Regularity for Diffuse Reflection Boundary Problem to the Stationary Linearized Boltzmann Equation in a Convex Domain

I-Kun Chen

Kyoto University on leave to National Taiwan University

> Karlstad University June 22, 2017

Stationary linearized Boltzmann equation in a convex domain in \mathbb{R}^3

We consider

$$\begin{cases}
\zeta \cdot \nabla f(x,\zeta) = L(f), \\
x \in \Omega, \\
\zeta \in \mathbb{R}^3,
\end{cases} \tag{1}$$

where Ω is a C^2 strictly convex bounded domain in \mathbb{R}^3 . Here, we consider hard sphere, cutoff hard potential, or cutoff Maxwellian molecular gases, i.e., $0 \le \gamma \le 1$.

Diffuse Reflection Boundary Condition

Diffuse Reflection Boundary Condition:

- Velocity distribution function leaving the boundary is in thermal equilibrium with the boundary temperature.
- There is no net flux on boundary.

Existence of solutions:

- Convex domain: Guiraud (1970 J. de Mc.)
- General domain: Esposito, Guo, Kim, and Marra (2013 CMP)

Regularity:

 Continuous alway from the grazing set: Esposito, Guo, Kim, and Marra (2013 CMP) Regularity for the time evolutional problem (weakly nonlinear):

$$\frac{\partial}{\partial t}f(x,\zeta,t) + \zeta \cdot \nabla_X f(x,\zeta,t) = L(f) + \Gamma(f,f), \tag{2}$$

- Kim (2011 CMP): Discontinuity from boundary in a nonconvex domain.
- Guo, Kim, Tonon, and Trescases (2016 ARMA): BV estimate in a nonconvex domain.
- Guo, Kim, Tonon, and Trescases (2016 Inv. Math.) : Regularity in a convex domain.

All these results are NOT uniform in time.

In (2016 Inv. Math.), they establish weighted C^1 estimate, which grows severely with time. This motivates us to look at the regularity to the stationary solution directly.

Cut-off hard potential and cut-off Maxwellian gas

We consider Cross-section:

$$B(|\zeta - \zeta_*|, \theta) = |\zeta - \zeta_*|^{\gamma} \beta(\theta), \tag{3}$$

where $0 \le \gamma \le 1$ and $0 \le \beta(\theta) \le C \cos \theta \sin \theta$.

Here, the cross section is for the binary collision operator

$$J(F,F) = \int_{\mathbb{R}^3} \int_0^{2\pi} \int_0^{\frac{\pi}{2}} (F'F'_* - FF_*) B(|\zeta_* - \zeta|, \theta) d\theta d\epsilon d\xi_*.$$
 (4)

Properties of the collision operator

$$\begin{split} L(f) &= -\nu(|\zeta|)f + K(f), \\ K(f)(x,\zeta) &= \int_{\mathbb{R}^3} k(\zeta,\zeta_*)f(x,\zeta_*)d\zeta_*, \\ \nu(|\zeta|) &= \beta_0 \int_{\mathbb{R}^3} e^{-|\eta|^2} |\eta - \zeta|^{\gamma} d\eta \\ \nu_0(1+|\zeta|)^{\gamma} &\leq \nu(|\zeta|) \leq \nu_1(1+|\zeta|)^{\gamma}. \end{split}$$

Estimates for Kernel

Let
$$0 < \delta < 1$$
.

$$|k(\zeta,\zeta_*)| \leq$$

$$C_1|\zeta-\zeta_*|^{-1}(1+|\zeta|+|\zeta_*|)^{-(1-\gamma)}e^{-\frac{1}{4}(1-\delta)\left(|\zeta-\zeta_*|^2+(\frac{|\zeta|^2-|\zeta_*|^2}{|\zeta-\zeta_*|})^2\right)},$$

$$| \bigtriangledown_{\zeta} k(\zeta, \zeta_*) | \leq$$

$$C_2 \frac{1 + |\zeta|}{|\zeta - \zeta_*|^2} (1 + |\zeta| + |\zeta_*|)^{-(1-\gamma)} e^{-\frac{1}{4}(1-\delta)\left(|\zeta - \zeta_*|^2 + (\frac{|\zeta|^2 - |\zeta_*|^2}{|\zeta - \zeta_*|})^2\right)}.$$

Definition of solution

We define

$$p(x,\zeta)$$
: backward trajectory $\cap \partial \Omega$, $\tau_{-}(x,\zeta)$: traveling time.

We write

$$\zeta \cdot \nabla f(x,\zeta) + \nu(|\zeta|)f(x,\zeta) = K(f). \tag{5}$$

Integral equation:

$$f(x,\zeta) = f(p(x,\zeta),\zeta)e^{-\nu\tau_{-}(x,\zeta)} + \int_{0}^{\tau_{-}(x,\zeta)} e^{-\nu s}K(f)(x-\zeta s,\zeta)ds.$$
(6)

We say $f(x,\zeta)$ is a solution to the stationary linearized Boltzmann equation if the integral equation is satisfied a. e.

Holder Continutiy

► (C. 2016) Local Hölder continuity for incoming boundary condition.

Key idea: Velocity averaging for stationary equation.

Main Theorem

Theorem (C., Hsia, Kawagoe, 2017)

Let Ω be a C^2 strictly convex domain in \mathbb{R}^3 and $f \in L^{\infty}_{x,\zeta}$ be a stationary solution to the diffuse reflection boundary problem within Ω , (1). Suppose the derivative of the boundary temperature is bounded. Then, for $\epsilon > 0$,

$$\sum_{i=1}^{3} \left| \frac{\partial}{\partial x_i} f(x,\zeta) \right| + \sum_{i=1}^{3} \left| \frac{\partial}{\partial \zeta_i} f(x,\zeta) \right| \leq C(1 + d_x^{-1})^{\frac{4}{3} + \epsilon}, \quad (7)$$

where d_x is the distance between x and $\partial\Omega$.

Sketch of proof

Diffuse reflection boundary condition for linearized Boltzmann equation:

Let T(x) be the temperature on the boundary.

For $x \in \partial \Omega$ and $\zeta \cdot n(x) < 0$,

$$f(x,\zeta) = \sigma(x)M^{\frac{1}{2}} + T(x)(|\zeta|^2 - \frac{3}{2})M^{\frac{1}{2}},$$
 (8)

where

$$M = M(\zeta) = \pi^{-\frac{3}{2}} e^{-|\zeta|^2}.$$

$$\sigma(x) = -\frac{1}{2}T(x) + 2\sqrt{\pi} \int_{\zeta \cdot n > 0} f(x, \zeta) |\zeta \cdot n| M^{\frac{1}{2}} d\zeta.$$
 (9)

$$\psi(x) := 2\sqrt{\pi} \int_{\zeta \cdot n > 0} f(x, \zeta) |\zeta \cdot n| M^{\frac{1}{2}} d\zeta. \tag{10}$$

Substitute f above by the integral equation (6) and boundary condition (8) and (9).

$$\psi(x) = 2\sqrt{\pi} \int_{\zeta \cdot n > 0} T(p(x,\zeta))(|\zeta|^{2} - 2)M(\zeta)e^{-\nu(|\zeta|)\tau_{-}(x,\zeta)}|\zeta \cdot n|d\zeta$$

$$+ 2\sqrt{\pi} \int_{\zeta \cdot n > 0} \psi(p(x,\zeta))M(\zeta)e^{-\nu(|\zeta|)\tau_{-}(x,\zeta)}|\zeta \cdot n|d\zeta$$

$$+ 2\sqrt{\pi} \int_{\zeta \cdot n > 0} \int_{0}^{\tau_{-}(x,\zeta)} e^{-\nu(|\zeta|)s}K(f)(x - s\zeta,\zeta)M^{\frac{1}{2}}(\zeta)|\zeta \cdot n|dsd\zeta$$

$$=:B_{T} + B_{\psi} + D_{f}. \tag{11}$$

Sketch of proof:

- ψ is bounded provided $f \in L^{\infty}_{x,\zeta}$
- ▶ First derivatives of B_T , B_{ψ} are bounded provided T, ψ are bounded.
- ▶ D_f is Hölder continuous provided $f \in L^{\infty}_{x,\zeta}$.

Now, we can conclude f is locally Hölder continuous by using analysis in (C. 2016). However, we shall further improve the regularity to differentiability.

- D_f is bounded differentiable provided f is locally Hölder up to boundary.
- ▶ We have the desired estimate for first derivatives of f provided derivatives of ψ , T are bounded and f is locally Hölder.

Recall

$$D_f(x) = 2\sqrt{\pi} \int_{\zeta \cdot n > 0} \int_0^{\tau_-(x,\zeta)} e^{-\nu(|\zeta|)s} K(f)(x - s\zeta,\zeta) M^{\frac{1}{2}}(\zeta) |\zeta \cdot n| ds d\zeta.$$
(12)

Proposition (C. Hsia 2015)

Let $1 \le p \le \infty$.

$$\| \bigtriangledown_{\zeta} K(f)(x,\zeta) \|_{L_{\zeta}^{p}} \leq C \| f(x,\zeta) \|_{L_{\zeta}^{p}}. \tag{13}$$

Notice that $\| \bigtriangledown_{\zeta} k(\zeta, \zeta_{*}) \|_{L^{\infty}_{\zeta} L^{1}_{\zeta_{*}}}$ and $\| \bigtriangledown_{\zeta} k(\zeta, \zeta_{*}) \|_{L^{\infty}_{\zeta_{*}} L^{1}_{\zeta}}$ are bounded. By an argument similar to the proof of Young's inequality, we have the proposition.

Transfer regularity from velocity to space

Idea: Combination of averaging or collision and transport can transfer regularity in velocity to space. For time evaluational problem in whole space,

- Velocity averaging lemma (Golse, Perthame, Sentis 1985)
- Mixture lemma (Liu, Yu ARMA 2004)

In present research, we realize this effect for stationary problem in a convex domain by interplaying between velocity and space. Let -n(x), e_2 , e_3 be an orthonormal basis. Let

$$\zeta' = -\rho \cos \theta n(x) + \rho \sin \theta \cos \phi e_2 + \rho \sin \theta \sin \phi e_3,
r = \rho s,
\hat{\zeta}' = \frac{\zeta'}{|\zeta'|}.$$
(14)

Then,

$$D_{f} = 2\pi^{-\frac{1}{4}} \int_{0}^{\infty} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} \int_{0}^{|x-p(x,\zeta)|} e^{-\frac{\nu(\rho)}{\rho} r} K(f)(x - r\hat{\zeta}, \zeta) |\hat{\zeta} \cdot n(x)| e^{-\frac{|\zeta|^{2}}{2}} \rho^{2} \sin\theta dr d\phi d\theta d\rho.$$
(15)

$$D_{f} = 2\pi^{-\frac{1}{4}} \underbrace{\int_{0}^{\infty} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} \int_{0}^{|x-p(x,\zeta)|} }_{\zeta \cdot n(x) < 0}$$

$$e^{-\frac{\nu(\rho)}{\rho} r} K(f)(x - r\hat{\zeta}, \zeta) |\hat{\zeta} \cdot n(x)| e^{-\frac{|\zeta|^{2}}{2}} \rho^{2} \sin\theta dr d\phi d\theta d\rho.$$

$$\tag{16}$$

$$D_{f} = 2\pi^{-\frac{1}{4}} \int_{0}^{\infty} \underbrace{\int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} \int_{0}^{|x-p(x,\zeta)|}}_{\Omega}$$

$$e^{-\frac{\nu(\rho)}{\rho} r} K(f)(x - r\hat{\zeta}, \zeta) |\hat{\zeta} \cdot n(x)| e^{-\frac{|\zeta|^{2}}{2}} \rho^{2} \sin\theta dr d\phi d\theta d\rho. \tag{17}$$

Let $y = x - r\hat{\zeta}$

$$\begin{split} &D_{f} = 2\pi^{-\frac{1}{4}} \int_{0}^{\infty} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} \int_{0}^{|x-p(x,\zeta)|} \\ &e^{-\frac{\nu(\rho)}{\rho} r} K(f)(x - r\hat{\zeta}, \zeta) |\hat{\zeta} \cdot n(x)| e^{-\frac{\rho^{2}}{2}} \rho^{2} \sin\theta dr d\phi d\theta d\rho \\ &= 2\pi^{-\frac{1}{4}} \int_{0}^{\infty} \int_{\Omega} \\ &e^{-\frac{\nu(\rho)}{\rho} |x-y|} K(f)(y, \rho \frac{(x-y)}{|x-y|}) \frac{(x-y) \cdot n(x)}{|x-y|^{3}} e^{-\frac{\rho^{2}}{2}} \rho^{2} dy d\rho \\ &= 2\pi^{-\frac{1}{4}} \int_{0}^{\infty} \int_{\Omega} \int_{\mathbb{R}^{3}} \\ &e^{-\frac{\nu(\rho)}{\rho} |x-y|} k(\rho \frac{x-y}{|x-y|}, \zeta') f(y, \zeta') \frac{(x-y) \cdot n(x)}{|x-y|^{3}} e^{-\frac{\rho^{2}}{2}} \rho^{2} d\zeta' dy d\rho. \end{split}$$

$$(18)$$

Suppose g(t) is on $\partial\Omega$ passing x and

$$g(0) = x,$$

$$g'(0) = v,$$

where $v \in T_x \partial \Omega$. We define

$$\nabla_{v}^{x}F(x,\zeta) = \left.\frac{d}{dt}F(g(t),\zeta)\right|_{t=0}.$$
 (19)

$$\nabla_{v}^{x} D_{f}(x) = \int_{0}^{\infty} \int_{\Omega} \int_{\mathbb{R}^{3}} \nabla_{v}^{x} \left(e^{-\frac{\nu(\rho)}{\rho}|x-y|} k(\rho \frac{x-y}{|x-y|}, \zeta') \frac{(x-y) \cdot n(x)}{|x-y|^{3}} \right) \cdot \left[f(y,\zeta') - f(x,\zeta') \right] e^{-\frac{\rho^{2}}{2}} \rho^{2} d\zeta' dy d\rho
- \int_{0}^{\infty} \int_{\mathbb{R}^{3}} \int_{\Omega} div_{y} \left(e^{-\frac{\nu(\rho)}{\rho}|x-y|} k(\rho \frac{x-y}{|x-y|}, \zeta') \frac{(x-y) \cdot n(x)}{|x-y|^{3}} e^{-\frac{\rho^{2}}{2}} \rho^{2} f(x,\zeta') v \right) dy d\zeta' d\rho
+ \int_{0}^{\infty} \int_{\mathbb{R}^{3}} \int_{\Omega} e^{-\frac{\nu(\rho)}{\rho}|x-y|} k(\rho \frac{x-y}{|x-y|}, \zeta') \frac{(x-y) \cdot \nabla_{v}^{x}(n(x))}{|x-y|^{3}} e^{-\frac{\rho^{2}}{2}} \rho^{2} f(x,\zeta') dy d\zeta' d\rho
=: \nabla^{x} D_{f}^{1} + \nabla^{x} D_{f}^{2} + \nabla^{x} D_{f}^{3}.$$
(20)

$$\nabla^{x} D_{f}^{2,\epsilon} = -\int_{0}^{\infty} \int_{\mathbb{R}^{3}} \int_{\partial\Omega \setminus B(x,\epsilon)} e^{-\frac{\nu(\rho)}{\rho}|x-y|} k(\rho \frac{x-y}{|x-y|}, \zeta') \frac{(x-y) \cdot n(x)}{|x-y|^{3}}$$

$$e^{-\frac{\rho^{2}}{2}} \rho^{2} f(x, \zeta') [v \cdot n(y)] dA(y) d\zeta' d\rho$$

$$-\int_{0}^{\infty} \int_{\mathbb{R}^{3}} \int_{\partial B(x,\epsilon) \cap \Omega} e^{-\frac{\nu(\rho)}{\rho}|x-y|} k(\rho \frac{x-y}{|x-y|}, \zeta') \frac{(x-y)}{|x-y|} \cdot n(x)$$

$$e^{-\frac{\rho^{2}}{2}} \rho^{2} f(x, \zeta') [v \cdot \frac{x-y}{|x-y|}] \frac{1}{\epsilon^{2}} dA(y) d\zeta' d\rho$$

$$=: S^{\epsilon} + B^{\epsilon}.$$
(21)

ロト 4回 ト 4 重 ト 4 重 ト 9 9 0 0

Thank you!