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Abstract. Existence of solutions of weakly non-linear half-space problems for

the general discrete velocity (with arbitrarily finite number of velocities) model

of the Boltzmann equation are studied. The solutions are assumed to tend to
an assigned Maxwellian at infinity, and the data for the outgoing particles

at the boundary are assigned, possibly linearly depending on the data for the

incoming particles. The conditions, on the data at the boundary, needed for the
existence of a unique (in a neighborhood of the assigned Maxwellian) solution of

the problem are investigated. In the non-degenerate case (corresponding, in the

continuous case, to the case when the Mach number at infinity is different of -1,
0 and 1) implicit conditions are found. Furthermore, under certain assumptions

explicit conditions are found, both in the non-degenerate and degenerate cases.
Applications to axially symmetric models are studied in more detail.

1. Introduction. The planar stationary Boltzmann equation, see Ref. [16] and
[17], with inflow boundary condition reads

ξ1
∂F

∂x
= Q (F, F ) , F = F (x, ξ)

F (0, ξ) = F0 (ξ) for ξ1 > 0
F →M∞ as x→∞,

(1)

where x ∈ R+, ξ =
(
ξ1, ξ2, ξ3

)
∈ R3, M∞ =

ρ∞

(2πT∞)3/2
e−|ξ−u∞|

2/(2T∞), ρ∞,

u∞ =
(
u1, u2, u3

)
, and T∞ are constant, and the collision integral Q (F, F ) is qua-

dratic in F (for more details see Refs. [16] and [17]). After the transformation
F = M∞ +M

1/2
∞ f , the non-linear equation (1) reads

ξ1
∂f

∂x
+ Lf = S(f, f), f = f (x, ξ)

f (0, ξ) = f0 (ξ) for ξ1 > 0,
f → 0 as x→∞,

(2)

where Lf = −2M−1/2
∞ Q

(
M∞,M

1/2
∞ f

)
and S(f, f) = M

−1/2
∞ Q

(
M

1/2
∞ f,M

1/2
∞ f

)
.

The problem (2) can by a shift in the velocity space be rewritten as
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(
ξ1 + u1

) ∂f
∂x

+ L0f = S0(f, f)

f (0, ξ) = f0 (ξ) for ξ1 + u1 > 0,
f → 0 as x→∞,

(3)

where L0f = −2M−1/2
0 Q

(
M0,M

1/2
0 f

)
, S0(f, f) = M

−1/2
0 Q

(
M

1/2
0 f,M

1/2
0 f

)
and

M0 =
ρ∞

(2πT∞)3/2
e−|ξ|

2/(2T∞) (cf. Ref. [21]).

The general boundary condition at x = 0 (at the wall) in Eq. (1) reads:

F (0, ξ) = g0 (ξ) +
∫

ξ1∗<0

K(ξ, ξ∗)F (0, ξ∗) dξ∗ for ξ1 > 0, (4)

where (i) g0 (ξ) ≥ 0 for ξ1 > 0; (ii) the kernel K(ξ, ξ∗), fulfills K(ξ, ξ∗) ≥ 0 for
ξ1 > 0 and ξ1∗ < 0; and (iii)

Mw(ξ) = g0 (ξ) +
∫

ξ1∗<0

K(ξ, ξ∗)Mw (ξ∗) dξ∗ for ξ1 > 0,

where Mw =
ρw

(2πTw)3/2
e−|ξ|

2/(2Tw), Tw is the temperature of the wall and ρw is the

saturated gas density at temperature Tw, if the boundary is at rest, see Refs. [34]
and [35].

For a non-condensable gas (i.e. with no mass flux of the gas across the wall)
we can put g0 (ξ) ≡ 0. A particular case is the boundary conditions introduced by
Maxwell in Ref. [30, Appendix],

F (0, ξ) = (1− α)F (0, ξ−) +
ασw

(2πTw)3/2
e−|ξ|

2/(2Tw) for ξ1 > 0,

with σw = −
√

2π
Tw

∫
ξ1<0

ξ1F (0, ξ) dξ and ξ− =
(
−ξ1, ξ2, ξ3

)
,

where Tw is the temperature of the wall and α, with 0 ≤ α ≤ 1, is the accommo-
dation coefficient. The case α = 1 is called diffuse reflection, and the case α = 0
specular reflection. The Maxwell boundary conditions can be obtained by taking

K(ξ, ξ∗) = (1− α)δ(ξ∗ − ξ + 2ξ1e1)− α

2πT 2
w

ξ1∗e
−|ξ|2/(2Tw),

with e1 = (1, 0, 0), in Eq. (4).
In this paper we study the corresponding problem

ξ1i
dFi
dx

= Qi (F, F ) , x ∈ R+, i = 1, ..., n,

Fi (0) = F0i for ξ1i > 0
Fi(x)→M∞i as x→∞,

for the general discrete velocity model in Refs. [15] and [23]. More general bound-
ary conditions (see Eq. (30) below), corresponding to boundary condition (4) in
the continuous case, are also considered. Discrete velocity models (DVMs) of the
Boltzmann equation are models, where the velocity is discretized, i.e. the velocity is
assumed to be able to take only a finite (or in general a discrete) number of different
values. It is a well-known fact that the Boltzmann equation can be approximated
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by DVMs, see Refs. [12], [22], [31] and [32], and that these approximations can be
used for numerical methods. The study of DVMs can also give a better conceptual
understanding and new ideas, which can be applied to the Boltzmann equation. In
the planar stationary case, the general DVM reduces to a system of ordinary differ-
ential equations. We continue here the study of DVMs in the directions formulated
in Refs. [9], [10] and [7]. Important tools in these studies are the results in Ref.
[10] (see Section 2.1 below) on the dimensions of the stable, unstable and center
manifolds of the singular points (Maxwellians for DVMs).

Half-space problems for the Boltzmann equation are of great importance in the
study of the asymptotic behavior of the solutions of boundary value problems of the
Boltzmann equation for small Knudsen numbers, see Refs. [16] and [17]. For a com-
prehensive and detailed description of the asymptotic theory see Refs. [34] and [35].
The half-space problems provide the boundary conditions for the fluid-dynamic-type
equations and Knudsen-layer corrections to the solution of the fluid-dynamic-type
equations in a neighborhood of the boundary. Mathematical results on the half-
space problem for the Boltzmann equation for a single-component gas are reviewed
in Ref. [6]. Sone and Aoki with coworkers have under a long time considered prob-
lems related to these questions, both from a theoretical and numerical point of view,
see Refs. [34] and [35] and references therein.

The half-space problems for the linearized Boltzmann equation are well investi-
gated, see Refs. [5], [21] and [27]. A classification of well-posed half-space problems
for the homogeneous, as well as the inhomogeneous, linearized discrete Boltzmann
equation has been made in Ref. [7], based on results obtained in Ref. [10]. The
results in Ref. [5] have been extended to yield also in the case of binary mixtures,
for the homogeneous, as well as the inhomogeneous, linearized Boltzmann equation,
by Aoki, Bardos and Takata in Ref. [1].

In Ref. [38] Ukai, Yang and Yu studied the non-linear problem with inflow
boundary conditions for a hard sphere gas, assuming that the solutions tend to
an assigned Maxwellian at infinity. The conditions on the data at the boundary
needed for the existence of a unique (in a neighborhood of the assigned Maxwellian)
solution of the problem are investigated. In the cases when the Mach number at
infinity is different of -1, 0 and 1 the number of conditions needed is found. Similar
existence results have followed for cut-off hard potentials in Ref. [19], and cut-off
soft potentials in Ref. [41], and for boundary conditions of diffuse and specular
reflection type in Ref. [36]. In Ref. [25] Golse studied the case when the Mach
number is 0. Also the non-linear stability of boundary layer solutions have been
investigated in Refs. [39], [40] and [42].

Ukai considered in Ref. [37] the same problem for the discrete Boltzmann equa-
tion, in the case corresponding to the case when the Mach number is less than -1
for the full Boltzmann equation. This result was generalized by Kawashima and
Nishibata in Ref. [28], where they still considered inflow boundary conditions, and
in Ref. [29], for different boundary conditions. However, Kawashima and Nishibata
in Refs. [28] and [29] still assumed some quite restrictive conditions. In Ref. [2]
Babovsky studied a degenerate case for the non-linear (and linearized) DVM, with
slightly perturbed specular reflection (cf. Ref. [26]), but with a quite restrictive
condition on the non-linear part of the collision operator.

In Ref. [18] Cercignani et al. have shown that the solutions of the half-space
problem for the general non-linear DVM with inflow boundary conditions tend to
Maxwellians at infinity (without specifying the Maxwellians). In the present paper,
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the singular point (Maxwellian for DVMs) approached at infinity is fixed and small
deviations of the solutions from the singular point is studied. The data for the
outgoing particles at the boundary are assigned, possibly linearly depending on the
data for the incoming particles. The conditions on the data at the boundary needed
for the existence of a unique (in a neighborhood of the assigned Maxwellian) solution
of the problem are investigated. In the non-degenerate case (corresponding, in the
continuous case, to the case when the Mach number at infinity is different of -1,
0 and 1) implicit conditions have been found by using arguments by Ukai, Yang
and Yu in Ref. [38] for the continuous Boltzmann equation. Furthermore, under
certain assumptions explicit conditions are found, both in the non-degenerate and
degenerate cases. The results extend, not only by more general boundary conditions,
but also by more general assumptions, previous results for the discrete Boltzmann
equation by Ukai in Ref. [37], and Kawashima and Nishibata in Refs. [28] and [29],
and include also (for DVMs) the results obtained by Ukai, Yang and Yu in Ref. [38]
for the continuous Boltzmann equation. Applications to axially symmetric models
have also been studied, generalizing the results by Babovsky in Ref. [2].

All results are obtained for an arbitrary finite number of velocities. Similar
results as in this paper can also be obtained for DVMs for mixtures. Existence of
weak shock wave solutions for the discrete Boltzmann equation has also been proved
based on the same ideas in Ref. [8].

This paper is organized as follows: In Section 2, we introduce the planar station-
ary discrete Boltzmann equation and review some of its properties. We make an
expansion around an equilibrium Maxwellian, and review, Theorem 2.1 in Subsec-
tion 2.1, the results in Ref. [10] on the dimensions of the stable, unstable and center
manifolds of the system of ODEs. The problem and the main results on existence
and uniqueness are stated in Section 3 (Theorem 3.1 and Theorem 3.2). The bound-
ary conditions at the ”wall” are discussed in more detail in Section 4. In particular,
inflow boundary conditions and Maxwell-type boundary conditions (Subsection 4.1)
are considered. The results of [10] (stated in Theorem 2.1) are used to investigate
the number of additional conditions needed to obtain well-posedness of the weakly
non-linear problem in Section 5 and Section 6 respectively, and thereby to prove
Theorem 3.1 (Section 5) and Theorem 3.2 (Section 6) in Section 3. Implicit condi-
tions for the existence of a unique (in a neighborhood of the assigned Maxwellian)
solution in the non-degenerate case and also for the degenerate case, but then with
some restrictions on the non-linear part of the collision operator, are obtained (Sec-
tion 5). The results are in accordance with corresponding results for the continuous
Boltzmann equation obtained in the non-degenerate case, with inflow boundary con-
ditions in Ref. [38]. We also obtain explicit conditions for the existence of a unique
(in a neighborhood of the assigned Maxwellian) solution (Section 6), but with more
restrictions, at least in the non-degenerate case, on the non-linear part. However,
in some degenerate cases we obtain weaker restrictions on the non-linear part than
in Theorem 3.1. The more general case when we allow velocities inducing a singular
”velocity-matrix” (that is, if we allow velocities that have zero as first component)
is discussed in Section 7. Applications to axially symmetric models is studied in
Section 8. The degenerate cases for axially symmetric DVMs (in the ”shock wave
context”), if we have expanded around a non-drifting Maxwellian in Section 2, are
discussed in Subsection 8.1. The results are in accordance with the results for the
continuous Boltzmann equation in Ref. [21]. We also apply our results (Theo-
rem 3.2) in Section 3 to a boundary layer problem of the type studied by Golse,
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Perthame and Sulem in Ref. [26] for the Boltzmann equation, and by Babovsky in
Ref. [2] for DVMs (with quite restrictive conditions on the non-linear part of the
collision operator). We first consider a plane 12-velocity DVM in Subsection 8.2,
but also a more general axially symmetric DVM (cf. Ref. [2]) in Subsection 8.3.

2. Discrete Boltzmann equation. The planar stationary system for the discrete
Boltzmann equation (DBE) reads

ξ1i
dFi
dx

= Qi (F, F ) , x ∈ R+, i = 1, ..., n, (5)

where V = {ξ1, ..., ξn}, ξi ∈ Rd, is a finite set of velocities, Fi = Fi (x) = F (x, ξi),
and F = F (x, ξ) represents the microscopic density of particles with velocity ξ =
(ξ1, ..., ξd) at position x = (x, x2, ..., xd) ∈ Rd. We also assume (except in Section
7) that

ξ1i 6= 0, for i = 1, ..., n.
For a function g = g(ξ) (possibly depending on more variables than ξ), we will

identify g with its restriction to the set V, but also when suitable consider it like a
vector function

g = (g1, ..., gn) , with gi = g (ξi) .
Consistently, we say that g is non-negative (positive), g ≥ 0 (g > 0), if and only if
gi ≥ 0 (gi > 0) for all 1 ≤ i ≤ n.

Then Eq. (5) can be rewritten as

B
dF

dx
= Q (F, F ) , with x ∈ R+ and B = diag(ξ11 , ..., ξ

1
n). (6)

Below we review some properties of the discrete Boltzmann equation.
The collision operators Qi (F, F ) in Eq. (5) are given by the bilinear expressions

Qi (F,G) =
1
2

n∑
j,k,l=1

Γklij (FkGl +GkFl − FiGj −GiFj) , (7)

where it is assumed that the collision coefficients Γklij satisfy the relations

Γklij = Γklji = Γijkl ≥ 0,

with equality unless the conservation laws

ξi + ξj = ξk + ξl and |ξi|2 + |ξj |2 = |ξk|2 + |ξl|2 (8)

are satisfied (preservation of momentum and energy).

Remark 1. Our main results, presented in Section 3, do not depend on the preser-
vation of energy (even if we indeed use it in some of our applications), i.e., Eqs. (8)
could be replaced by

ξi + ξj = ξk + ξl,
without affecting our main results. In fact, our main results do not depend on what
set of collision invariants (cf. Eq. (9)) we have.

A function φ = φ (ξ) is a collision invariant if and only if

φi + φj = φk + φl, (9)

for all indices such that Γklij 6= 0, or, equivalently, if and only if

〈φ,Q (F, F )〉 = 0, (10)
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for all non-negative functions F . We have the trivial collision invariants (also called
the physical collision invariants) φ0 = 1, φ1 = ξ1, ..., φd = ξd, φd+1 = |ξ|2 (including
all linear combinations of these). Here and below, we denote by 〈·, ·〉 the Euclidean
scalar product on Rn.

We consider below (even if this restriction is not necessary in our general context)
only normal DVMs. That is, DVMs without spurious (or non-physical) collision
invariants, i.e. any collision invariant is of the form

φ = a+ b · ξ + c |ξ|2 (11)

for some constant a, c ∈ R and b ∈ Rd (methods of their construction are described
in Refs. [11], [13] and [14]). In this case the equation (10) has the general solution
(11).

A Maxwellian distribution (or just a Maxwellian) is a function M = M(ξ), such
that

Q(M,M) = 0 and M > 0.
All Maxwellian distributions are of the form

M = eφ = Aeb·ξ+c|ξ|
2
, with A = ea > 0 and c < 0, (12)

where φ is a collision invariant (11) (the latter equality is due to the assumption of
normal DVMs). In general a, b and c can be functions of x, but since we assume that
our solutions tend to a global, i.e. with absolute constant a, b and c, Maxwellian
at infinity, our interest is in global Maxwellians, and so when we below refer to a
Maxwellian, we will mean a global Maxwellian.

Given a Maxwellian M we denote

F = M +M1/2f , (13)

in Eq. (5), and obtain

ξ1i
dfi
dx

= − (Lf)i + Si (f, f) , i = 1, ..., n,

where L is the linearized collision operator (n× n matrix) given by

Lf = −2M−1/2Q(M,M1/2f), (14)

and S is the quadratic part given by

S(f, g) = M−1/2Q(M1/2f,M1/2g). (15)

In more explicit forms, the operators (14) and (15) read

(Lf)i = −
n∑

j,k,l=1

ΓklijM
1/2
j

(
M

1/2
k fl +M

1/2
l fk −M1/2

i fj −M1/2
j fi

)
,

and

Si (f, f) =
n∑

j,k,l=1

ΓklijM
1/2
j (fkfl − fifj) .

The matrix L is symmetric and semi-positive, and the null-space N(L) of L is (for
normal DVMs) given by

N(L) = span(M1/2,M1/2ξ1, ...,M1/2ξd,M1/2 |ξ|2).

Furthermore, S (f, f) belong to the orthogonal complement of N(L), i.e.

S (f, f) ∈ N(L)⊥.



NON-LINEAR HALF-SPACE PROBLEMS 7

Then the system (6) transforms into

B
df

dx
+ Lf = S(f, f). (16)

The diagonal matrix B (6) (under our assumptions) has no zero diagonal elements
and is non-singular. If we denote f |x=0 = f0 (the boundary conditions imposed by
all ξi), then we can rewrite Eq. (16) as

f(x) = e−xB
−1Lf0 +

x∫
0

e(σ−x)B
−1L [S (f, f)] (σ) dσ.

2.1. Characteristic numbers. We denote by n±, where n+ + n− = n, and m±,
with m+ + m− = q, the numbers of positive and negative eigenvalues (counted
with multiplicity) of the matrices B and B−1L respectively, and by m0 the number
of zero eigenvalues of B−1L. Moreover, we denote by k+, k− and l the numbers
of positive, negative and zero eigenvalues of the p × p matrix K (p = d + 2 for
normal DVMs), with entries kij = 〈yi, yj〉B = 〈yi, Byj〉, such that {y1, ..., yp}
is a basis of the null-space of L, i.e. in our case span(y1, ..., yp) = N(L) =

span
(
M1/2,M1/2ξ1, ...,M1/2ξd,M1/2 |ξ|2

)
. Here and below, we denote 〈·, ·〉B =

〈·, B·〉 . We also recall the notation N(L) for the null-space of L.
In applications, the number p of collision invariants is usually relatively small

compared to n (note that formally n = ∞ for the continuous Boltzmann equation
whenas p ≤ 5). Also, the matrix B is diagonal and therefore all its eigenvalues
are known. This explains the importance of the following result by Bobylev and
Bernhoff in Ref. [10] (see also Ref. [7]).

Theorem 2.1. The numbers of positive, negative and zero eigenvalues of B−1L
are given by 

m+ = n+ − k+ − l
m− = n− − k− − l
m0 = p+ l.

Remark 2. In Ref. [10] Theorem 2.1 is proved for any real symmetric matrices L
and B, such that L is semi-positive and B is invertible.

In the proof of Theorem 2.1 a basis

u1, ..., uq, y1, ..., yk, z1, ..., zl, w1, ..., wl (17)

of Rn, such that

yi, zr ∈ N(L), B−1Lwr = zr and B−1Luα = λαuα, (18)

and

〈uα, uβ〉B = λαδαβ , with λ1, ..., λm+ > 0 and λm++1, ..., λq < 0,

〈yi, yj〉B = γiδij , with γ1, ..., γk+ > 0 and γk++1, ..., γk < 0,

〈uα, zr〉B = 〈uα, wr〉B = 〈uα, yi〉B = 〈wr, yi〉B = 〈zr, yi〉B = 0,

〈wr, ws〉B = 〈zr, zs〉B = 0 and 〈wr, zs〉B = δrs, (19)

is constructed.
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The Jordan normal form of B−1L (with respect to the basis (17)-(19)) is

λ1

. . .
λq

0
. . .

0
0 1
0 0

. . .
0 1
0 0



,

where there are l blocks of the type
(

0 1
0 0

)
. For any h ∈ Rn, we obtain

e−xB
−1Lh =

k∑
i=1

µiyi +
l∑

j=1

((ηj − xαj) zj + αjwj) +
q∑
r=1

βre
−λrxur,

where

µi =
〈h, yi〉B
〈yi, yi〉B

, βr =
〈h, ur〉B
λr

, αj = 〈h, zj〉B and ηj = 〈h,wj〉B .

3. Statement of the problem and main results. We consider the non-linear
system

B
df

dx
+ Lf = S(f, f), (20)

where the solution tends to zero at infinity, i.e.

f(x)→ 0 as x→∞, (21)

and
S (f, f) ∈ N(L)⊥. (22)

The boundary conditions (21) correspond to the case when we have made the
expansion (13) around a Maxwellian M = M∞, such that F →M∞ as x→∞.

We can (without loss of generality) assume that

B =
(
B+ 0
0 −B−

)
,

where

B+ = diag
(
ξ11 , ..., ξ

1
n+

)
and B− = −diag

(
ξ1n++1, ..., ξ

1
n

)
,

with ξ11 , ..., ξ
1
n+ > 0 and ξ1n++1, ..., ξ

1
n < 0. (23)

We also define the projections R+ : Rn → Rn+
and R− : Rn → Rn− , n− = n− n+,

by
R+s = s+ = (s1, ..., sn+) and R−s = s− = (sn++1, ..., sn)

for s = (s1, ..., sn).
At x = 0 we assume the general boundary conditions (cf. Eqs. (31) below)

f+(0) = Cf−(0) + h0, (24)
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where C is a given n+ × n− matrix and h0 ∈ Rn+
. We introduce the operator

C : Rn → Rn+
, given by

C = R+ − CR−.
We will also assume that the matrix C fulfills one of the conditions

dim CU+ = m+,

with U+ = span (u| Lu = λBu, with λ > 0) = span (u1, ..., um+) , (25)

and

dim CX+ = n+, with X+ = span (u1, ..., um+ , y1, ..., yk+ , z1, ...., zl) . (26)

Remark 3. For the continuous Boltzmann equation (with d = 3), if we have made
the expansion (13) around a non-drifting Maxwellian

M =
ρ∞

(2πT∞)3/2
e−|ξ|

2/2T∞ ,

k+ = 1, l = 3 and the collision invariants y1, y2, z1, z2 and z3 can be chosen as, cf.
Ref. [21],

y1 =

(
ξ1√
2T∞

+
|ξ|2√
30T∞

)
M1/2, y2 =

(
− ξ1√

2T∞
+

|ξ|2√
30T∞

)
M1/2,

z1 =

(√
5
2
− |ξ|2√

10T∞

)
M1/2, z2 =

ξ2√
T∞

M1/2 and z3 =
ξ3√
T∞

M1/2.

Moreover,
wj = L−1ξ1zj ,

in the continuous case, and the continuous analogue of equation Lu = λBu is

Lh = λξ1h, h = h(ξ), (27)

(see Ref. [16] for a discussion on the eigenvalue problem (27)). We also want
to point out that, in the continuous case, the boundary conditions (before the
expansion (13)), that correspond to conditions (24), are given by Eqs. (4).

We now state our main results.

Theorem 3.1. Let condition (26) be fulfilled and suppose that
〈S (f(x), f(x)) , wj〉 = 0 for j = 1, ..., l, and that 〈h0, h0〉B+

is sufficiently small.
Then with k+ + l conditions on h0, the system (20) with the boundary conditions
(21) and (24) has a locally unique solution.

Theorem 3.1 is proved in Section 5.

Theorem 3.2. Let condition (25) be fulfilled and assume that

h0, CexB
−1LB−1S(f(x), f(x)) ∈ CU+ for all x ∈ R+,

with U+ = span(u : Lu = λBu, λ > 0) = span (u1, ..., um+) . (28)

Then there is a positive number δ0, such that if

|h0| ≤ δ0,

then the system (20) with the boundary conditions (21) and (24) has a locally unique
solution.

The proof of Theorem 3.2 is outlined in Section 6.
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Remark 4. If condition (25) is fulfilled, then the condition

h0 ∈ CU+.

implies that we have k+ + l conditions on h0.

Remark 5. If the conditions
CU− ⊆ CU+,

with U− = span ({u| Lu = λBu, with λ < 0} ∪ {z1, ..., zl})
= span (um++1, ..., uq, z1, ..., zl) ,

(29)

and (22) are fulfilled, then

CexB
−1LB−1S(f, f) ∈ CU+ for all x ∈ R+.

Lemma 3.3. (see Ref. [7]) Let B+ and B− be the matrices defined in Eqs. (23).
Then
i) condition (26) is fulfilled, if

CTB+C < B− on R−X+;

ii) condition (25) is fulfilled, if

CTB+C ≤ B− on R−U+.

Proof. ii) Let u ∈ U+ and CTB+C ≤ B− on R−U+. Then

〈u, u〉B > 0.

Furthermore, if u 6= 0 and Cu = 0, then

〈u, u〉B =
〈
Cu−, Cu−

〉
B+
−
〈
u−, u−

〉
B−

=
〈
(CTB+C −B−)u−, u−

〉
≤ 0.

Hence, if Cu = 0, then u = 0. That is, dim CU+ = dimU+ = m+, and part ii) of
the lemma is proved.

Part i) of the lemma is proved in a similar way (see also Ref. [7]).

Corollary 1. (see Ref. [7]) If C = 0, then the conditions (25) and (26) are fulfilled.
In particular,

{
u+

1 , ..., u
+
m+ , y

+
1 , ..., y

+
k+ , z

+
1 , ..., z

+
l

}
is a basis of Rn+

.

Ukai considered the case with m+ = n+ and C = 0 in Ref. [37]. Then conditions
(25), (26) and (28) are trivially fulfilled, since R+U+ = Rn+

. This is the discrete
correspondence of the case when the Mach number of the Maxwellian M∞ is less

than −1, i.e. M∞ = u∞,1/
√

5
3T∞ < −1, for the full Boltzmann equation.

This result was generalized by Kawashima and Nishibata in Ref. [28], where
they still considered the case C = 0 (but allowed zero first components of the
velocities, which was ruled out in Ref. [37]). Then conditions (25) and (26) are
fulfilled by Corollary 1. They assumed that dimR+ (BN(L))⊥ = m+ (equiva-
lent to assumption [A] in Ref. [28]), which implies that R+ (BN(L))⊥ = R+U+,
and hence, that l = 0 and R+U− ⊆ R+U+ (Eq. (29) with C = 0). Therefore,
condition (28) is fulfilled if the boundary data satisfies the consistency condition,
equivalent to the condition h0 ∈ R+ (BN(L))⊥, in Ref. [28]. In their subsequent
paper [29], Kawashima and Nishibata assumed that dimR+ (BN(L))⊥ = m+,
CR− (BN(L))⊥ ⊆ R+ (BN(L))⊥, and that 〈u, u〉B < 0 if Cu = 0 and u 6= 0 (cf.
Lemma 2.1 in Ref. [29]). Conditions (25) and (26) are fulfilled by the latter assump-
tion and Lemma 3.3. By the first assumption, l = 0 and R+U− ⊆ R+U+. Therefore,
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the second assumption implies that condition (28) is fulfilled if the boundary data
satisfies the consistency condition, equivalent to condition h0 ∈ C (BN(L))⊥, in
Ref. [29]. Note that a0 in Eq. (30) is assumed to be zero, a0 = 0, in Ref. [29].

Remark 6. All our results can be extended in a natural way, to yield also for
singular matrices B (see Section 7), if

N(L) ∩N(B) = {0} .

4. Boundary conditions. If M = M∞ = Aeb·ξ+c|ξ|
2 ∈ Rn is the Maxwellian we

have made the expansion (13) around, i.e.,

F (x) = M +M1/2f (x) ,

then the general boundary conditions (cf. boundary condition (4) in the continuous
case)

F+(0) = C0F
−(0) + a0, (30)

where C0 is a given n+ × n− matrix and a0 ∈ Rn+
, at x = 0, lead to the following

C and h0 in Eq. (24),

C = M
−1/2
+ C0M

1/2
− and h0 = M

−1/2
+ (C0M

− −M+ + a0), (31)

with

M
−1/2
+ = diag(M−1/2

1 , ...,M
−1/2
n+ ) and M

1/2
− = diag(M1/2

n++1, ...,M
1/2
n ).

Example 1. If we assume inflow boundary conditions, i.e. C0 = 0, as is the case
when we have complete condensation, then C = 0 and h0 = M

−1/2
+ (a0 −M+).

Example 2. Let n− = n+. The discrete version of the Maxwell-type boundary
conditions reads

F+(0) = C0F
−(0), with C0 = (1− α)I + αC0d, 0 ≤ α ≤ 1,

where I is the identity matrix and C0d is the n+ × n+ matrix, with the elements

c0d,ij =
ξ1n++jM0i〈
B−M

−
0 , 1

〉 for some Maxwellian M0, cf. Ref. [24]. The cases α = 0 and

α = 1 correspond to specular and diffuse reflection, respectively.
After the expansion (13), the Maxwell-type boundary conditions reads, cf. Ref.

[7],

f+(0) = CMf
−(0) + h0, with CM = (1− α)M−1/2

+ M
1/2
− + αCd, 0 ≤ α ≤ 1,

h0 = M
−1/2
+ ((1− α)M− + α

〈B−M−, 1〉〈
B−M

−
0 , 1

〉M+
0 −M+), (32)

where Cd is the n+ × n+ matrix, with the elements

cd,ij =
ξ1n++jM

−1/2
i M

1/2
n++jM0i〈

B−M
−
0 , 1

〉 .
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We obtain that

〈
CTd B+Cdu, u

〉
=

〈
B−
√
M−, u

〉2 〈
B+M

+
0 ,M

−1
+ M+

0

〉
〈
B−M

−
0 , 1

〉2
≤
〈B−M−, 1〉

〈
B+M

+
0 , (M

+)−1
M+

0

〉
〈
B−M

−
0 , 1

〉2 〈B−u, u〉 ,

with equality if and only if u ∈ span(
√
M−).

Remark 7. In the general case of Remark 2 we fix an orthonormal basis

{e1, ..., en} , with 〈ei, ej〉 = δij ,

of Rn, such that

Bei = biei,

where

b1, ..., bn+ > 0 and bn++1, ..., bn < 0,

and define R+ : Rn → Rn+
and R− : Rn → Rn− , by

R+s = s+ = (s1, ..., sn+) and R−s = s− = (sn++1, ..., sn)

for s =
n∑
i=1

siei. We also introduce the matrices B+ and B−, defined by

B+ = diag (b1, ..., bn+) and B− = −diag (bn++1, ..., bn) .

4.1. Maxwell-type boundary conditions. We now consider the Maxwell-type
boundary conditions (32) .

If we assume that

ξi+n+ = (−ξ1i , ξ2i ..., ξdi ), ξ1i > 0, for i = 1, ..., n+, (33)

then M− = e−2bξ1M+ and therefore, M−1/2
+ M

1/2
− = diag(e−bξ

1
1 , ..., e−bξ

1
n+ ), where

b is the first component of b in Eqs. (12). Note also that B− = B+. Furthermore,
we assume that

M0 = A0e
c0|ξ|2 and b = (b, 0, ..., 0).

Then〈
CTMB+CMu, u

〉
= (1− α)2

〈
B+

(
M+

)−1
M−u, u

〉
+ 2(α− α2)

〈
M
−1/2
+ M

1/2
− B+u,Cdu

〉
+ α2

〈
CTd B+Cdu, u

〉
,

where

〈
CTd B+Cdu, u

〉
≤
〈B+M

−, 1〉
〈
B+M

+
0 , (M

+)−1
M+

0

〉
〈
B+M

+
0 , 1

〉2 〈B−u, u〉 ,
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and 〈
M
−1/2
+ M

1/2
− B+Cdu, u

〉
=

〈
B−M

1/2
− , u

〉〈
B+M

1/2
− (M+)−1

M+
0 , u

〉
〈
B−M

+
0 , 1

〉
≤
〈B+M

−, 1〉1/2
〈
B+ (M+)−2

,M−
(
M+

0

)2〉1/2

〈
B−M

+
0 , 1

〉 〈B−u, u〉 .

Hence, if b ≥ 0 we obtain the following rough estimate〈
CTMB+CMu, u

〉
≤ e−2bξ1min(1 + α(e|c−c0|(|ξ|

2
max−|ξ|

2
min)/2 − 1))2 〈B−u, u〉 , (34)

where ξ1min = min
(
ξ11 , ..., ξ

1
n+

)
, |ξ|2min = min(|ξ1|2 , ..., |ξn+ |2) and |ξ|2max =

max(|ξ1|2 , ..., |ξn+ |2). If b < 0, then we can replace ξ1min with ξ1max, where ξ1max =
max

(
ξ11 , ..., ξ

1
n+

)
, in Eq. (34).

Lemma 4.1. Let M0 = A0e
c0|ξ|2 and M = M∞ = Aebξ

1+c|ξ|2 , and assume that
assumption (33) is fulfilled. Then C = sCM fulfills conditions (25) and (26), if

s <

{
ebξ

1
min(1 + α(e|c−c0|(|ξ|

2
max−|ξ|

2
min)/2 − 1))−1 if b ≥ 0

ebξ
1
max(1 + α(e|c−c0|(|ξ|

2
max−|ξ|

2
min)/2 − 1))−1 if b < 0

. (35)

Proof. If s satisfies inequality (35), then it follows from inequality (34) that〈
(sCM )T B+sCMu, u

〉
= s2

〈
CTMB+CMu, u

〉
< 〈B−u, u〉

and the lemma follows by Lemma 3.3.

5. With damping term. We add (following the structure in Ref. [38] for the full
Boltzmann equation) a damping term −γP+

0 f to the right-hand side of the system
(20) and obtain

B
df

dx
+ Lf = S(f, f)− γP+

0 f , (36)

where γ > 0 and

P+
0 f =

k+∑
i=1

〈f(x), yi〉B
〈yi, yi〉B

yi +
l∑

j=1

〈f(x), wj〉B zj .

First we consider the corresponding linearized inhomogeneous system

B
df

dx
+ Lf = g − γP+

0 f , (37)

where g = g(x) : R+ → Rn is a given function such that

g (x) ∈ N(L)⊥ for all x ∈ R+. (38)

The system (37) with the boundary conditions (21) has (under the assumption
that all necessary integrals exist) the general solution, using the notations in Eqs.
(17)-(19),

f(x) =
k+∑
i=1

µi (x) yi +
l∑

j=1

ηj (x) zj +
q∑
r=1

βr (x)ur, (39)



14 NICLAS BERNHOFF

where 

µi (x) = µi (0) e−γx, i = 1, ..., k+,

ηj (x) = ηj (0) e−γx +
x∫
0

e(τ−x)γ η̃j (τ) dτ , j = 1, ..., l,

βr (x) = βr (0) e−λrx +
x∫
0

e(τ−x)λr β̃r (τ) dτ , r = 1, ...,m+,

βr (x) = −
∞∫
x

e(τ−x)λr β̃r (τ) dτ , r = m+ + 1, ..., q,

(40)

with

η̃j (x) = 〈g (x) , wj〉 and β̃r (x) = 〈g (x) , ur〉 . (41)

From the boundary conditions (24), we obtain the system

m+∑
r=1

βr (0) Cur +
k+∑
i=1

µi (0) Cyi +
l∑

j=1

ηj (0) Czj

=h0 +
q∑

r=m++1

∞∫
0

eτλr β̃r (τ) dτ Cur, with C = R+ − CR−.

(42)

For h0 = 0 in (24), we have the trivial solution f(x) ≡ 0. Therefore, we consider
only non-zero h0, h0 6= 0, below. The system (42) has (under the assumption that
all necessary integrals exist) a unique solution if we assume that the condition (26)
is fulfilled.

Theorem 5.1. Assume that the conditions (26) and (38) are fulfilled and that all
necessary integrals exist. Then the system (37) with the boundary conditions (21)
and (24), has a unique solution given by Eqs. (39)-(42).

We fix a number σ, such that

0 < σ ≤ min {|λ| 6= 0; det(λB − L) = 0} and σ ≤ γ

and introduce the norm (cf. Ref. [29])

|h|σ = sup
x≥0

eσx |h (x)| ,

the Banach space

X =
{
h ∈ B0[0,∞) | |h|σ <∞

}
and its closed convex subset

SR =
{
h ∈ B0[0,∞) | |h|σ ≤ R |h0|

}
,

where R is a, so far, undetermined positive constant.
We assume that the condition (26) is fulfilled and introduce the operator Θ(f)

on X , defined by

Θ(f) =
k+∑
i=1

µi (f(x)) yi +
l∑

j=1

ηj (f(x)) zj +
q∑
r=1

βr (f(x))ur, (43)
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where

µi (f(x)) = µi (f(0)) e−γx, i = 1, ..., k+,

ηj (f(x)) = ηj (f(0)) e−γx +
x∫
0

e(τ−x)γ η̃j (f(τ)) dτ , j = 1, ..., l,

βr (f(x)) = βr (f(0)) e−λrx +
x∫
0

e(τ−x)λr β̃r (f (τ)) dτ , r = 1, ...,m+,

βr (f(x)) = −
∞∫
x

e(τ−x)λr β̃r (f (τ)) dτ, r = m+ + 1, ..., q,

with β1 (f(0)) , ..., βm+ (f(0)) , µ1 (f(0)) , ..., µk+ (f(0)) and η1 (f(0)) , ..., ηl (f(0))
given by the system

m+∑
r=1

βr (f(0)) Cur +
k+∑
i=1

µi (f(0)) Cyi +
l∑

j=1

ηj (f(0)) Czj

=h0 +
q∑

r=m++1

∞∫
0

eτλr β̃r (f (τ)) dτ Cur,

and

C = R+ − CR−, η̃j (f) = 〈S (f, f) , wj〉 , and β̃r (f) = 〈S (f, f) , ur〉 .

Lemma 5.2. Let f, h ∈ X and assume that the condition (26) is fulfilled. Then
there is a positive constant K (independent of f and h), such that

|Θ(0)|σ ≤ K |h0| , (44)

|Θ(f)−Θ(h)|σ ≤ K(|f |σ + |h|σ) |f − h|σ . (45)

Proof. Let C−1 denote the inverse map of the linear map C = R+ −CR− on X+ =
span (u1, ..., um+ , y1, ..., yk+ , z1, ...., zl) . The map C−1 is also linear and therefore
bounded. We denote

P = (u1...uqy1...ykz1...zlw1...wl)

(cf. Eqs. (17)-(19)). By Eq. (19)

P−1 = D−1P̃ tB, where

P̃ = (u1...uqy1...ykz1...zlw1...wl) and D = diag(λ1...λqγ1...γk1...1).

Then

|Θ(0)|σ =
∣∣PP−1Θ(0)

∣∣
σ
≤ |P |

∣∣P−1Θ(0)
∣∣
σ

= |P |

∣∣∣∣∣∣
m+∑
r=1

βr (0) e−λrxP−1ur + e−γxP−1

 k+∑
i=1

µi (0) yi +
l∑

j=1

ηj (0) zj

∣∣∣∣∣∣
σ

≤ |P |

∣∣∣∣∣∣P−1

m+∑
r=1

βr (0)ur +
k+∑
i=1

µi (0) yi +
l∑

j=1

ηj (0) zj

∣∣∣∣∣∣
= |P |

∣∣P−1C−1h0

∣∣ ≤ K0 |h0| , with K0 = |P |
∣∣P−1C−1

∣∣ .
Clearly,

|f |σ <∞⇒ |S(f, f)|2σ <∞,
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and ∣∣∣∣∣∣C−1C
q∑

r=m++1

∞∫
0

eτλr

(
β̃r (f (τ))− β̃r (h (τ))

)
dτ ur

∣∣∣∣∣∣
≤
∣∣C−1CP

∣∣ ∣∣∣∣∣∣
∞∫
0

e−τσ
q∑

r=m++1

(
β̃r (f (τ))− β̃r (h (τ))

)
P−1ur dτ

∣∣∣∣∣∣
≤
∣∣C−1CP

∣∣ ∞∫
0

e−3τσ dτ
∣∣P−1B−1(S(f, f)− S(h, h))

∣∣
2σ

.

Hence, we obtain

|Θ(f)−Θ(h)|σ
=
∣∣PP−1 (Θ(f)−Θ(h))

∣∣
σ
≤ |P |

∣∣P−1 (Θ(f)−Θ(h))
∣∣
σ

≤ |P | sup
x≥0

 ∞∫
x

e(2x−τ)σ

∣∣∣∣∣∣P−1

q∑
r=m++1

(β̃r (f (τ))− β̃r (h (τ)))ur

∣∣∣∣∣∣ dτ
+

x∫
0

eτσ

∣∣∣∣∣∣P−1

m+∑
r=1

(β̃r (f (τ))− β̃r (h (τ)))ur

+
l∑

j=1

(η̃j (f (τ))− η̃j (h (τ)))zj

∣∣∣∣∣∣ dτ


+

∣∣∣∣∣∣P−1

m+∑
r=1

(βr (f(0))− βr (h(0)))ur +
l∑

j=1

(ηj (f (0))− ηj (h (0)))zj

+
k+∑
i=1

(µi (f (0))− µi (h (0)))yi)

∣∣∣∣∣∣
≤ |P | (sup

x≥0

∞∫
x

e(2x−3τ)σ dτ +

∞∫
0

e−τσ dτ +
∣∣P−1

∣∣ ∣∣C−1CP
∣∣ ∞∫

0

e−3τσ dτ)

∗
∣∣P−1B−1(S(f, f)− S(h, h))

∣∣
2σ

≤K1 |S(f, f)− S(h, h)|2σ , with K1 =
1

3σ
|P |
∣∣∣D−1P̃ t

∣∣∣ (4 +
∣∣P−1

∣∣ ∣∣C−1CP
∣∣) .

The quadratic function S(f, f) is bilinear in its arguments and bounded, and hence,
there is a positive constant K2 (independent of f and h), such that

|S(f, f)− S(h, h)| = |S(f + h, f − h)| ≤ K2(|f |+ |h|) |f − h| .
Therefore,

|S(f, f)− S(h, h)|2σ ≤ K2(|f |σ + |h|σ) |f − h|σ .
Let K = min(K0,K1K2).

Theorem 5.3. Let condition (26) be fulfilled. Then there is a positive number δ0,
such that if

|h0| ≤ δ0,
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then the system (36) with the boundary conditions (21) and (24) has a unique solu-
tion f = f(x) in SR for a suitable chosen R.

Proof. By estimates (44) and (45), there is a positive number K such that

|Θ(f)|σ = |Θ(f)−Θ(0) + Θ(0)|σ ≤ K(|h0|+ |f |2σ) (46)

if f ∈ X .

Let R = 2K and let δ0 be a positive number, such that δ0 <
1
R2

. By estimates

(45) and (46)

|Θ(f)|σ ≤ (
1
2

+ 2K2 |h0|)R |h0| ≤ R |h0|

and
|Θ(f)−Θ(h)|σ ≤ 2KR |h0| |f − h|σ ≤ R

2δ0 |f − h|σ , R2δ0 < 1,

if f, h ∈ SR and |h0| ≤ δ0.
The theorem follows by the contraction mapping theorem (see Ref. [33, p.2]).

Theorem 5.4. Suppose that 〈S (f, f) , wj〉 = 0 for j = 1, ..., l. Then the solution
of Theorem 5.3 is a solution of the problem (20), (21) and (24) if and only if
P+

0 f(0) = 0.

Proof. The relations{
µi(f(x)) = µi(f(0))e−γx, i = 1, ..., k+,
ηj(f(x)) = ηj(f(0))e−γx, j = 1, ..., l,

are fulfilled if f(x) is a solution of Theorem 5.3 and 〈S (f, f) , wj〉 = 0. Hence,
P+

0 f(0) = 0 if and only if P+
0 f(x) ≡ 0.

We denote by Iγ the linear solution operator

Iγ(h0) = f(0),

where f(x) is given by 
B
df

dx
+ Lf + γP+

0 f = 0

Cf(0) = h0

f → 0, as x→∞

.

Similarly, we denote by Iγ the nonlinear solution operator

Iγ(h0) = f(0),

where f(x) is given by 
B
df

dx
+ Lf = S(f, f)− γP+

0 f

Cf(0) = h0

f → 0, as x→∞

.

We assume that 〈S (f, f) , wj〉 = 0 for j = 1, ..., l. By Theorem 5.4, the solution
of Theorem 5.3 is a solution of the problem (20), (21) and (24) if and only if
P+

0 Iγ(h0) ≡ 0.
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Let

ri =
r′i√

〈r′i, r′i〉B+

,

with r′i = Cyi −
m+∑
r=1

〈Cyi, Cur〉B+

〈Cur, Cur〉B+

Cur −
i−1∑
j=1

〈Cyi, rj〉B+
rj 6= 0, i = 1, ..., k+,

and

ri+k+ =
r′i+k+√〈

r′i+k+ , r′i+k+

〉
B+

,

with r′i+k+ = Czi −
m+∑
r=1

〈Czi, Cur〉B+

〈Cur, Cur〉B+

Cur −
i+k+−1∑
j=1

〈Czi, rj〉B+
rj 6= 0, i = 1, ..., l.

Then

P+
0 Iγ ≡ 0⇔ h0 ∈ R⊥B+ ,

with R⊥B+ =
{
u ∈ Rn

+
∣∣∣ 〈u, ri〉B+

= 0 for i = 1, ..., k+ + l
}

and

Iγ(h0) ≡ Ĩγ(a1, ..., ak++l, h1),

with h0 =
k++l∑
i=1

airi + h1, h1 ∈ R⊥B+ and ai = 〈h0, ri〉B+
.

Lemma 5.5. Suppose that P+
0 Iγ(h0) ≡ 0. Then h0 is a function of h1 if 〈h0, h0〉B+

is sufficiently small.

Proof. It is obvious that Iγ(0) = 0 and that we for the Fréchet derivative of Iγ(εh0)
have

d

dε
Iγ(εh0)

∣∣∣∣
ε=0

= Iγ(h0).

Then if h0 = ri

∂

∂ai

〈
Ĩγ(a1, ..., ak++l, h1), u

〉
B

∣∣∣∣
ai=0

=
d

dε
〈Iγ(εh0), u〉B

∣∣∣∣
ε=0

= 〈Iγ(h0), u〉B 6= 0,

where u = yi if i = 1, ..., k+ and u = wi−k+ if i = k+ + 1, ..., k+ + l. By the implicit
function theorem,

〈
Ĩγ(a1, ..., ak++l, h1), y1

〉
B

= 0 defines a1 = a1(a2, ..., ak++l, h1).
Induction gives that

a1 = a1(h1), ..., ak++l = ak++l(h1).

6. Direct approach without damping term. In this section we deal directly
with the general system (20) with the boundary conditions (21) and (24).

Let g = g(x) : R+ → Rn be a given function, such that g(x) ∈ N(L)⊥ for all
x ∈ R+. The linearized inhomogeneous system

B
df

dx
+ Lf = g, (47)
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with the boundary conditions (21) have (under the assumption that all necessary
integrals exist) the general solution

f(x) =
l∑

j=1

ηj (x) zj +
q∑
r=1

βr (x)ur, (48)

where

ηj (x) = −
∞∫
x

η̃j (τ) dτ , η̃j (x) = 〈g (x) , wj〉 , j = 1, ..., l, (49)

and β1 (x) , ..., βq (x) are given by Eq. (40). From the boundary conditions (24), we
obtain the system

C
m+∑
r=1

βr (0)ur = h0 + C
∞∫
0

q∑
r=m++1

eτλr β̃r (τ)ur +
l∑

j=1

η̃j (τ) zj dτ, (50)

with C = R+ − CR−.

The system (50) has (under the assumption that all necessary integrals exist) a
solution if we assume that

h0, CexB
−1LB−1g(x) ∈ CU+ for all x ∈ R+,

with U+ = span(u : Lu = λBu, λ > 0) = span (u1, ..., um+) (51)

and a unique solution if and only if, additionally, condition (25) is fulfilled.

Theorem 6.1. Assume that the conditions (25), (38) and (51) are fulfilled and that
all necessary integrals exist. Then the system (47) with the boundary conditions (21)
and (24) has a unique solution given by Eqs. (48)-(50).

Following the lines of the proof of Theorem 5.3 we now obtain Theorem 3.2.

7. Extension to singular operators B. To study the case when the operator B
is singular (i.e. the case when ξ1i = 0 for some i) we assume (cf. Refs. [29] and [7])
that

N(L) ∩N(B) = {0} , (52)

and introduce the orthogonal projections

P0 : Rn → N(B) and P1 : Rn → Im(B).

The assumption (52) ensures that the operator P0LP0 is non-singular on N(B).
The system (47) is equivalent with the system (see Ref. [7]) P0f = − (P0LP0)−1

P0LP1f + (P0LP0)−1
P0g(x)

B̃
dP1f

dx
+ L̃P1f = g̃(x)

,

where

L̃ = P1L(I − P0 (P0LP0)−1
P0L)P1, B̃ = P1BP1 and

g̃(x) = P1(I − LP0 (P0LP0)−1
P0)g(x).

The restrictions, L̃Im and B̃Im, of L̃ and B̃ to Im(B), are linear operators (ñ × ñ
matrices, with ñ = n− dim(N(B))) on Im(B).
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Lemma 7.1. Let g(x) ∈ N(L)⊥ and assume that

N(L) ∩N(B) = {0} .

Then the linear operators L̃Im and B̃Im on Im(B) have the following properties: L̃Im

and B̃Im are real symmetric operators, L̃Im is semi-positive, B̃Im is non-singular,
dim(N(L̃Im)) = p, and the numbers k+, k− and l are the same for the system

B̃Im
dP1f

dx
+ L̃ImP1f = g̃(x), (53)

as for the original system (47). Furthermore, g̃(x) ∈ N(L̃)⊥.

Proof. (cf. Ref. [7]) It is clear that the operators L̃ and B̃ are real and symmetric
and that B̃ is non-singular on Im(B). Hence, this is true also for the restrictions to
Im(B). The linear operator L̃Im is semi-positive, since

0 =
〈

(P0L− P0LP0 (P0LP0)−1
P0L)P1h, (P0LP0)−1

P0LP1h
〉

=
〈
L(I − P0 (P0LP0)−1

P0L)P1h, P0 (P0LP0)−1
P0LP1h

〉
if h ∈ Im(B), and hence,〈

L̃Imh, h
〉

=
〈
L̃h, h

〉
=
〈
L(I − P0 (P0LP0)−1

P0L)P1h, P1h
〉

=
〈
L(I − P0 (P0LP0)−1

P0L)P1h, (I − P0 (P0LP0)−1
P0L)P1h

〉
≥ 0

for all h ∈ Im(B). By assumption (52), dim(N(L̃)) = dim(N(L)) = p and N(L̃) ⊆
P1N(L), since

L̃P1h = P1L(I − P0 (P0LP0)−1
P0L)P1h

= P1L(P1 + P0 (P0LP0)−1
P0LP0)h = P1L(P1 + P0)h = 0

if Lh = L(P0 + P1)h = 0, for h ∈ Rn. Hence,

N(L̃Im) = N(L̃) = P1N(L).

Furthermore, the numbers k+, k− and l are the same for the system (53) as for the
original system, since〈

B̃ImP1h, P1h
〉

= 〈BP1h, P1h〉 = 〈Bh, h〉

for all h ∈ Rn. If h ∈ N(L) then〈
P1LP0 (P0LP0)−1

P0g(x), P1h
〉

=
〈
LP0 (P0LP0)−1

P0g(x), P1h
〉

=−
〈
LP0 (P0LP0)−1

P0g(x), P0h
〉

= −〈P0g(x), h〉

and so
〈g̃(x), P1h〉 = 〈P1g(x), h〉+ 〈P0g(x), h〉 = 〈g(x), h〉 = 0.

Hence,
g̃(x) ∈ (P1N(L))⊥ = N(L̃)⊥,

and the lemma is proved.
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Denote
Θ̃(f) = Θ(P1f),

where Θ is the operator (43) when L and S(f, f) are replaced with L̃ and S̃(f, f) =
P1(I − LP0 (P0LP0)−1

P0)S(f, f) in Eq. (36). We introduce

Θ̂(f) =
(
I − (P0LP0)−1

P0L
)

Θ̃(f) + (P0LP0)−1
P0S(f, f)

and denote
λmin = min |λi| and λmax = max |λi| ,

where λ1, ..., λn−p are the non-zero eigenvalues of L. Then∣∣∣Θ̂(0)
∣∣∣
σ

=
∣∣∣(I − (P0LP0)−1

P0L
)

Θ̃(0)
∣∣∣
σ
≤ K̂0 |h0| , with K̂0 = (1 + λ−1

minλmax)K̃,

and ∣∣∣Θ̂(f)− Θ̂(g)
∣∣∣
σ

=
∣∣∣(I − (P0LP0)−1

P0L
)(

Θ̃(f)− Θ̃(g)
)

+ (P0LP0)−1
P0 (S(f, f)− S(g, g))

∣∣∣
σ

≤(1 + λ−1
minλmax)K̃(|f |σ + |h|σ) |f − h|σ + λ−1

minK2(|f |σ + |h|σ) |f − h|σ
=K̂1(|f |σ + |h|σ) |f − h|σ , with K̂1 = K̃ + λ−1

min(K̃λmax +K2).

We can now extend our main results in Section 3 to yield also for singular operators
B.

8. Axially symmetric DVMs. In this section we consider only such symmetric
sets of velocities V, such that

if ξi = (ξ1i , ..., ξ
d
i ) ∈ V, then (±ξ1i , ...,±ξdi ) ∈ V (54)

for any combinations of signs (see also Ref. [7]). We can, without loss of generality,
assume that

(ξ1i+N , ξ
2
i+N , ..., ξ

d
i+N ) = (−ξ1i , ξ2i , ..., ξdi ) and ξ1i > 0,

for i = 1, ..., N , with n = 2N .

Example 3. The plane 12-velocity model in Ref. [11], with velocities

(±1,±1) , (±1,±3) and (±3,±1) ,

and the infinitely many (obvious, from the constructions in Ref. [11] - ”with three
corners of a square in the model, add the fourth”) symmetric normal extensions
of this model are examples of (normal) such DVMs. These extensions include the
plane square models, with (all combinations of) coordinates from the set of all
odd integers with absolute values less or equal than a maximal odd integer (these
models are called Nicodin p-th squares in Ref. [20], but are also, at least implicitly,
constructed in Ref. [11]).

Example 4. In three dimensions the 32-velocity model, with velocities

(±1,±1,±1) , (±1,±1,±3) , (±1,±3,±1) and (±3,±1,±1) ,

and the infinitely many (obvious) symmetric normal extensions of this model are
examples of such (normal) DVMs. These extensions include the cubic models, with
(all combinations of) coordinates from the set of all odd integers with absolute
values less or equal than a maximal odd integer. The 32-velocity model can be ob-
tained by normal extensions, with the starting point in the 9-velocity asymmetric
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normal model with velocities (±1,±1,±1) and (3,−1, 1). The 24-velocity mod-
els, with velocities (±1,±1,±1), (±1,±3,±1) and (±3,±1,±1), and (±1,±1,±1),
(±1,±1,±3) and (±3,±1,±1), respectively, are DVMs with fewer velocities (earlier
in the ”evolution”), that can be constructed from the same asymmetric model.

8.1. Explicit calculation of the characteristic numbers. We now assume that
(i) we have a symmetric set (54) of velocities; (ii) our DVM is normal; (iii) we have
made the expansion (13) around a non-drifting Maxwellian M , i.e. with b = 0 in
Eq. (12); and (iv)

B = diag(ξ11 , ..., ξ
1
N ,−ξ11 , ...,−ξ1N ), with ξ11 , ..., ξ

1
N > 0.

In this section we study, instead of Eq. (20), the equation

(B + uI)
df

dx
+ Lf = S(f, f), (55)

(cf. Eq. (3)). Note, however, that Eqs. (20) and (55) are never equivalent for
non-zero u, as Eqs. (2) and (3) are in the continuous case, for DVMs with a finite
number of velocities.

The linearized collision operator L has the null-space

N(L) = span (φ1, ..., φd+2) ,

where 
φ1 = M1/2 · (1, ..., 1)
φ2 = M1/2 · (ξ11 , ..., ξ1N ,−ξ11 , ...,−ξ1N )
φ3 = M1/2 · (|ξ1|2 , ..., |ξN |2 , |ξ1|2 , ..., |ξN |2)
φi+2 = M1/2 · (ξi1, ..., ξiN ,−ξi1, ...,−ξiN ), i = 2, ..., d,

. (56)

Then the degenerate values of u, i.e. the values of u for which l ≥ 1, are

u0 = 0 and u± = ±

√
χ1χ2

4 + χ2
2χ5 − 2χ2χ3χ4

χ2(χ1χ5 − χ2
3)

, (57)

where K = (〈φi, φj〉B+uI), χ1 = 〈φ1, φ1〉, χ2 = 〈φ2, φ2〉, χ3 = 〈φ1, φ3〉, χ4 =
〈φ2, φ3〉B , χ5 = 〈φ3, φ3〉, see Ref. [7]. Moreover, we have the following table for the
values of k+, k− and l (see Ref. [7]):

u < u− u = u− u− < u < 0 u = 0 0 < u < u+ u = u+ u+ < u
k+ 0 0 1 1 d+ 1 d+ 1 d+ 2
k− d+ 2 d+ 1 d+ 1 1 1 0 0
l 0 1 0 d 0 1 0

Example 5. The degenerate values of u for the 12-velocity model in Example 3
are

u = 0 and u = ±
√

1 + 50s2

1 + 10s2
,

and for the 32-velocity model in Example 4 the degenerate values of u are

u = 0 and u = ±
√

3 + 121s2

3 + 33s2
,

where, in both cases, s = e4c and c is a negative constant given by the Maxwellian
M , cf. Eq. (12).
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Remark 8. For the continuous Boltzmann equation (with d = 3) the numbers
χ1, ..., χ5 are given by

χ1 = ρ, χ2 = ρT , χ3 = 3ρT , χ4 = 5ρT 2 and χ5 = 15ρT 2,

(where ρ and T denote the density and the temperature respectively), if we have
made the expansion (13) around a non-drifting Maxwellian

M =
ρ

(2πT )3/2
e−|ξ|

2/2T .

Therefore, for the Boltzmann equation (with d = 3) the degenerate values (57) are
(cf. Ref. [21])

u0 = 0 and u± = ±
√

5T
3

.

Below we return to study Eq. (20).

8.2. Plane 12-velocity model. For d = 2 the equations (5) admit a class of
solutions satisfying

Fi = Fi′ if ξ1i = ξ1i′ and |ξi|2 = |ξi′ |2 . (58)

This reduces the number n of equations (5) to the number 2N < n of different
combinations (ξ1i , |ξi|

2) in the velocity set. However, the structure of the collision
terms (7) (in slightly different notations) remains unchanged. We can, without loss
of generality, assume that

(ξ1i+N , |ξi+N |
2) = (−ξ1i , |ξi|

2) and ξ1i > 0

for i = 1, ..., N . Then, the Maxwellians are of the form

Mi = Aebξ
1
i +c|ξi|2 = Mi+Ne

2bξ1i , i = 1, ..., N,

for some constant A, b, c ∈ R, with A > 0.
For the 12-velocity model in Example 3 (see Ref. [7]), the system (5) reduces by

reduction (58) to a system of the form

dF1

dx
= σ1q1 + σ2q2 + σ3q3

dF2

dx
= σ1q1 − σ2q2 + σ4q4

3
dF3

dx
= − (σ1q1 + σ4q4)

−dF4

dx
= − (σ1q1 + σ2q2 + σ3q3)

−dF5

dx
= σ2q2 − σ3q3 + σ4q4

−3
dF6

dx
= σ3q3 − σ4q4

,

where

q1 = F3F4 − F1F2, q2 = F2F4 − F1F5, q3 = F4F5 − F1F6, q4 = F3F6 − F2F5

and σ1, σ2, σ3, σ4 ≥ 0.
We assume below that we have linearized around a non-drifting Maxwellian

M = K(1, s2, s2, 1, s2, s2),
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where s = e4c and K = Ae2c, c and A are constant, with A > 0. The null-space of
L is given by

N(L) = span (φ1, φ2, φ3) ,

where 
φ1 = K1/2 (1, s, s, 1, s, s)
φ2 = K1/2 (1, s, 3s,−1,−s,−3s)
φ3 = 2K1/2 (1, 5s, 5s, 1, 5s, 5s)

and

B = diag(1, 1, 3,−1,−1,−3).

A typical choice of σ1, σ2, σ3, σ4 (cf. Refs. [15] and [23]) is


σ1 = σ3 = 2S
σ2 = S(

√
2 +
√

5)
σ4 = S

√
10,

.

Therefore, we assume below that σ1 = σ3, σ2, σ4 > 0. Then

L =


(2σ1 + σ2) s2 (σ1 − σ2) s −σ1s
(σ1 − σ2) s σ1 + σ2 + σ4s

2 −
(
σ1 + σ4s

2
)

−σ1s −
(
σ1 + σ4s

2
)

σ1 + σ4s
2

− (2σ1 + σ2) s2 (σ2 − σ1) s σ1s
(σ2 − σ1)s −σ2 + σ4s

2 −σ4s
2

σ1s −σ4s
2 σ4s

2

− (2σ1 + σ2) s2 (σ2 − σ1)s σ1s
(σ2 − σ1) s −σ2 + σ4s

2 −σ4s
2

σ1s −σ4s
2 σ4s

2

(2σ1 + σ2) s2 (σ1 − σ2) s −σ1s
(σ1 − σ2) s σ1 + σ2 + σ4s

2 −(σ1 + σ4s
2)

−σ1s −(σ1 + σ4s
2) σ1 + σ4s

2


and

S(f, f) =


sσ1(q1 + q3) + sσ2q2
σ1q1 − σ2q2 + sσ4q4
−σ1q1 − sσ4q4

−sσ1(q1 + q3)− sσ2q2
σ2q2 − σ1q3 + sσ4q4

σ1q3 − sσ4q4

 ,

and if we denote

y1 = (5φ1 + φ2 −
φ3

2
)K−1/2 = (5, s, 3s, 3,−s,−3s)

y2 = (5φ1 − φ2 −
φ3

2
)K−1/2 = (3,−s,−3s, 5, s, 3s)

z = (
χ3φ1 − χ2φ3

8s
)K−1/2 = (10s,−1,−1, 10s,−1,−1)

w =
(

0,− 2
σ2
,− 3

σ1
− 2
σ2
, 0,

2
σ2
,

3
σ1

+
2
σ2

)
,
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then

y1, y2, z ∈ N(L), Lw = Bz,

〈y1, y2〉B = 〈z, z〉B = 〈w,w〉B = 〈z, yi〉B = 〈w, yi〉B = 0 for i = 1, 2,

〈y1, y1〉B = −〈y2, y2〉B = 16 and 〈z, w〉B =
18
σ1

+
16
σ2
.

Furthermore, if{
u1 =

√
2ũ1 + [2

√
2σ1 −

√
(8σ1 + 9σ2) (σ1 + 2σ4s2)]ũ2

u2 =
√

2ũ1 + [2
√

2σ1 +
√

(8σ1 + 9σ2) (σ1 + 2σ4s2)]ũ2
, with

ũ1 = (3s(3σ2 − 4σ1),−3(4σ1 + 3σ2), 4σ1, 3s(3σ2 − 4σ1),−9σ2, 0) and

ũ2 = (0, 3,−1, 0,−3, 1) ,

then

Lui = λiBui for i = 1, 2, with λ1 = −λ2 =

√
2 (8σ1 + 9σ2) (σ1 + 2σ4s2)

3
,

〈u1, u2〉B = 〈ui, z〉B = 〈ui, w〉B = 〈ui, yj〉B = 0 for i, j = 1, 2, and

〈u1, u1〉B = −〈u2, u2〉B = 12 (8σ1 + 9σ2)
√

2 (8σ1 + 9σ2) (σ1 + 2σ4s2).

We have that

(R+ −R−)u1 = −2
√

(8σ1 + 9σ2) (σ1 + 2σ4s2)R+ũ2 = − (R+ −R−)u2 and

(R+ −R−) z = 0

and so Theorem 3.2 is applicable for C = diag(1, 1, 1) (C = the identity operator)
and h0 ∈ span((0, 3,−1)) sufficiently small (cf. Refs. [2] and [26]).

8.3. More general axially symmetric DVMs. Now, additionally to assump-
tions (i)-(iv) above, we assume that (v) the coefficients Γklij in Eq. (7) satisfy the
additional symmetric conditions

Γklij = Γπ(k)π(l)
π(i)π(j) ,

where π(i) =
{
i+N , if 1 ≤ i ≤ N ,
i−N , if N + 1 ≤ i ≤ 2N , .

Then L =
(
L1 L2

L2 L1

)
, where L1 and L2 are two N ×N matrices (cf. Refs. [2],

[3], [4] and [7]). We choose  ϕ1 = φ2 + φ3

ϕ2 = φ2 − φ3

ϕ3 = χ4φ1 − χ2φ3

.

where χ2 = 〈φ2, φ2〉, χ4 = 〈φ2, φ3〉B and φ1, φ2, φ3 are given in Eq. (56). Then

K = 2χ2

 1 0 0
0 −1 0
0 0 0

 ,

where K = (〈ϕi, ϕj〉B). Hence, k+ = k− = 1 and l = d, since φ4, ..., φd+2 are
all orthogonal, with respect to the scalar product 〈·, ·〉B , to φ1, φ2 and φ3. Since
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B−1L

(
u+

u−

)
= λ

(
u+

u−

)
, with u+, u− ∈ RN , implies that B−1L

(
u−

u+

)
=

−λ
(
u−

u+

)
, we obtain (cf. Refs. [2], [3], [4] and [7]) that the non-negative eigenva-

lues of B−1L are ±λ1, ...,±λN−l−1, where λi > 0, with corresponding eigenvectors
u±1 , ..., u

±
N−l−1, where R+u

−
i = R−u

+
i and R−u

−
i = R+u

+
i .

Therefore, the Jordan normal form of B−1L for d = 3 is (the number of blocks
0 1
0 0 is equal to the dimension d, that is, in this case 3)

λ1

. . .
λm+

−λ1

. . .
−λm+

0
0

0 1
0 0

0 1
0 0

0 1
0 0



.

If C = diag(1, ..., 1), i.e. if C is the identity operator, and
h0 ∈ (R+−R−)span

(
u+

1 , ..., u
+
N−l−1

)
, then the conditions (25) and (28) are fulfilled

(see Remark 5).
Under the assumptions (i)-(v) given above, the following theorem (see Ref. [26]

for the case of the continuous Boltzmann Equation) follows by Theorem 3.2.

Theorem 8.1. Let h0 ∈ (R+ − R−)U+, where U+ = span
(
u+

1 , ..., u
+
N−l−1

)
. Then

there is a positive number δ0, such that if

|h0| ≤ δ0,

then the system (20) with the boundary conditions

f(x)→ 0, as x→∞, and (R+ −R−)f (0) = h0,

has a locally unique solution f = f(x).

Remark 9. The same problem, for d = 2, is also studied by Babovsky in Ref. [2],
but then under the quite restrictive condition 〈S(f, f), wi〉 = 0 for i = 1, 2 (in our
notations).
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