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Abstract. Half-space problems for the Boltzmann equation are of great importance in the study of the asymptotic behavior
of the solutions of boundary value problems of the Boltzmann equation for small Knudsen numbers. Half-space problems
provide the boundary conditions for the fluid-dynamic-type equations and Knudsen-layer corrections to the solution of the
fluid-dynamic-type equations in a neighborhood of the boundary. Here we consider a half-space problem of condensation for a
pure vapor in the presence of a non-condensable gas by using discrete velocity models (DVMs) of the Boltzmann equation. The
Boltzmann equation can be approximated by DVMs up to any order, and these DVMs can be applied for numerical methods,
but also for mathematical studies to bring deeper understanding and new ideas. For one-dimensional half-space problems,
the discrete Boltzmann equation (the general DVM) reduces to a system of ODEs. We obtain that the number of parameters
to be specified in the boundary conditions depends on whether the condensing vapor flow is subsonic or supersonic. This
behavior has earlier been found numerically. We want to stress that our results are valid for any finite number of velocities.
This is an extension of known results for single-component gases (and for binary mixtures of two vapors) to the case when
a non-condensable gas is present. The vapor is assumed to tend to an assigned Maxwellian, with a flow velocity towards the
condensed phase, at infinity, while the non-condensable gas tends to zero at infinity. Steady condensation of the vapor takes
place at the condensed phase, which is held at a constant temperature. We assume that the vapor is completely absorbed, that
the non-condensable gas is diffusively reflected at the condensed phase, and that vapor molecules leaving the condensed phase
are distributed according to a given distribution. The conditions, on the given distribution at the condensed phase, needed for
the existence of a unique solution of the problem are investigated, assuming that the given distribution at the condensed phase
is sufficiently close to the Maxwellian at infinity and that the total mass of the non-condensable gas is sufficiently small. Exact
solutions and solvability conditions are found for a specific simplified discrete velocity model (with few velocities).
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INTRODUCTION

Half-space problems for the Boltzmann equation are important in the study of the asymptotic behavior of the solutions
of boundary value problems of the Boltzmann equation for small Knudsen numbers [1, 2]. For single-component
gases half-space problems are well-studied mathematically both for the continuous Boltzmann equation as well as
the discrete Boltzmann equation, see [3, 4, 5] and references therein. In the present paper we present some of our
results for the discrete Boltzmann equation for binary mixtures, recently obtained in [6] and [7]. We do consider the
case of a binary mixture of two vapors, but our main objective is the case of a condensing vapor in the presence of a
non-condensable gas, cf. [8] , for which the main result is presented in Theorem 2. In the latter case we also present
explicit solutions and solvability conditions for a reduced 6+4-velocity model in the case of a flow symmetric around
the x-axis [7]. We start by reviewing some general properties for the planar stationary discrete Boltzmann equation for
binary mixtures.

The planar stationary discrete Boltzmann equation for a binary mixture of the gases A and B reads [6]
ξ

A,1
i

dFA
i

dx
= QAA

i (FA,FA)+QBA
i (FB,FA), i = 1, ...,nA,

ξ
B,1
j

dFB
j

dx
= QAB

j (FA,FB)+QBB
j (FB,FB), j = 1, ...,nB,

(1)

where Vα =
{

ξ α
1 , ...,ξ α

nα

}
⊂Rd , α,β ∈ {A,B}, are finite sets of velocities, Fα

i = Fα
i (x) = Fα(x,ξ α

i ) for i = 1, ...,nα ,
and Fα = Fα (x,ξ ) represents the microscopic density of particles (of the gas α) with velocity ξ at position x ∈ R.



We denote by mα the mass of a molecule of gas α . Here and below, α,β ∈ {A,B}.
For a function gα = gα(ξ ) (possibly depending on more variables than ξ ), we will identify gα with its restrictions

to the set V α , but also when suitable consider it like a vector function

gα = (gα
1 , ...,g

α
nα
), with gα

i = gα (ξ α
i ) .

The collision operators Qβα

i (Fβ ,Fα) in (1) are given by

Qβα

i (Fβ ,Fα) =
nα

∑
k=1

nβ

∑
j,l=1

Γ
kl
i j (β ,α)(Fα

k Fβ

l −Fα
i Fβ

j ) for i = 1, ...,nα ,

where it is assumed that the collision coefficients Γkl
i j (β ,α), with 1≤ i,k ≤ nα and 1≤ j, l ≤ nβ , satisfy the relations

Γ
kl
i j (α,α) = Γ

kl
ji (α,α) and Γ

kl
i j(β ,α) = Γ

i j
kl(β ,α) = Γ

lk
ji(α,β )≥ 0.

It is also assumed that Γkl
i j(β ,α) = 0 unless we have conservation of momentum and energy (mass is trivially

conserved)

mα ξ
α
i +mβ ξ

β

j = mα ξ
α
k +mβ ξ

β

l and mα |ξ α
i |

2 +mβ

∣∣∣ξ β

j

∣∣∣2 = mα |ξ α
k |

2 +mβ

∣∣∣ξ β

l

∣∣∣2 .
A (general) collision invariant is a vector φ =

(
φ A,φ B

)
, such that

φ
α
i +φ

β

j = φ
α
k +φ

β

l ,

for all indices 1≤ i,k ≤ nα , 1≤ j, l ≤ nβ and α,β ∈ {A,B}, such that Γkl
i j(β ,α) 6= 0.

The DVMs for the gases A and B are normal if the only collision invariants of the forms φ =
(
φ A,0

)
and φ =

(
0,φ B

)
,

respectively, fulfills
φ

α = φ
α(ξ ) = aα +mα b ·ξ + cmα |ξ |2 ,

for some constant aα ,c∈R and b∈Rd . A DVM for a mixture is normal, if any general collision invariant of the DVM
is of the form

φ =
(
φ

A,φ B) , with φ
α = φ

α(ξ ) = aα +mα b ·ξ + cmα |ξ |2 ,

for some constant aA,aB,c ∈ R and b ∈ Rd . A DVM is called supernormal [9], if it is normal both restricted to the
single-component gases as well as a mixture. This is always true in the continuous case. However, in the discrete case
we can also obtain so called spurious (unphysical) collision invariants [9].

A binary Maxwellian distribution (or just a bi-Maxwellian) is a function M =
(
MA,MB

)
, such that

Q(M,M) = 0 and Mα
i ≥ 0 for all 1≤ i≤ nα .

All bi-Maxwellians are of the form M = eφ , where φ is a collision invariant, i.e. for normal models we will have

M =
(
MA,MB) , with Mα = eφα

= eaα+mα b·ξ+cmα |ξ |2 . (2)

We assume that nα = 2n+α and that the sets Vα are symmetric, such that (after possible reordering)

ξ
α

i+n+α
= (−ξ

α,1
i ,ξ α,2

i , ...,ξ α,d
i ), with ξ

α,1
i > 0, for i = 1, ...,n+α , (3)

and denote

F =
(
FA,FB)= (FA (ξ ) ,FB (ξ )

)
and Q(F,F) =

(
QAA(FA,FA)+QBA(FB,FA),QAB(FA,FB)+QBB(FB,FB)

)
.

Then the system (1) can be rewritten as

D
dF
dx

= Q(F,F) , with D =

(
DA 0
0 DB

)
, where

Dα =

(
D+

α 0
0 −D+

α

)
, and D+

α = diag(ξ α,1
1 , ...,ξ α,1

n+α
), with ξ

α,1
1 , ...,ξ α,1

n+α
> 0. (4)

We also define the projections Rα
± : Rnα → Rn+α , where nα = 2n+α , by

Rα
+sα = sα

+ = (s1, ...,sn+α
) and Rα

−sα = sα
− = (sn+α +1, ...,snα

)

for sα = (s1, ...,snα
).



BINARY MIXTURES OF TWO VAPORS

In this section we consider the case of a binary mixture of two vapors [6] (and as a particular case the case of a single
vapor [5]), to give the possibility to compare with the results for the case of a condensing vapor with a non-condensable
gas present [7], presented in the next section. We assume that our DVMs are normal considered as binary mixtures. It
is also preferable that the DVMs for the gases A and B are normal, even if this doesn’t affect our results.

For a bi-Maxwellian M =
(
MA,MB

)
, we obtain, by substituting F = M+

√
M f in Eq.(4), the system

D
d f
dx

+L f = S ( f , f ) , (5)

where the linearized operator L is a symmetric and semi-positive matrix, with the null-space

N(L) = span(RAM1/2,RBM1/2,M1/2
ξ

1, ...,M1/2
ξ

d ,M1/2 |ξ |2), where
RAh = (h1, ...,hnA ,0, ...,0) and RBh = (1−RA)h if h ∈ Rn, with n = nA +nB,

and the quadratic part S ( f , f ) belong to the orthogonal complement of N(L) [6].
At the far end we assume that

f (x)→ 0 as x→ ∞, (6)

and at the condensed phase we assume the general boundary conditions

f A
+(0) =CA f B

−(0)+hA
0 and f B

+(0) =CB f B
−(0)+hB

0 , (7)

where hα
0 ∈ Rn+α and Cα are given n+α ×n+α matrices, such that

CT
α D+

αCα < D+
α on Rn+α . (8)

Note that condition (8) is fulfilled if CA =CB = 0. In fact, condition (8) can be weakened, see [6].
We denote by k+, k−, and l, with k++ k−+ l = d+3, the numbers of positive, negative, and zero eigenvalues of the

(d +3)× (d +3) matrix K, with entries ki j =
〈
yi,Dy j

〉
, such that {y1, ...,yd+3} is a basis of the null-space of L, i.e.

span(y1, ...,yd+3) = N(L). Here and below, we denote by 〈·, ·〉 the Euclidean scalar product on Rn. Then we have the
following theorem from [6].

Theorem 1 Let condition (8) be fulfilled and suppose that 〈h0,h0〉D+ , with h0 = (hA
0 ,h

B
0 ) is sufficiently small. Then

with k++ l conditions on h0, the system (5) with the boundary conditions (6) and (7), has a locally unique solution
(with respect to a weighted supremum norm |·|

σ
, see [6]).

The case of a single vapor can be obtained by letting VB be the empty set, i.e. VB = /0. Then we will have one less
collision invariant, since RBM1/2 will disappear. Here we assume that the DVM for gas A is normal.

Let b be the first component of b in Eq.(2). The typical case for a single vapor is (cf. Conjecture 1 below) that there
is a critical number b+ > 0 (corresponding in the continuous case to speed of sound), such that

b <−b+ b =−b+ −b+ < b < 0 b = 0 0 < b < b+ b = b+ b+ < b

k+ 0 0 1 1 d +1 d +1 d +2

l 0 1 0 d 0 1 0

k++ l 0 1 1 d +1 d +1 d +2 d +2
,

and for a binary mixture of two vapors (with an extra collision invariant), for a corresponding critical number b+ > 0,

b <−b+ b =−b+ −b+ < b < 0 b = 0 0 < b < b+ b = b+ b+ < b

k+ 0 0 1 1 d +2 d +2 d +3

l 0 1 0 d +1 0 1 0

k++ l 0 1 1 d +2 d +2 d +3 d +3
.

Here b < 0 corresponds to condensation (−b+ < b < 0 subsonic, b =−b+ sonic and b <−b+ supersonic) and b > 0
to evaporation (0 < b < b+ subsonic, b = b+ sonic and b+ < b supersonic).



CONDENSING VAPOR FLOW IN THE PRESENCE OF A NON-CONDENSABLE GAS

In this section we study distributions F , such that F →
(
MA,0

)
as x→ ∞, where MA = eaA+mAb·ξ+cmA|ξ |2 . We

consider DVMs, such that the DVMs for the gases A and B are normal. It is also preferable that the DVMs are normal
considered as mixtures, however, spurious collision invariants (for the mixture) doesn’t seem to affect the structure of
our results.

For a bi-Maxwellian M =
(
MA,ε2MB

)
, where Mα = eaα+mα b·ξ+cmα |ξ |2 , FA → MA as x→ ∞, and ε is a so far

undetermined positive constant less or equal to 1, 0 < ε ≤ 1, we obtain, by denoting

FA(x) = MA +
√

MA f A and FB(x) = ε

√
MB f B, (9)

in Eq.(1), the system 
DA

d f A

dx
+LAA f A =−εLBA f B +SAA( f A, f A)+ εSBA( f B, f A)

DB
d f B

dx
+LAB f B = εSBB( f B, f B)+SAB( f A, f B)

. (10)

Here LAA and LAB are symmetric and semi-positive matrices such that

LAB f B = 0 if f B ∈ span(
√

MB), and LAA f A = 0 if and only if f A =
√

MAφ
A,

where φ =
(
φ A,0

)
is a collision invariant. The matrix LBA and the quadratic parts Sαβ fulfill the following orthogonality

relations

LBA f B,SBA( f B, f A) ∈ span(
√

MA)⊥, SAA( f A, f A) ∈ N(LAA)
⊥, and SαB ∈ N(LAB)

⊥.

Here and below, we denote by N(Lαβ ) the null-space of Lαβ . Note that for the continuous Boltzmann equation
ker(LAB) = span(

√
MB) [10]. Preferable (even if not necessary, cf. Eq.(14) below) is to have

N(LAB) = span(
√

MB). (11)

At the condensed phase we assume that

f A
+(0) = h0 and f B

+(0) =C f B
−(0), (12)

where C is the n+B ×n+B matrix, with the elements

ci j =
ξ

B,1
j

√
MB

n+B + j
MB

0i〈
D+

B MB
0−,1

〉√
MB

i

,

which is the discrete version of the diffusive boundary conditions [11, 5, 7] after the expansion (9), and

h0 =
1√
MA

+

(a0−MA
+) ∈ Rn+A ,

where MB
0 = KB

0 ec0mB|ξ |2 , with KB
0 > 0, and FA

+(0) = a0, with a0 ∈ Rn+A , is the perfect absorption condition before the
expansion (9) . At the far end

f A(x)→ 0 and f B(x)→ 0 as x→ ∞. (13)

We denote by k+α , k−α , and lα , with k+α + k−α + lα = pα , the numbers of positive, negative, and zero eigenvalues of

the pα × pα matrix Kα , with entries kα
i j =

〈
yα

i ,Dα yα
j

〉
, such that

{
yα

1 , ...,y
α
pα

}
is a basis of the null-space of LAα , i.e.

in our case pA = d +2, span
(
yA

1 , ...,y
A
d+2

)
= N(LAA) =span(

√
MA,
√

MAξ 1, ...,
√

MAξ d ,
√

MA |ξ |2), and pB ≥ 1.



For a condensing vapor flow (i.e. with b < 0, where b is the first component of b in Eq.(2)), we have k−B ≥ 1.
Moreover, under condition (11), k−B = 1 and k+B = lB = 0. However, it is enough for us that k+B = lB = 0, i.e. that

k−B = pB. (14)

Conjecture 1 For a normal DVM (for gas A) fulfilling the symmetry relations (3) there is a critical number b+ > 0,
such that

b <−b+ b =−b+ −b+ < b < 0 b = 0 0 < b < b+ b = b+ b+ < b

k+A 0 0 1 1 d +1 d +1 d +2

lA 0 1 0 d 0 1 0 (15)

Conjecture 1 is true for the continuous Boltzmann equation [12], where b+ is the speed of sound. We assume that we
have a DVM that restricted to gas A fulfills Conjecture 1, at least in the case of condensation, i.e. for b< 0. The number
b+ has been calculated for a plane axially symmetric 12-velocity model (assuming that the solution is symmetric with
respect to the x-axis) in [7].

By condition (14), dim(span{u : LABu = λDBu,λ > 0}) = n+B , see [13, 11, 7]. We assume that

dim
(
spanU+

B
)
= n+B −1, where U+

B =
{(

RB
+−CRB

−
)

u : LABu = λDBu,λ > 0
}

, (16)

but, also that
dim

(
spanŨ+

B

)
= n+B , where Ũ+

B =U+
B ∪

{(
RB
+−CRB

−
)√

MB
}
. (17)

If we would have had dim
(
spanU+

B

)
= n+B , then f B(x) = 0, i.e. the non-condensable gas would have been absent.

For −b+ < b < 0 we will also assume that

RA
+

√
MA /∈ RA

+spanU+
A , with U+

A = {u : LAAu = λDAu, λ > 0} , (18)

or, equivalently, since dim(RA
+spanU+

A ) = n+A −1 by Eq.(15) [13, 11, 7],

dim(RA
+spanŨ+

A ) = n+A , with Ũ+
A =U+

A ∪
{√

MA
}

.

In fact, we can replace
√

MA in assumption (18) by any possible vector y ∈ N(LAA), such that〈
LBA f B,y

〉
=
〈
SBA( f B, f A),y

〉
= 0.

We fix ε = min{|h0| ,1} and the total mass of the gas B to be mtot
B , i.e.

εmB

nB

∑
i=1

∞∫
0

√
MB f B

i (x) dx = mtot
B , (19)

for a given positive constant mtot
B . The case mtot

B = 0, corresponds to the case of single species considered in [5].
We have the following theorem from [7].

Theorem 2 Let conditions (14)-(17), and for −b+ < b < 0 also condition (18), be fulfilled, and suppose that
〈h0,h0〉D+

A
is sufficiently small and that mtot

B is sufficiently small relatively |h0|. Then with

k+A + lA =

{
1 if −b+ ≤ b < 0
0 if b <−b+

conditions on h0, the system (10) with the boundary conditions (12) and (13) under condition (19), has a locally
unique solution (with respect to a weighted supremum norm |·|

σ
, see [7]).

We note that the number of conditions on h0 is the same as if the non-condensable gas was absent, i.e. as for a pure
vapor, and also that the number of conditions depends on whether the condensing vapor flow is subsonic or supersonic.
Similar behavior has been found numerically in [14] and [15], in the case when the given distribution at the condensed
phase is the Maxwellian at the condensed phase. However, in our case, we can’t be sure that there is any Maxwellian
at rest close enough to the Maxwellian at infinity, to fulfill Theorem 2.



A REDUCED 6+4 - VELOCITY MODEL

In this section we present an exact solution and solvability condition (see [7] for a complete presentation) when the
vapor, gas A, is modeled by a six-velocity model with velocities

ξ
A
1 = (1,0),ξ A

2 = (1,1),ξ A
3 = (−1,0),ξ A

4 = (−1,1),ξ A
5 = (1,−1), and ξ

A
6 = (−1,−1), (20)

and the non-condensable gas B is modelled by the classical Broadwell model [16] in plane with velocities

ξ
B
1 = (m,m),ξ B

2 = (−m,m),ξ B
3 = (m,−m), and ξ

B
4 = (−m,−m).

Here m =
mA

mB
. We have the correct number of collision invariants for the two gases seen as a binary mixture, even if

we for the Broadwell model have only two linearly independent collision invariants, as the mass vector and the energy
vector are linearly dependent. For a flow symmetric around the x-axis we obtain the reduced system

dFA
1

dx
=

dFA
3

dx
= σ1q1 +σ2q2,

dFA
2

dx
=

dFA
4

dx
=−σ1q1 +σ3q3, and m

dFB
1

dx
= m

dFB
2

dx
= σ2q2 +σ3q3,

where q1 = FA
2 FA

3 −FA
1 FA

4 , q2 = FA
3 FB

1 −FA
1 FB

2 and q3 = FA
4 FB

1 −FA
2 FB

2 , or equivalently
DA

dFA

dx
= QAA(FA,FA)+QBA(FB,FA)

DB
dFB

dx
= QAB(FA,FB)+QBB(FB,FB)

,

where DA = diag(1,1,−1,−1), DB = diag(m,−m), FA =
(
FA

1 ,FA
2 ,FA

3 ,FA
4
)
, FB =

(
FB

1 ,FB
2
)
, QAA(FA,FA) =

σ1q1(1,−1,−1,1), QBA(FB,FA) = σ2q2(1,0,−1,0)+σ3q3(0,1,0,−1), QAB(FA,FB) = (σ2q2 +σ3q3)(1,−1), and
QBB(FB,FB) = 0.

We assume the boundary conditions(
FA

1 (0),FA
2 (0)

)
= sA

0 (1,q0) and FB
1 (0) = FB

2 (0)

at the condensed phase, and at the far end

FA→MA = sA(1,q, p, pq) and FB→ 0 as x→ ∞. (21)

Here p > 1 (since we consider a condensing vapor flow) and q,sA > 0.
We denote (transformation (9) with ε = 1)

FA(x) = MA +
√

MA f A and FB(x) =
√

MB f B,

where MA is given in Eq.(21) and MB = (1, p), and obtain the system
d f A

dx
+D−1

A LAA f A =−D−1
A LBA f B +D−1

A SAA( f A, f A)+D−1
A SBA( f B, f A)

d f B

dx
+D−1

B LAB f B = D−1
B SAB( f A, f B)

.

The linearized collision operators LAA and LAB are symmetric and semi-positive and have the null-spaces

N(LAA) = span(yA
1 ,y

A
2 ,y

A
3 ) and N(LAB) = span(yB) with

yA
1 = (

√
p,
√

pq,1,
√

q),yA
2 = (1,0,

√
p,0),yA

3 = (0,1,0,
√

p), and yB = (1,
√

p).

The non-zero eigenvalues and corresponding eigenvectors of D−1
A LAA and D−1

B LAB are (remind that p > 1)

λ
A = sA

σ1(1+q)(p−1)> 0 and uA = (
√

pq,−√p,
√

q,−1),



and

λ
B =

sA

m
(σ2 +σ3q)(p−1)> 0 and uB = (

√
p,1),

respectively.
The new boundary conditions become(

f A
1 (0), f A

2 (0)
)
=

1√
sAq

(√
q(sA

0 − sA),sA
0 q0− sAq

)
and f B

1 (0) =
√

p f B
2 (0) (22)

at the condensed phase, and at the far end

f A→ 0 and f B→ 0 as x→ ∞. (23)

We decompose
f A = µ

A
1 yA

1 +µ
A
2 yA

2 +µ
A
3 yA

3 +β
AuA and f B = µ

ByB +β
BuB,

and obtain, since µA
2 = µA

3 = µB = 0 and the quadratic parts vanish for all solutions under condition (23), the linearized
system 

dβ A

dx
+λ Aβ A =−β B√q(σ2−σ3)

dµA
1

dx
=−β B p−1

1+q
(σ2 +σ3q)

dβ B

dx
+λ Bβ B = 0

, where
{

f A = µA
1 yA

1 +β AuA

f B = β BuB . (24)

Solving system (24), under condition (23), ends up in

f A = β
B
0

m
sA (1+q)

e−λ BxyA
1 +

(
β

B
0
√

q
σ2−σ3

λ B−λ A e−λ Bx + ke−λ Ax
)

uA and f B = β
B
0 e−λ BxuB,

with β B
0 = β B(0) and k constant. If we fix the total amount of gas B to be mtot

B , we obtain

β
B
0 =

sAmtot
B

2mA
√

p
(σ2 +σ3q)(p−1).

Furthermore, by the boundary conditions (22) at the condensed phase we obtain

k =
sA

0 − sA√
sA pq

+β
B
0
√

q
σ2−σ3

λ A−λ B −
mβ B

0
sA√q(1+q)

,

and the solvability condition

sA
0 (1+q0) = sA(1+q)+

mtot
B

√
sA

2mB
(σ2 +σ3q)(p−1).

Note that the presence of the non-condensable gas implies that the solution for f A contains a term from the null-space
of LAA. Finally we obtain,

FA = sA (1,q, p, pq)+β
B
0

m
√

p
√

sA (1+q)
e−λ Bx(1,q,1,q)+

√
pqsA

(
β

B
0
√

q
σ2−σ3

λ B−λ A e−λ Bx + ke−λ Ax
)
(1,−1,1,−1)

and FB(x) = β
B
0 e−λ Bx√p(1,1) .

We have exactly k+A + l = k+A = 1 solvability condition. All our assumptions in the preceding section are fulfilled for
this reduced model, if we allow b+ = ∞ in Eq.(15). Also, the given distribution at the condensed phase corresponds to
a Maxwellian, and, due to that the quadratic terms disappear, we don’t need any smallness assumptions at all on the



total amount of the gas B, or on the closeness of the far Maxwellian and the Maxwellian at the wall for the gas A to
obtain a solution. However, smallness assumptions might be needed to obtain positivity of the solution.

For the case of a condensing vapor flow (symmetric around the x-axis) modelled by the 6-velocity model with
velocities (20) (in the absence of a non-condensable gas), we just let mtot

B = 0, and obtain the solution

F = FA = sA (1,q, p, pq,q, pq)+
sA

0 − sA√
sA pq

e−sAσ1(1+q)(p−1)x(
√

pq,−√p,
√

q,−1,−√p,−1)

(by adding the extra components) under the solvability condition

sA
0 (1+q0) = sA(1+q).

CONCLUSIONS

In the present paper, we have considered some problems related to the half-space problem of condensation and
evaporation for the discrete Boltzmann equation for binary mixtures. The number of conditions, on the assigned
distribution at the condensed phase, to obtain a unique solution have been presented (under a smallness assumption
on the assigned distribution) in two different cases: (i) the case of two vapors; and (ii) the case of a vapor and a
non-condensable gas (under some reasonable assumptions and a smallness assumption on the amount of the non-
condensable gas). As an example exact solutions and solvability conditions have been found for a simplified discrete
velocity model in case (ii). The number of conditions depends on if we have subsonic or supersonic condensation or
evaporation. For an evaporating flow we obtain one extra condition in case (i) compared with the case of a pure vapor.
Evaporating flows are not studied in case (ii), since then the non-condensable gas is blown away by the evaporating
vapor flow and can not stay in the Knudsen layer [14, 17]. For a condensing flow we obtain, both in case (i) and (ii),
the same number of conditions as in the case of a pure vapor. The structure of the solutions may, however, differ as for
the simplified model in the example. To our knowledge, there is in case (ii) no rigorous analytical results of this kind
for the full Boltzmann equation yet. Similar behavior has, however, been found numerically [18, 14, 15], in the case
when the given distribution at the condensed phase is the Maxwellian at the condensed phase.
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