J. Stat. Phys. 150, 1063–1079 (2013).
[8] L. Arkeryd and A. Nouri, SIAM J. Math. Anal. 47, 4720–4742 (2015).
[9] L. Arkeryd and A. Nouri, Kinet. Relat. Models 12, 323–346 (2019).

[10] A. V. Bobylev and N. Bernhoff, in Lecture Notes on the Discretization of the Boltzmann Equation, edited by
N. Bellomo and R. Gatignol (World Scientific, 2003), pp. 203–222.

[11] N. Bernhoff, Riv. Mat. Univ. Parma 9, 73–124 (2008).
[12] N. Bernhoff, Kinet. Relat. Models 10, 925–955 (2017).
[13] A. V. Bobylev and C. Cercignani, J. Stat. Phys. 97, 677–686 (1999).
[14] A. V. Bobylev and M. C. Vinerean, J. Stat. Phys. 132, 153–170 (2008).
[15] A. V. Bobylev, M. C. Vinerean, and A. Windfall, Kinet. Relat. Models 3, 35–58 (2010).
[16] Y.-S. Wu, Phys. Rev. Lett. 73, 922–925 (1994).
[17] C. Cercignani, R. Illner, M. Pulvirenti, and M. Shinbrot, J. Stat. Phys. 52, 885–896 (1988).
[18] N. Bernhoff and A. Bobylev, Commun. Math. Sci. 5, 815–832 (2007).
[19] T. R. Kirkpatrick and J. R. Dorfman, J. Low Temp. Phys. 58, 301–331 (1985).
[20] E. Zaremba, T. Nikuni, and A. Griffin, J. Low Temp. Phys. 116, 277–345 (1999).
[21] L. Arkeryd and A. Nouri, Comm. Math.Phys. 310, 765–788 (2012).
[22] E. Gust and L. Reichl, J. Low Temp. Phys. 170, 43–59 (2013).
[23] L. Arkeryd and A. Nouri, Kinet. Relat. Models 6, 671–686 (2013).
[24] N. Bernhoff, J. Stat. Phys. 159, 358–379 (2015).
[25] N. Bernhoff and M. C. Vinerean, J. Stat. Phys. 165, 434–453 (2016).
[26] N. Bernhoff, AIP Conference Proceedings 1786, p. 040005 (2016).
[27] N. Bernhoff, J. Stat. Phys. 172, 742–761 (2018).


