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Abstract. An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right
number of collision invariants. It is a well-known fact that, in difference to in the continuous case, DVMs can have extra collision
invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and
so without spurious ones, is called normal. The construction of such normal DVMs has been studied a lot in the literature for single
species as well as for binary mixtures. For binary mixtures also the concept of supernormal DVMs has been introduced by Bobylev
and Vinerean. Supernormal DVMs are defined as normal DVMs such that both restrictions to the different species are normal as
DVMs for single species.

In this presentation we extend the concept of supernormal DVMs to the case of multicomponent mixtures and introduce it for
polyatomic molecules. By polyatomic molecules we mean here that each molecule has one of a finite number of different internal
energies, which can change, or not, during a collision. We will present some general algorithms for constructing such models, but
also give some concrete examples of such constructions.

The two different approaches above can be combined to obtain multicomponent mixtures with a finite number of different
internal energies, and then be extended in a natural way to chemical reactions.

The DVMs are constructed in such a way that we for the shock-wave problem obtain similar structures as for the classical
discrete Boltzmann equation (DBE) for one species, and therefore will be able to apply previously obtained results for the DBE.
In fact the DBE becomes a system of ordinary differential equations (dynamical system) and the shock profiles can be seen as
heteroclinic orbits connecting two singular points (Maxwellians). The previous results for the DBE then give us the existence
of shock profiles for shock speeds close to a typical speed, corresponding to the sound speed in the continuous case. For binary
mixtures this extension has already been addressed before by the author.

INTRODUCTION

We consider the Boltzmann equation for a mixture with polyatomic molecules [1], here represented by that each
molecule has one of finitely many internal energies that can change (or not) during collisions. In particular we will
study discrete velocity models (DVMs), i.e. we assume that the velocity variable can take only a finite number of
different given (vector) values. The Boltzmann equation can be approximated by DVMs up to any order [2, 3], and
these discrete approximations can be used for numerical methods, see e.g. [4] and references therein. However, in
the construction of DVMs there is a classical question of having the correct number of collision invariants [5]. In
difference to in the continuous case there can be additional collision invariants to the physical ones; mass, momentum,
and energy, for DVMs. DVMs, without additional collision invariants, for which the collision invariants are linearly
independent are called normal. The construction of normal DVMs for single species as well as for binary mixtures has
been well studied, see for example [6, 7, 8] (and references therein), and recently also for multicomponent mixtures
[9] and (single species of) polyatomic molecules [10].

Even if a DVM for a binary mixture is normal, the restrictions of the DVM to the two single species, might
not be normal. The concept of supernormal DVMs for binary mixtures, was introduced in [7] for normal DVMs,
such that both the restrictions to the single species also are normal. Later this concept was generalized to the case of
multicomponent mixtures in [9] and introduced for polyatomic molecules in [10]. A supernormal DVM for a mixture



with polyatomic molecules is a normal DVM, such that also the restriction to any collection of species with any
collection of (belonging) internal energies is normal.

We present an algorithm for constructing such DVMs. Actually, to check whether a DVM for a mixture with
polyatomic molecules is supernormal or not, we just have to consider the restrictions to all possible binary mixtures
(with any combination of fixed internal energies) and all possible pairs of internal energies for each species, and check
whether they are supernormal or not. We also conclude that for any finite number of species and any combinations
of rational mass ratios and any given (finite number of) multiples of an internal ”basic” energy we can construct a
supernormal DVM. Our constructed DVMs can always be extended to larger DVMs by the method of one-extensions
[11, 6, 7]. The method of one-extensions is an effective way of creating new normal DVMs out of already existing
ones. A one-extension is obtained by, having three velocities from a possible collision, but not the fourth, in the
velocity set, adding the fourth velocity from the collision to the velocity set to obtain a new linearly independent
collision with respect to previously existing collisions (i.e. a collision that can’t be obtained by combining previously
existing collisions and/or their inverse collisions). Furthermore, it is always possible to extend the constructed DVMs
to DVMs that are symmetric with respect to the axes by this method.

Here we consider the problem of constructing DVMs for mixtures of polyatomic molecules with the right num-
ber of collision invariants. Another important issue is the one of approximating the full Boltzmann equation by
DVMs, which has been addressed for mixtures of monatomic molecules in [11], and for single species of poly-
atomic molecules in [12]. For simulations it is important to have the right number of collision invariants. Our results
concerning the number of collision invariants are independent of the modeling of the collision coefficients as long as
the collision coefficients for a maximal set of linearly independent collisions (i.e. collisions that can’t be obtained by
combining the other collisions, including corresponding inverse collisions, in the set) are nonzero, which we implic-
itly assume below. We also stress that the symmetry relations (see Eq.(3) below) are fulfilled for the proposed models
in [11] (with the weights g1

1 = ... = g1
s = 1, cf. (1) below), and in [12] (with g j

1 =
(
E j

1

)δ/2−1
, where δ stands for the

number of ”internal degrees of freedom”).
An applicable result for the analytically difficult problem of existence of shock profiles [13, 14] is also presented.

The shock profiles can for DVMs be seen as heteroclinic orbits between two stationary points (Maxwellians) [15]. The
result is stated without proof, since the proof is exactly the same as for DVMs for monatomic single species, which
can be found in [15]. We also present characteristic speeds (”speed of sound”) that was calculated in [16] for mixtures
with monatomic molecules and single species with polyatomic molecules. To our knowledge no similar result exist,
neither in the continuous case.

The construction of the DVMs is such that also for half-space problems [17], as the Milne and Kramers problems
[18], but also nonlinear ones [19], one obtain similar structures as for the classical discrete Boltzmann equation for
one species [20, 21, 22, 16].

DVMs FOR MIXTURES WITH POLYATOMIC MOLECULES

Assume that we have s different species, labelled with α1, ..., αs, with the masses mα1 , ...,mαs . Also, assume that we
for each species αi have ri different internal energies E1

i , ..., E
ri
i .

For each species αi and internal energy E j
i we fix a set of velocity vectors V j

i =
{
ξ

i j
1 , ..., ξ

i j
ni j

}
⊂ Rd and assign the

label αi and the internal energy E j
i to each velocity vector in V j

i . We obtain a set of n =
s∑

i=1

ri∑
j=1

ni j triples (each triple

being composed of a velocity vector, a label, and an internal energy)

V = {
(
ξ1,1

1 , α1, E1
1

)
, ...,

(
ξ1,1

n1,1
, α1, E1

1

)
, ...,

(
ξsrs

1 , αs, Ers
s

)
, ...,

(
ξsrs

nsrs
, αs, Ers

s

)
} = {(v1, α(1), E1) , ..., (vn, α(n), En)}.

Obviously, the same velocity can be repeated many times, but only for different species and/or internal energies;
the triples are unique. We may need to scale the distribution functions to be able to obtain the symmetry relations
(3) below for the collision coefficients (assuming a convenient reciprocity relation [1, p.9], cf. [10])

f ′r =
fr
g j

i

if Er = E j
i , r = 1, ..., n, for some numbers g j

i , 1 ≤ i ≤ s, 1 ≤ j ≤ ri. (1)



We consider the general DVM, or the discrete Boltzmann equation (DBE) [5, 23], which reads

∂ fi
∂t

+ vi · ∇x fi = Qi ( f , f ) , i = 1, ..., n, (2)

where fi = fi (x, t) = f (x, t, vi, α(i), Ei) represents the microscopic density of particles (of species α(i) and with
internal energy Ei) with velocity vi at time t ∈ R+ and position x ∈ Rd. Note that, if we have made the scaling (1) then
the left-hand side in Eq.(2) will be multiplied with the different scaling factors g j

i , cf. Eq.(10) below. However, when
the scaling factors will have no significant effect on the structure of the results, we will for brevity, as in Eq.(2), leave
them out.

For a function h = h(v) (possibly depending on more variables than v), we identify h with its restrictions to the
points v, i.e.

h = (h1, ..., hn) , with hi = h (vi) , i = 1, ..., n.

Then f = ( f1, ..., fn) in Eq.(2).
The collision operators Qi ( f , f ) in (2) are given by

Qi ( f , f ) =

n∑
j,k,l=1

Γkl
i j

(
fk fl − fi f j

)
, i = 1, ..., n,

where it is assumed that the collision coefficients Γkl
i j, 1 ≤ i, j, k, l ≤ n, satisfy the relations

Γkl
i j = Γkl

ji = Γ
i j
kl ≥ 0, (3)

with equality unless we have conservation of mass for each species, momentum, and total energy:

{α(i), α( j)} = {α(k), α(l)} ,
mα(i)vi + mα( j)v j = mα(k)vk + mα(l)vl,

mα(i) |vi|
2

2
+

mα( j)
∣∣∣v j

∣∣∣
2

2

+ Ei + E j =
mα(k) |vk |

2

2
+

mα(l) |vl|
2

2
+ Ek + El.

A collision is obtained by the exchange of velocities and/or internal energies{
(vi, α(i), Ei) , (v j, α( j), E j)

}
� {(vk, α(k), Ek) , (vl, α(l), El)} , (4)

and can occur if and only if Γkl
i j , 0. Geometrically, a collision obtained by (4) is represented by an isosceles trapezoid

in Rd, if
{
Ei, E j

}
= {Ek, El} (a rectangle if additionally α(i) = α( j), or more generally if and only if mα(i) = mα( j)), with

the corners in
{
vi, v j, vk, vl

}
, where vi and v j (and therefore, also vk and vl) are diagonal corners, and

mα(i) |vi − vk | = mα( j)
∣∣∣v j − vl

∣∣∣ , (5)

if α(i) = α(k), and with k and l interchanged in (5), otherwise. However, if
{
Ei, E j

}
, {Ek, El}, the geometrical

interpretation is not clear.
A function φ = φ(v), is a collision invariant, if and only if

φi + φ j = φk + φl,

for all indices such that Γkl
i j , 0. The trivial collision invariants (or physical collision invariants) are

1α1 , ..., 1αs ,mv1, ...,mvd,m |v|2 + 2E (6)

(including all possible linear combinations), where m = m(v) = (mα(1), ...,mα(n)), vi = (vi
1, ..., v

i
n) (with v j =(

v1
j , ..., v

d
j

)
), |v|2 = (|v1|

2 , ..., |vn|
2), E = E(v) = (E1, ..., En), and

1α j =
((

1α j

)
1
, ...,

(
1α j

)
n

)
, with

(
1α j

)
i
= δα jα(i) =

{
1 if α(i) = α j
0 if α(i) , α j

.



These are the only collision invariants in the continuous case. However, for DVMs there can also be extra, so called
spurious, collision invariants. DVMs without spurious collision invariants are called normal, if the s + d + 1 collision
invariants (6) are linearly independent. A DVM such that the collision invariants (6) are linearly dependent are called
degenerate, and otherwise non-degenerate. Typical examples of degenerate DVMs for monatomic single species are
the Broadwell models [24]. For normal DVMs the collision invariants are of the form

φ = (φ1, ..., φn) , with φi = aα(i) + mα(i)b · vi + c
(
mα(i) |vi|

2 + 2Ei

)
(7)

for some constant aα1 , ..., aαs , c ∈ R and b ∈ Rd. Methods of construction of normal DVMs for monatomic single
species and mixtures can be found in e.g. [6, 7]. We stress that for normal DVMs we will have exactly s + d + 1
linearly independent collision invariants.

A Maxwellian distribution (or just a Maxwellian) is a function M = M(v), such that Q(M,M) = 0 and M ≥ 0,
and are for normal DVMs of the form

M = eφ, (8)
where φ is given by Eq.(7).

Supernormal DVMs
A DVM

V =
{{

V1
1, α1, E1

1

}
, ...,

{
Vr1

1 , α1, E
r1
1

}
, ...,

{
V1

s , αs, E1
s

}
, ...,

{
Vrs

s , αs, Ers
s
}}
, (9)

with internal energies
{
Ei

j : 1 ≤ i ≤ s, 1 ≤ j ≤ ri

}
, is called normal if it is non-degenerate and has exactly s + d + 1

linearly independent collision invariants. Furthermore, A DVM V (9) is called supernormal if the restriction to each
non-empty subset ofV constitutes a normal DVM, which can be proven to be equivalent to that the restriction to each
pair of sets inV constitutes a supernormal DVM (cf. [9, 10]).

Theorem 1 For any given number s of species with given rational masses mα1 , ...,mαs , and with given internal
energies

{
pi1E, ..., piri E

}
for a fixed E ∈ R+ and rational numbers pi1, ..., piri , i = 1, ..., s, there is a supernormal DVM

for the mixture of polyatomic molecules.

The proof of Theorem 1 can be obtained by combining the proofs of the corresponding results in the particular
cases r1 = ... = rs = 1 (mixture with monatomic molecules) in [9] and s = 1 (single species with polyatomic
molecules) in [10].

Algorithm For Construction of Supernormal DVMs

1. (a) Choose a set of velocities V1
1 such that it corresponds to a normal DVM for a monatomic single species.

Here, and in all the steps below, the set should be chosen in such a way, that we can obtain normal models
for any mass ratio and/or energy levels we intend to consider, otherwise we might also be able to extend
the set(s) later, as we realize that it is needed.

(b) For j = 2, . . . , r1 : choose a set of velocities V j
1 corresponding to a normal DVM such that{{

Vk
1, E

k
1

}
,
{
V j

1, E
j
1

}}
is a normal DVM for each 1 ≤ k < j.

2. For i = 2, . . . , s :
(a) Choose a normal set of velocities V1

i such that it, together with each of V1
1, . . . ,V

r1
1 , ...,V

1
i−1, ...,V

ri−1
i−1 ,

corresponds to a supernormal DVM for binary mixtures.
(b) For j = 2, . . . , ri : choose a set of velocities V j

i such that
i. V1

i together with each of V1
1, . . . ,V

r1
1 , ...,V

1
i−1, ...,V

ri−1
i−1 corresponds to a supernormal DVM for binary

mixtures;
ii.

{{
Vk

i , E
k
i

}
,
{
V j

i , E
j
i

}}
is a normal DVM for each 1 ≤ k < j.

We will call a set of collisions for linearly dependent if one of them can be obtained by a combination of (some of)
the other collisions (including corresponding inverse collisions), and correspondingly linearly independent otherwise.

Remark 1 In each case, if we don’t allow any collisions between the two species or levels of internal energies,
we will have 2d + 4 linearly independent collision invariants. However, we would like to have d + 3 or d + 2 linearly
independent collision invariants for two species or levels of internal energies, respectively. Hence, cf. [7], we need to
have d +1 and d +2 linearly independent (also with respect to the collisions inside the two species or levels of internal
energies) collisions between the two species or levels of internal energies, respectively.



Examples of Supernormal DVMs
We will use an odd-integer grid as our basic universe, instead of the usual integer grid, since in some applications
(e.g. boundary layers [20, 21, 22, 25]) it is preferable that the first component of the velocity is non-zero. However,
the integer grid and the odd-integer grid are the same up to a shift and a scaling, and we could also use the integer
grid as our basic universe. If desirable, it is also possible to find ”larger” normal (and symmetric) DVMs that contains
the velocity sets for all of the species and different energy levels and hence, can be used as a common velocity set for
all species and levels of internal energies. We are here concerned with having d + 1 and d + 2 linearly independent
(also with respect to the collisions inside the different species/energy levels) collisions between each two species and
energy levels, respectively. These collisions are not the only ones between each two species/energy levels, but all col-
lisions between each species/energy levels can be obtained by combining (one or more of) those linearly independent
collisions (including corresponding reverse collisions) with the collisions inside the species/energy levels.

We start with a normal DVM V, which contains the normal DVM with the 6 velocities {(±1,±1), (3,±1)} for d = 2
or the normal DVM with the 10 velocities {(±1,±1,±1), (3,±1, 1)} for d = 3. Extensions to larger normal models (of
any finite size) can be obtained by the so-called one-extension method [11, 6, 7]. The smallest ”symmetric” normal
extensions of the minimal DVMs (under our assumption) are the 12-velocity DVM {(±1,±1), (±3,±1), (±1,±3)} for
d = 2 and the 32-velocity DVM {(±1,±1,±1), (±3,±1,±1), (±1,±3,±1), (±1,±1,±3)} for d = 3.

We let

V j
i =

√
E

2mαi

V, i = 1, ..., s.

Our minimal models are normal DVMs, which easily can be checked by methods in [7]. Note that the minimal models
only allow mass ratio 1, and that the maximal total change of internal energies under a collision is E, i.e. except the
elastic collisions, only collisions such that Ei + E j − Ek − El = E are possible. Instead of using the same V for all
species, we can also use different subsets of V for different species.

In all examples below we consider, for brevity, the case d = 2. We also denote

V1 = {(±1,±1), (3,±1)} , V2 = {(±1,±1), (3,±1), (1, 3), (3, 3)} ,
V3 = {(±1,±1), (3, 1), (1, 3), (3, 3)} , V4 = {(±1,±1), (3,±1), (1, 3), (3, 3), (5, 1)} ,

which all constitutes normal DVMs.

Example 1 Assume that s = 1 and r1 = 3, with the internal energies E, 2E, and 3E, and mass m. Then

V1
1 =

√
E

2
√

m
V2; V2

1 = V3
1 =

√
E

2
√

m
V1,

constitutes a supernormal DVM, see Fig.1.

Example 2 Assume that s = 3 and r1 = r2 = r3 = 1, with the masses 2m, 3m, and 6m. Then

V1
1 = 3V3; V1

2 = 2V1
3 = V4,

constitutes a supernormal DVM, see Fig.1.

Example 3 Assume that s = 2 and r1 = r2 = 2, with the masses m and 2m, and the internal energies E and 2E.
Then

V1
1 = V2

1 = 2V1; V1
2 = V2

2 = V2,

constitutes a supernormal DVM, see Fig.2. However, the same sets also constitutes a supernormal DVM, see Fig.2, for
the case with mass m, and internal energies 2E and 4E, and mass 2m, and internal energies E and 2E, respectively.

Bimolecular Chemical Reactions.
We can also add bimolecular reactive collisions (by changing corresponding collision coefficients to be nonzero) to
DVMs for mixtures of polyatomic molecules and by that extend to DVMs for bimolecular chemical reactions. For
each linearly independent (also with respect to all other collisions) reactive collision we obtain one new relation on
the masses. Note that the maximal number of linearly independent bimolecular reactive collisions are d − 1, since the
total number of particles will still be conserved.



FIGURE 1. a) Single species with polyatomic molecules; internal energies E, 2E, and 3E (to the left); b) Mixture of three species
with monatomic molecules; mass ratios 3/2, 2, and 3 (to the right).

FIGURE 2. Binary mixtures with polyatomic molecules (two energy levels). The same velocity sets for two different cases, with
one (brown/chained) ”essential” collision changed. a) Mass ratio 2 and internal energies E and 2E (to the left); b) Mass ratio 2 and
internal energies E and 2E (heavy species), and 2E and 4E (light species), respectively (to the right).

SHOCK PROFILES

In this section we consider the problem of existence of shock profiles for the DBE for mixtures with polyatomic
molecules, assuming the symmetry relation (3).

We denote, after having made the scaling (1) of the distribution functions,

B = diag(v1
1, ..., v

1
n), D = diag(g1

1, ..., g
1
1, ..., g

r1
1 , ..., g

r1
1 , ..., g

1
s , ..., g

1
s , ..., g

rs
s , ..., g

rs
s ), (10)

(we remind the notation v j =
(
v1

j , ..., v
d
j

)
) and consider the system

D(B − cI)
d f
dy

= Q ( f , f ) , c ∈ R, where f → M± as y→ ±∞. (11)

Here M± are two Maxwellians and f = ( f1, ..., fn), with fi = fi (y) = f (y, vi, α(i), Ei), i = 1, ..., n.
We denote by

{
φ1, ..., φp

}
(p = d + 2 for normal DVMs) a basis for the vector space of collision invariants. In

a standard way, we obtain that the Maxwellians M− and M+ must fulfill the Rankine-Hugoniot conditions (here and
below, we denote by 〈·, ·〉 the Euclidean scalar product in Rn)

〈D (B − cI) M+, φi〉 = 〈D (B − cI) M−, φi〉 , i = 1, ..., p.

We make the following assumptions on our DVMs:



1. There is a number c0, with the following properties:
[i] rank(K) = p−1, where K is the p×p matrix with the elements ki j =

〈
D (B − c0I) M+φi, φ j

〉
. Note that the rank

of K is independent of the choice of the basis
{
φ1, ..., φp

}
. In other words, there is a unique (up to its sign) vector

φ⊥ in span(φ1, ..., φp), such that 〈M+φ⊥, φ⊥〉 = 1 and 〈D (B − c0I) M+φ⊥, φ〉 = 0 for all φ ∈ span(φ1, ..., φp).
[ii] c0 , v1

i for i = 1, ..., n, or, equivalently, det(B − c0I) , 0.
2. The vector(s) φ⊥ in [i] above, also satisfies

〈
D (B − c0I) M+φ⊥, φ

2
⊥

〉
, 0. We choose the sign of the vector φ⊥,

such that
〈
D (B − c0I) M+φ⊥, φ

2
⊥

〉
> 0.

We assume that assumptions 1 and 2 are fulfilled and denote ‖h‖ = ‖h(y)‖ = sup
y∈R
|h(y)| for any bounded (vector

or scalar) function h(y) : R→ Rk, where k is a positive integer.

Theorem 2 For any given positive Maxwellian M+, there exists a family of Maxwellians M− = M− (ε) and shock
speeds c = c (ε) = c0 +ε, such that the shock wave problem (11) has a non-negative locally unique (with respect to the
norm ‖·‖ and up to a shift in the independent variable) non-trivial bounded solution for each sufficiently small ε > 0.
Furthermore, M− is determined by M+ and c.

The proof of Theorem 2 is identical with the proof in [15] for the case of one species with monatomic molecules,
see also [25] for the case of binary mixtures with monatomic molecules.

Characteristic Speed
In this section we study such symmetric sets V, such that

if ξ = (ξ1, ..., ξd) ∈ V, then (±ξ1, ...,±ξd) ∈ V. (12)

We will also assume that the Maxwellian M+ is non-drifting (i.e. we have b = 0 in Eq.(7) , (8)).

Mixtures

Let r1 = ... = rs = 1, i.e. that we have monatomic molecules. We assume that the setV consists of s symmetric (in the
sense of Eq.(12)) sets of 2Nαi , i = 1, ..., s, velocities respectively, which constitute normal DVMs for single species,
but also a normal DVM as a mixture (cf. semi-supernormal DVMs in [9]) and that g1

1 = ... = g1
s = 1 (we denote

ξi1
j = ξαi

j = (ξαi,1
j , ..., ξαi,d

j )). Then

c0 =

√√√√√√√ X

χ2

 s∑
i=1

(χαi
3 )2

χαi
1
− χ5

 , with X = χ2
4 + χ5

s∑
i=1

(χαi
2 )2

χαi
1
− 2χ4

s∑
i=1

χαi
2 χ

αi
3

χαi
1
−

s∑
i=1

(χαi
2 χ

α j

3 − χ
α j

2 χ
αi
3 )2

χαi
1 χ

α j

1

, (13)

where χαi
1 =

〈
φαi

1 , φ
αi
1

〉
, χαi

2 =
〈
φαi

1 , Bφ2

〉
= mαi

〈
φαi

2 , φ
αi
2

〉
, χ2 = 〈φ2, φ2〉, χ

αi
3 =

〈
φαi

1 , φ3

〉
= mαi

〈
φαi

1 , φ
αi
3

〉
, χ4 = 〈φ2, Bφ3〉,

and χ5 = 〈φ3, φ3〉, with φαi
1 = M1/2

+ · ( 0, ..., 0︸ ︷︷ ︸
2
∑i−1

j=1 Nα j

, 1, ..., 1︸ ︷︷ ︸
2Nαi

, 0, ..., 0︸ ︷︷ ︸
2
∑s

j=i+1 Nα j

) for i = 1, ..., s, φ2 = M1/2
+ · (mα1φ

α1
2 , ...,mαsφ

αs
2 ), where

φα2 = (ξα,11 , ..., ξα,1Nα
,−ξα,11 , ...,−ξα,1Nα

), and φ3 = M1/2
+ · (mα1φ

α1
3 , ...,mαsφ

αs
3 ), where φα3 = (

∣∣∣ξα1 ∣∣∣2 , ..., ∣∣∣ξαNα

∣∣∣2 , ∣∣∣ξα1 ∣∣∣2 , ..., ∣∣∣ξαNα

∣∣∣2)
fulfills (at least) assumption 1 [i] [16].

In the continuous limit, for the full Boltzmann equation, with d = 3, [16]

χαi
1 = nαi , χ

αi
2 = nαi T , χ2 =

s∑
i=1

mαi nαi T , χαi
3 = 3nαi T , χ4 = 5

s∑
i=1

nαi T
2, χ5 = 15

s∑
i=1

nαi T
2,

(where nα1 , ..., nαs , and T denote the number densities of the species α1, ..., αs and the temperature respectively), if

the Maxwellian is non-drifting of the type M+ =
(
Mα1 , ...,Mαs

)
, with Mαi =

nαi

(2πT )3/2 e−mαi |ξ|
2/2T . Therefore, for the

continuous Boltzmann equation, with d = 3, for a mixture of s species the characteristic speed (13) is

c0 =

√ ∑s
i=1 nαi∑s

i=1 mαi nαi

√
5T
3

.



Polyatomic Molecules

Let s = 1 and r1 = r, i.e. we consider a single species with polyatomic molecules. We assume that the setV contains
r copies of the same symmetric (cf. Eq.(12)) set V of 2N velocities (we denote ξ1,1

j = ... = ξ1,r
j = ξ j = (ξ1

j , ..., ξ
d
j )),

which constitutes a normal model, with corresponding internal energies E1, ..., Er, and that we have made the change
of variables (1). Then

c0 =

√
χ1χ

2
4 + χ2

2χ5 − 2χ2χ3χ4

χ2(χ1χ5 − χ
2
3)

, (14)

where χ1 = 〈φ1,Dφ1〉, χ2 = 〈φ2,Dφ2〉, χ3 = 〈φ1,Dφ3〉, χ4 = 〈φ2,DBφ3〉, and χ5 = 〈φ3,Dφ3〉, with φ1 = M1/2
+ ·

(1, ..., 1), φ2 = M1/2
+ · (φ̃2, ..., φ̃2), where φ̃2 = (ξ1

1 , ..., ξ
1
N ,−ξ

1
1 , ...,−ξ

1
N), and φ3 = M1/2

+ · (φ1
3, ..., φ

r
3), where φi

3 =

(m |ξ1|
2 + 2Ei, ...,m |ξN |

2 + 2Ei,m |ξ1|
2 + 2Ei, ...,m |ξN |

2 + 2Ei) fulfills (at least) assumption 1 [i] [16].
In the continuous limit, for the full Boltzmann equation, with d = 3, the numbers χ1, ..., χ5 are given by [16]

χ1 = n, χ2 =
nT
m

, χ3 = 3nT +
2nQ1

Q0
, χ4 =

5nT 2

m
+

2nT Q1

mQ0
, χ5 = 15nT 2 +

12nT Q1

Q0
+

4nQ2

Q0
,

where Q j =
∑r

i=1 gi
1

(
Ei

) j
e−Ei/T for j = 0, 1, 2, and E1, ..., Er, and T denote the different internal energies

and the temperature, respectively, if the Maxwellian is non-drifting of the type M+ = (M1, ...,Mr), with Mi =
n

(2πT )3/2Q0
e−(m|ξ|2/2+Ei)/T . Therefore, for the continuous Boltzmann equation, with d = 3, the characteristic speed

(14) is (note: the constant γ =
5 + δ

3 + δ
, where δ is the number of ”internal degrees of freedom” [12], is obtained under

the second square root below by replacing the sums by integrals over the internal energy E and the gi
1 with Eδ/2−1).

c0 =

√
T
m

√√√√5 (Q0T )2 + 2
(
Q0Q2 − (Q1)2

)
3 (Q0T )2 + 2

(
Q0Q2 − (Q1)2

) , with Q j =

r∑
i=1

gi
1

(
Ei

) j
e−Ei/T , j = 0, 1, 2.
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