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Brain building blocks

Mental activity due to network
of nerve cells

« ~ 10" nerve cells (neurons)
+ -~ 10™ connections (synapses)| .

« cortex (humans):
thickness ~ 2-4 mm

area ~ 2000 cm?

Smaller, but similar
cortex in other
mammals




Dendrites

Signal processing in neurons

DENDRITE: Incoming signal spreads
electrically to cell body (soma)

CELL BODY (SOMA): Fires an action
pofential if membrane voltage
passes a threshold

AXON: Action potential propagates
without damping to synapse (nerve
terminal)

SYNAPSE: Diffusion of signal
molecules (across synaptic cleft)

modifies membrane voltage on
receiving (postsynaptic) neuron

MATHEMATICAL DESCRIPTIONS
AVAILABLE FOR ALL PROCESSES

Cell Body

Terminal Branches
of Axon

Nerve Terminal




Modelling at different levels of detail
Level Problem Tool

Detailed Comipliter

I biophysical Neuron simulation
neuron (ex. NEURON)

Simplified Computer

I "spiking” Network s1mu:tE1So1[1

neurens (ex. )

Analytical

Firing rate
models

Network

(+ numerical)
mathematics




Rate equations and field theory

>

Neuronal activity in population of neurons modeled in terms of firing
rates P:
" Output = P(> _ Inputs)"

Field theory «» Separation of scales. Typical figure: 1mm® brain tissue
+ 10° neurons.
Neurons in cortex group into two main categories:

> Input from excitatory (inhibitory) neurons increase (decrease) the

probability for the receiving neurons to fire action potentials

Cortex contains approximately 80 % excitatory neurons, 20 % inhibitory
neurons

2,3

EXCITATORY

¢ y 4
‘gi ( “ ‘tu./ INHIBITORY
s \.\fS’ 5

et &




Two population model
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» Separate excitatory and inhibitory neurons into two distinct populations.
> One spatial dimension.
> No input sources.



Two population model
Two-population Volterra model [Coombes (2005), Wyller et al (2007a)]

Ue = aee*wee®Pe(Ue—ae)_aie*wie@)Pi(Ui—oi) (1)

uj aej * wei @ Pe(Ue — Be) — avjj * wji ® Pi(u; — 6;) @)

> wmp - NOrm., pos., boun-
ded and symmetric connectivity functions © X

1
wmn(X) = ——dm( )

> omn - Synaptic footprints O



Two population model
Two-population Volterra model [Coombes (2005), Wyller et al (2007a)]

Ue = aee*wee®Pe(Ue—0e)_OCIe*UJie@PI(Ui—oi) (1)
aej * Wej ® Pe(Ue — 0e) — v x wij ® Pi(ui — 0;) @)

uj

» Py - firing rate functions

Prn(Um) = %(1 + tanh(Bm(um — 6m)))

> B, - variation length of firing rate

functions
> 0<0m<1(m=e,i)-threshold values
for excitatory and inhibitory populations 0

> amnp - norm. temporal kernels modeling the time history of the network.
> [ClJmn X Pm(Um — em)](X, t) = fi)ooo Wmn(x — X’)Pm(Um(X/, t) — em)dx/

> [amn * Wmn & Pm(Um - em)]()(7 t) =
fioo Oémn(t — S)[wmn & Pm(Um — em)](X, S)dS.



Bumps solutions in the Heaviside limit
[Blomquist et al (2005)]:

Ue(Xx) = Wee(a — X) + Wee(a+ x) — Wie(b — x) — Wie(b + X)
Ui(X) = Wei(a— X) + Wei(a+ x) — Wi(b — x) — Wi(b+ x)

Wmn X) f(.Umn |Z|)d2

Ue(£a) = 0e, Ui(xb)=6; — pinning condition

Excitatory pulse Inhibitory pulse
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Time independent, spatial symmetric solutions in the
Heaviside limit
[Blomquist et al (2005)]:
» For all connectivity functions there is a subset of
threshold values (6., 6;) for which bumps exist.

» Two pair of bumps (Us(x), Ui(x)) for each set of
threshold values (6., 6;) - "broad pulse pair'and
"narrow pulse pair”

» Excitatory pulse may exist without accompanying
inhibitory pulse. Inhibitory pulse cannot exist alone.



Exponentially decaying kernels

> aee(t) = Oéle(t) = e_t
> agi(t) = aji(t) = %G_I/T, T = Tj/Te-

Te(77) - typical timescale for excitatory (inhibitory) neurons.

Otle = —Ue + wee ® Pe(Ue — Oe) — wei @ Pi(U; — 6;) (3)

Ol = —Uj~+ wijg ® Pe(Ue — 0e) — wii @ Pi(uj — 6;)  (4)



A) Stability of bumps - Amari approach
[Blomquist et al (2005)]

» P, = H: H - Heaviside function
ue(a(t), t) = be, ui(b(t), t) = 0;

Oxue(a(t), ) ~ Ug(8eq), Oxui(b(t), t) ~ Uj(beq)
2d autonomous dynamical system for (a, b).
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Equilibrium (aeq, beq) of dynamical system < Bumps
Stability of (&eq, beq) — Stability of bumps

v

Results:
» Narrow pulse pair: Unstable for all 7.

» Broad pulse pair: Stable for small and moderate values
of 7, converted to breathers as 7 exceeds a certain
threshold «+ Supercritical Hopf bifurcation.



B) Full stability analysis

> Pn=H, ue(x,t) = Ue(x)+ x(x, 1), ui(x, t) = Ui(x) + (x, 1) +
linearized evolution egs. for (x(x, t),¥(x, t)).

> x(x, 1) = eMxi(x), ¥(x, t) = M (x), A growth/decay rate.
> J(A)- X =0, X=/[x1(Geq) X1(—8eq), V1 (beq), ¥1(—beq)]”

> J(\) = PJ(A)P!
~ Jah) 0
= (57 4 )

Evans function E:

E()) = det(J(N)) = 0 < det(Ja())) = 0, det(Jna(A)) = 0

» det(Ja(A)) = 0 «+ Amari analysis, symmetric perturbations.
» det(Jna(A)) = 0 «» Non - Amari, A = 0 (translation
invariance of pulses), anti - symmetric perturbations.

Result: Amari analysis gives correct predictions with one notable
exception.



» Excitatory pulse
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Stable Broad
Pulse Pair
(7 < 7er)

Oscillating Broad
Pulse Pair
(1T 2 7er)

Collapsing Broad
Pulse Pair
(7> 7er)

» |nhibitory pulse




Turing type of instability - pattern formation

» Turing instability = Generation of coherent structures like bumps and
traveling waves.

> Existence of spatially homogeneous equilibrium ueq.

» Additional spatial noise + nonlocal effects in (1) - (2) can generate
patterns.

Pattern formation

I LSS VAVA

Background activity Noise Pattern




Linear analysis

[Wyller et al (2007b)]
» Existence of constant equilibrium ue(x, t) = uj(X, t) = Ueg-
» Linear stability analysis of equilibrium of local limit

vV V. v Y

Wmn — 0.

Linear stability analysis of equilibrium in the general case
Ue(X, 1) = Ueqg + ¢(X, 1), Ui(X, 1) = Ueqg + (X, 1).
Linearized nonlocal evolution equations for (¢, ).

(¢,1)- Fourier transforms of (¢, 1), k, wave number of
Fourier - comp. of (¢, v):

OX=Am)-X, X=1[5,0], n=~K
Stability problem < v(n) = (tr(A(n)), det(A(n)))

» k=0 < Local limit wmy — 6
> |k| = co=tr(A(n) < 0, det(A(n)) >0

Result: Finite bandwidth instability consisting of a
countable set of well separated gain bands for smooth
spectra of connectivity functions.



Example: Shallow slope firing rate functions - linear
stage

1 .

wmn(X) = 2—exp(—|x]/am,,), m,n=e,i
Omn

Trace - Determinant Growth rate
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Example: Shallow slope firing rate functions -
numerical simulations

Excitatory level Inhibitory level
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Example: Steep firing rate functions - linear stage

wmn(X) = exp(—|x|/omn), m,n=e,i

ZUmn

Trace - Determinant Growth rate

det(A)
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Example: Steep firing rate functions - numerical
simulations

Excitatory level Inhibitory level
a) t

Excitatory bump Inhibitory bump
b) e
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> Experimental findings: Primary visual cortex (V1) is not
homogeneous and isotropic. It has a periodic microstructure on the
millimeter length scale.

> Modelling framework:

wmn([X]) = WH(X) = wm(x, ), 0<e <1

wmn — 1 - periodic in second variable

8 € € € € €
—atué)—_ ) 4wl ® Po(Uf) — 8) — ) ® Pi(u — 6)
9 @ uf®

Tl = +w ) ® Pe(uf? —Qe)—w ®P(u 0i)

> Problem: Asymptotic limit e — 0.
Solution: Multiscale convergence technique (Nguetseng, 1989) + Two -
scale convergence of convolution integrals (Visintin, 2007)



0
aue = —Ue + wee ® ®Pe(Ue — be) — wie ® RPi(U; — 6;)

15)
Tl = Ui + wei @ @Pe(Ue — Oe) — wit @ @Pi(U;i — 6;)

[feeglx,y)= [ [f(x—x",y—y)g(x',y")dy dx’

Qv
Y - period cell

Problem: Existence and stability of bumps when

—— X
w"m(x7 Y) — Ymn (y)q)[amn(y)

]
O'mn(y) = Smn(‘I + amn 003(27”/))7 Son >0, 0<am<1

Pn=H — Heaviside function

amn —  degree of heterogeneity



» Existence of bumps: Pinning function technique as in the
translational invariant case.

» Stability methodology: Fredholm integral operator, block
diagonalization of this operator, Fourier - decomposition
technique produces sequences of Evans - functions.

» Results:

1. Same result as in the translational invariant case for the
weakly modulated case (0 < am, < 1).

2. Beyond the weakly modulated case: Rich plethora of
phenomena, numerical detection of three bumps pairs
where at least one bumps pair (and maximum two bumps
pairs) are stable for small values of the relative inhibition
time.



Conclusions

» Two pair of bumps for each set of threshold values

» Broad pulse pair stable for small and moderate values of
relative inhibition time, unstable above a certain threshold
» Narrow pulse pair unstable

Pattern formation through a Turing type of instability.
Spatial oscillations for steep firing rate functions, each
period identified with a bump.

Spatio - temporal oscillations for shallow firing rate
functions.

Existence and stability of bumps in a two - population
homogenized Amari model: A rich plethora of phenomena.
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