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Stationary linearized Boltzmann equation in a convex
domain in R3

We consider

xeqQ, (1)

¢ - VI(x,¢) = L(f),
¢ e RS,

where Q is a C? strictly convex bounded domain in R3.
Here, we consider hard sphere, cutoff hard potential, or
cutoff Maxwellian molecular gases, i.e., 0 <~ < 1.



Diffuse Reflection Boundary Condition

Diffuse Reflection Boundary Condition:

» Velocity distribution function leaving the boundary is in
thermal equilibrium with the boundary temperature.

» There is no net flux on boundary.



Existence of solutions:
» Convex domain: Guiraud (1970 J. de Mc.)

» General domain: Esposito, Guo, Kim, and Marra (2013
CMP)

Regularity:

» Continuous alway from the grazing set: Esposito, Guo,
Kim, and Marra (2013 CMP)



Regularity for the time evolutional problem (weakly nonlinear):

0

af(X7C7t)+<VXf(X7C7t):L(f)+r(f7f)7 (2)

» Kim (2011 CMP): Discontinuity from boundary in a
nonconvex domain.

» Guo, Kim, Tonon, and Trescases (2016 ARMA): BV
estimate in a nonconvex domain.

» Guo, Kim, Tonon, and Trescases (2016 Inv. Math.) :
Regularity in a convex domain.

All these results are NOT uniform in time.
In (2016 Inv. Math.), they establish weighted C' estimate,

which grows severely with time. This motivates us to look at the
regularity to the stationary solution directly.



Cut-off hard potential and cut-off Maxwellian gas

We consider
Cross-section:

B(K—C*‘,H): |C_C*|76(0)7 (3)

where 0 <y <1and0 < 5(f) < Ccosfsind.

Here, the cross section is for the binary collision operator

T [z =
J(F,F) = /RS/O /0 (F'F, — FF)B(|¢« — (|, 0)dbdeds,. (4)



Properties of the collision operator

L(f) = —u(IC)F + K(F).

f)(x,¢) = /kcc* X,.)dC.,
Slel) = ), _
(<) = o [ &= cly
vo(1+ 1) < w(IC]) < (1 + [¢).



Estimates for Kernel
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Definition of solution
We define

p(x,¢) : backward trajectory N 09,
7_(x,¢) : traveling time.

We write
¢+ VIE(x, ¢) + v(IC)f(x, ¢) = K(f). (5)

Integral equation:

T—(X,6)
F(x,0) = f(p(x, ), O)e (9 ¢ /O e VK (f)(x — (5,()ds.
(6)

We say f(x, () is a solution to the stationary linearized
Boltzmann equation if the integral equation is satisfied a. e.



Holder Continutiy

» (C. 2016) Local Hélder continuity for incoming boundary
condition.

Key idea: Velocity averaging for stationary equation.



Main Theorem

Theorem (C., Hsia, Kawagoe, 2017)

Let 2 be a C? strictly convex domain in R and f € L, be a
Stationary solution to the diffuse reflection boundary problem
within , (1). Suppose the derivative of the boundary
temperature is bounded. Then, fore > 0,

3. 4 3. g )
D506 QI+ DI Ol < C(1+d )t (7)
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where dy is the distance between x and 0f).



Sketch of proof

Diffuse reflection boundary condition for linearized Boltzmann
equation:

Let T(x) be the temperature on the boundary.

For x € 9Q and ¢ - n(x) < O,

1

f(x,Q) = o (M3 + T()(C12 — M2, ®

where , ,
M=M()=nr"2e 1",
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Let
D(x) =27 F(x, €)|¢ - n|Mz d. (10)

¢-n>0

Substitute f above by the integral equation (6) and boundary
condition (8) and (9).

P(x) =2y T(p(x, 0))(¢[2 — 2)M(¢)e™ D™= (xQ|¢ . njd¢

¢-n>0
+2y7 A Ow(p(x ,Q))M(¢)e N0 ¢ - njd¢
n>
- / eV ISDSK(F)(x — s¢, )ME(C)|C - n|dsd¢
¢-n>0
=:Br + By, + Ds.

(11)



Sketch of proof:
> ¢ is bounded provided f € L3
» First derivatives of B, By, are bounded provided T, « are
bounded.
» Dy is HOlder continuous provided f € L;?C.

Now, we can conclude f is locally Holder continuous by using
analysis in (C. 2016). However, we shall further improve the
regularity to differentiability.



» Dy is bounded differentiable provided f is locally Hélder up
to boundary.

» We have the desired estimate for first derivatives of f
provided derivatives of ¢, T are bounded and f is locally
Holder.



Recall

7 (x,0)
D) =2V [ [ e DK s MO nidsal
(12)



Proposition (C. Hsia 2015)
Let1 < p < 0.

V¢ KX Oz = ClIFxX Ol - (13)
Notice that [| 7¢ k(C, ¢)ll ory and || V¢ k(G Gl oy are

bounded. By an argument similar to the proof of Young’s
inequality, we have the proposition.



Transfer regularity from velocity to space

Idea: Combination of averaging or collision and transport can
transfer regularity in velocity to space. For time evaluational
problem in whole space,
» Velocity averaging lemma ( Golse, Perthame, Sentis 1985)
» Mixture lemma (Liu, Yu ARMA 2004)

In present research, we realize this effect for stationary problem
in a convex domain by interplaying between velocity and space.



Let —n(x), ez, e3 be an orthonormal basis. Let

¢’ = —pcosdn(x) + psinf cos pes + psinb sin pes,

=
Then,
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¢-n(x)<0

e “K(F)(x — 18, 0)E - n(x) =Y 2 sin bardgdod).
(16)
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Lety = x —r
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Suppose g(t) is on 922 passing x and
9(0) = x,
g/(O) =V,
where v € T,00. We define

d

t

=0
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Thank you!



