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Abstract We consider a non-linear half-space problem related to the con-
densation problem for the discrete Boltzmann equation and extend some
known results for a single-component gas to the case when a non-condensable
gas is present. The vapor is assumed to tend to an assigned Maxwellian at in-
finity, as the non-condensable gas tends to zero at infinity. We assume that the
vapor is completely absorbed and that the non-condensable gas is diffusively
reflected at the condensed phase and that the vapor molecules leaving the
condensed phase are distributed according to a given distribution. The condi-
tions, on the given distribution, needed for the existence of a unique solution
of the problem are investigated. We also find exact solvability conditions and
solutions for a simplified six+four-velocity model, as the given distribution
is a Maxwellian at rest, and study a simplified twelve+six-velocity model.
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1 Introduction

In this paper we consider the condensation problem for a single-component
gas or vapor when a non-condensable gas is present [15]. Formulation and
motivation of the problem can be found in [15]. The vapor is assumed to tend
to an assigned Maxwellian MA

∞, with a flow velocity towards the condensed
phase, at infinity, while the non-condensable gas tends to zero at infinity.
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Steady condensation of the vapor takes place at the condensed phase, which
is held at a constant temperature. We assume that the vapor is completely
absorbed and that the non-condensable gas is diffusively reflected at the
condensed phase, i.e. there is no net flow across the condensed phase and
the gas molecules leaving the condensed phase are distributed according to
a non-drifting Maxwellian MB

0 at the condensed phase. The vapor molecules
leaving the condensed phase are distributed according to a given distribution.
The conditions, on the given distribution at the condensed phase, needed for
the existence of a unique solution of the problem are investigated. We assume
that the given distribution is sufficiently close to the Maxwellian MA

∞ at the
infinity and that the total mass of the non-condensable gas relatively this
distance is sufficiently small. The explicit number of conditions on the given
distribution is given in Theorem 2, under some assumptions on the discrete
velocity models for the gases.The typical case is that the given distribution is
the Maxwellian at the condensed phase [15]. However, we can’t be sure that
there is any Maxwellian at rest close enough to the Maxwellian at infinity,
but if there is, of course our results are valid also in this case.

Similar problems have been studied for the discrete Boltzmann equation
for single species (a vapor in the absence of a non-condensable gas) [4],[3],
and references therein, and binary mixtures of two vapors [5], as well as
for the full Boltzmann equation for single species [19],[1],[20] and binary
mixtures [18], and references therein. For the discrete Boltzmann equation,
one obtain for binary mixtures of two vapors a similar structure as for single-
component gases [5]. One can then extend results for half-space problems
of single-component gases [2], [4] to yield also for binary mixtures of two
vapors. However, though, both complete absorption and diffuse reflection
conditions are considered (at least implicitly) for both single-component gases
and binary mixtures of two vapors in [4] and [5], the situation will be different
when one of the gases is non-condensable. The fact that the distribution
function for the non-condensable gas tends to zero at infinity changes the
situation. First of all we can not use the standard transformation used in
[4] and [5], but we use instead a slight modification of it, which changes the
structure of the obtained system. Secondly, the trivial case when the non-
condensable gas is absent, i.e. the case of a single-component gas considered
in [4] and [19], is a trivial solution of the system. Therefore, in difference
to the case of a vapor, we need, in the case of a non-condensable gas, to
have a free parameter, which will later be settled by fixing the amount of the
non-condensable gas. Hence, even if our proof is influenced by the proof in
[4] (and [19]) for single-component gases, we have to take these differences
into account. To our knowledge, there is no corresponding results for the full
Boltzmann equation up to now.

The paper is organized as follows. In Section 2 we present the discrete
velocity model for binary mixtures and some of its properties. We make a
transformation and obtain a transformed system, presented with some of its
properties in Section 3. In Section 4 we present our assumptions and our main
result in Theorem 2. The proof of our main result (Theorem 2) is presented
in Section 5. In Section 6 we find an exact solvability condition and the
solution for a simplified six+four-velocity model, for which the non-linear
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problem becomes linear. Here the vapor molecules leaving the condensed
phase are distributed according to the Maxwellian at the condensed phase.
In Section 7 we prove all the necessary conditions for existence, except one,
which still is most likely to be fulfilled, for a simplified twelve+six-velocity
model.

2 Discrete velocity models (DVMs) for binary mixtures

We first remind some properties of the discrete Boltzmann equation, or the
general discrete velocity model (DVM), for binary mixtures [5].

The planar stationary discrete Boltzmann equation for a binary mixture
of the gases A and B reads

ξA,1i

dFAi
dx

= QAAi (FA, FA) +QBAi (FB , FA), i = 1, ..., nA,

ξB,1j

dFBj
dx

= QABj (FA, FB) +QBBj (FB , FB), j = 1, ..., nB ,

(1)

where Vα = {ξα1 , ..., ξαnα} ⊂ Rd, α, β ∈ {A,B} are finite sets of velocities,
Fαi = Fαi (x) = Fα(x, ξαi ) for i = 1, ..., nα, and Fα = Fα (x, ξ) represents
the microscopic density of particles (of the gas α) with velocity ξ at position
x ∈ R. We denote by mα the mass of a molecule of the gas α. Here and
below, α, β ∈ {A,B}.

For a function gα = gα(ξ) (possibly depending on more variables than ξ),
we will identify gα with its restrictions to the set V α, but also when suitable
consider it like a vector function

gα = (gα1 , ..., g
α
nα), with gαi = gα (ξαi ) .

The collision operators Qβαi (F β , Fα) in (1) are given by

Qβαi (F β , Fα) =

nα∑
k=1

nβ∑
j,l=1

Γ klij (β, α) (Fαk F
β
l − F

α
i F

β
j ) for i = 1, ..., nα,

where it is assumed that the collision coefficients Γ klij (β, α), with 1 ≤ i, k ≤
nα and 1 ≤ j, l ≤ nβ , satisfy the relations

Γ klij (α, α) = Γ klji (α, α) and Γ klij (β, α) = Γ ijkl (β, α) = Γ lkji (α, β) ≥ 0,

with equality unless the conservation laws

mαξ
α
i +mβξ

β
j = mαξ

α
k +mβξ

β
l and mα |ξαi |

2
+mβ

∣∣∣ξβj ∣∣∣2 = mα |ξαk |
2
+mβ

∣∣∣ξβl ∣∣∣2
are satisfied. We denote

F =
(
FA, FB

)
=
(
FA (ξ) , FB (ξ)

)
and Q(F, F )

=
(
QAA(FA, FA) +QBA(FB , FA), QAB(FA, FB) +QBB(FB , FB)

)
.
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Then the system (1) can be rewritten as

D
dF

dx
= Q (F, F ) ,

where

D =

(
DA 0
0 DB

)
, with Dα = diag(ξα,11 , ..., ξα,1nα ).

We consider the case of non-zero ξα,1i , ξα,1i 6= 0, and we can then (without
loss of generality) assume that

Dα =

(
D+
α 0

0 −D−α

)
,

where

D+
α = diag(ξα,11 , ..., ξα,1

n+
α

) and D−α = −diag(ξα,1
n+
α+1

, ..., ξα,1nα ), with

ξα,11 , ..., ξα,1
n+
α
> 0 and ξα,1

n+
α+1

, ..., ξα,1nα < 0.

The collision operator Q(f, f) can be obtained from the bilinear expres-
sions

Qi (F,G) =
1

2

nA∑
j,k,l=1

Γ klij (A,A)(FAk G
A
l +GAk F

A
l − FAi GAj −GAi FAj )

+
1

2

nA∑
k=1

nB∑
j,l=1

Γ klij (B,A)(FAk G
B
l +GAk F

B
l − FAi GBj −GAi FBj ), i = 1, ..., nA,

and

QnA+i (F,G) =
1

2

nB∑
k=1

nA∑
j,l=1

Γ klij (A,B)(FBk G
A
l +GBk F

A
l − FBi GAj −GBi FAj )

+
1

2

nB∑
j,k,l=1

Γ klij (B,B)(FBk G
B
l +GBk F

B
l − FBi GBj −GBi FBj ), i = 1, ..., nB .

Denoting

Q(F,G) = (Q1 (F,G) , ..., Qn (F,G)), with n = nA + nB ,

we see that, for arbitrary F and G

Q (F,G) = Q (G,F ) .

A vector φ =
(
φA, φB

)
is a collision invariant if and only if

φαi + φβj = φαk + φβl ,

for all indices 1 ≤ i, k ≤ nα, 1 ≤ j, l ≤ nβ and α, β ∈ {A,B}, such that
Γ klij (β, α) 6= 0.
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We consider below only DVMs, such that the DVMs for the gases A and
B are normal, i.e. the only collision invariants of the forms φ =

(
φA, 0

)
and

φ =
(
0, φB

)
, respectively, fulfills

φα = φα(ξ) = aα +mαb · ξ + cmα |ξ|2 ,

for some constant aα, c ∈ R and b ∈ Rd. It is also preferable that any general
collision invariant of our DVMs is of the form

φ =
(
φA, φB

)
, with φα = φα(ξ) = aα +mαb · ξ + cmα |ξ|2 , (2)

for some constant aA, aB , c ∈ R and b ∈ Rd. In this case the equation

〈φ,Q (F, F )〉 = 0

has the general solution (2). Here and below, we denote by 〈·, ·〉 the Euclidean
scalar product on Rn. Such DVMs, being normal both considering the gases
together as a mixture as well as considering them separately as single species,
is called supernormal [7]. This property is fulfilled for the continuous Boltz-
mann equation. In the discrete case we can obtain so called spurious (unphys-
ical) collision invariants. However, possible spurious collision invariants (for
the mixture) don’t seem to affect the qualitative properties of our results.
We would also like our DVMs to fulfill that the equation〈

φ,QAB
(
FA, FB

)〉
= 0 (3)

has the general solution φ = a, where a is constant. We call a supernormal
DVM fulfilling condition (3) for optinormal. This property is fulfilled for the
continuous Boltzmann equation [14], but not necessarily for a DVM. However,
we will below see that we can relax this assumption a little.

Example 1 The DVM, with

mA = 2mB ,

where the vapor, gas A, is modeled by the twelve-velocity model with veloc-
ities

(±1,±1), (±1,±3), and (±3,±1),

and the non-condensable gas B is modeled by the six-velocity model with
velocities

(±2, 0) and (±2,±4),

is optinormal.

A binary Maxwellian distribution (or just a bi-Maxwellian) is a function

M =
(
MA,MB

)
,

such that
Q(M,M) = 0 and Mα

i ≥ 0 for all 1 ≤ i ≤ nα.

All bi-Maxwellians are of the form M = eφ, where φ is a collision invariant,
i.e. for normal models we will have

M =
(
MA,MB

)
, with Mα = eφ

α

= eaα+mαb·ξ+cmα|ξ|
2

. (4)

We will study distributions F , such that

F →
(
MA, 0

)
as x→∞, where MA = eφ

A

= eaA+mAb·ξ+cmA|ξ|2 . (5)
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3 Transformed system

For a bi-Maxwellian
M =

(
MA, ε2MB

)
,

where Mα = eφ
α

= eaα+mαb·ξ+cmα|ξ|
2

and ε is a so far undetermined positive
constant less or equal to 1, 0 < ε ≤ 1, we obtain, by denoting

F =
(
MA, 0

)
+
√
Mf , (6)

in Eq.(1), the system
DA

dfA

dx
+ LAAf

A = −εLBAfB + SAA(fA, fA) + εSBA(fB , fA)

DB
dfB

dx
+ LABf

B = εSBB(fB , fB) + SAB(fA, fB)

,

where(
LAAf

A
)
i

= −2

nA∑
k=1

nA∑
j,l=1

√
MA
j Γ

kl
ij (A,A)(

√
MA
l f

A
k −

√
MA
j f

A
i ),

(
LABf

B
)
i′

= −
nB∑
k=1

nA∑
j,l=1

√
MA
j Γ

kl
i′j(A,B)(

√
MA
l f

B
k −

√
MA
j f

B
i′ ), and

(
LBAf

B
)
i

= −
nA∑
k=1

nB∑
j,l=1

√
MB
j Γ

kl
ij (B,A)(

√
MA
k f

B
l −

√
MA
i f

B
j ),

for i = 1, ..., nA and i′ = 1, ..., nB ,

and the quadratic parts Sαβ are given by

(
Sαβ(fα, fβ)

)
i

=

nβ∑
k=1

nα∑
j,l=1

√
Mα
j Γ

kl
ij (α, β)(fαk f

β
l − f

α
i f

β
j ), i = 1, ..., nβ .

The matrices LAα are symmetric and semi-positive. Furthermore,

LABf
B = 0 if fB ∈ span(

√
MB),

LAAf
A = 0 if and only if fA =

√
MAφA,

where φ =
(
φA, 0

)
is a collision invariant,〈

LBAf
B ,
√
MA

〉
=
〈
SBA(fB , fA),

√
MA

〉
=
〈
SαB(fα, fB),

√
MB

〉
= 0,

and 〈
SAA(fA, fA),

√
MAφA

〉
= 0.

In the continuous case ker(LAB) = span(
√
MB) [14], so for an optimal model

N(LAB) = span(
√
MB),



7

(cf. assumption (3)). We will, however, relax this assumption below. Here
and below, we denote by N(Lαβ) the null-space of Lαβ .

By assumption (5)
f → 0 as x→∞.

We denote by n±α , where n+α + n−α = nα, and m±α , with m+
α + m−α = qα,

the numbers of positive and negative eigenvalues (counted with multiplicity)
of the matrices Dα and D−1α LAα respectively, and by m0

α the number of
zero eigenvalues of D−1α LAα. Moreover, we denote by k+α , k−α , and lα, with
k+α + k−α = kα, where kα + lα = pα, the numbers of positive, negative, and
zero eigenvalues of the pα × pα matrix Kα, with entries kαij =

〈
yαi , y

α
j

〉
Dα

=〈
yαi , Dαy

α
j

〉
, such that

{
yα1 , ..., y

α
pα

}
is a basis of the null-space of LAα, i.e.

in our case,

pA = d+ 2, pB ≥ 1, and span
(
yA1 , ..., y

A
d+2

)
= N(LAA)

= span(
√
MA,

√
MAξA,1, ...,

√
MAξA,d,

√
MA

∣∣ξA∣∣2).

We remind that we by 〈·, ·〉 denote the Euclidean scalar product on Rn and
below we also denote

〈·, ·〉Dα = 〈·, Dα·〉 .

We now remind a result by Bobylev and Bernhoff in [6] (see also [2]) and
apply it in a specific case of interest for us.

Theorem 1 The numbers of positive, negative and zero eigenvalues of
D−1α LAα are given by 

m+
α = n+α − k+α − lα

m−α = n−α − k−α − lα
m0
α = pα + lα

.

In the proof of Theorem 1 bases

uα1 , ..., u
α
qα , y

α
1 , ..., y

α
kα , z

α
1 , ..., z

α
lα , w

α
1 , ..., w

α
lα (7)

of Rnα , α ∈ {A,B}, such that

yαi , z
α
r ∈ N(LAα), D−1α LAαw

α
r = zαr and D−1α LAαu

α
τ = λατ u

α
τ , (8)

and

〈uατ , uαν 〉Dα = λατ δτν , with λα1 , ..., λ
α
m+
α
> 0 and λα

m+
α+1

, ..., λαqα < 0,〈
yαi , y

α
j

〉
Dα

= γαi δij , with γα1 , ..., γ
α
k+α

> 0 and γα
k+α+1

, ..., γαkα < 0,

〈uατ , zαr 〉Dα = 〈uατ , wαr 〉Dα = 〈uατ , yαi 〉Dα = 〈wαr , yαi 〉Dα = 〈zαr , yαi 〉Dα = 0,

〈wαr , wαs 〉Dα = 〈zαr , zαs 〉Dα = 0 and 〈wαr , zαs 〉Dα = δrs, (9)

are constructed.
If we assume that

n−B = n+B , or equivalently nB = 2n+B ,
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and that

ξB
i+n+

B

= (−ξB,1i , ξB,2i , ..., ξB,di ), ξB,1i > 0, for i = 1, ..., n+
B , (10)

then
D−B = D+

B .

Let b be the first component of b in Eqs.(4). If we assume that b < 0, then

k−B ≥ 1,

since 〈√
MB ,

√
MB

〉
DB

=

n+
B∑

i=1

ξB,1i (1− e−2bξ
B,1
i )MB

i < 0.

For an optimal model
k−B = 1

(cf. condition (3)) and hence,

k+B = lB = 0 and m+
B = n+B . (11)

We will relax condition (3) by assuming

k−B = pB ≥ 1.

Then the conditions (11) are still satisfied.

4 Main result

We consider the non-linear system
DA

dfA

dx
+ LAAf

A = −εLBAfB + SAA(fA, fA) + εSBA(fB , fA)

DB
dfB

dx
+ LABf

B = εSBB(fB , fB) + SAB(fA, fB)

, (12)

where the solution tends to zero at infinity, i.e.

fA(x)→ 0 and fB(x)→ 0 as x→∞, (13)

and

LBAf
B , SBA(fB , fA) ∈ span(

√
MA)⊥, SAA(fA, fA) ∈ N(LAA)⊥,

and SαB ∈ N(LAB)⊥.

We define the projections

Rα+ : Rnα → Rn
+
α and Rα− : Rnα → Rn

−
α , n−α = nα − n+α ,

by
Rα+s = sα+ = (s1, ..., sn+

α
) and Rα−s = sα− = (sn+

α+1, ..., snα)
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for sα = (s1, ..., snα).
We will below assume that n−B = n+B , and that the symmetry relation

(10) is fulfilled. Furthermore, we assume that

k−B = pB .

Then
k+B = lB = 0,m+

B = n+B and D−B = D+
B .

At x = 0 we assume the boundary conditions

fA+ (0) = h0 and fB+ (0) = CfB− (0) (14)

where C is the n+B × n
+
B matrix, with the elements

cij =
ξB,1j

√
MB
n+
B+j

MB
0i〈

D−BM
B
0−, 1

〉√
MB
i

.

and

h0 =
1√
MA

+

(a0 −MA
+ ) ∈ Rn

+
A ,

where MB
0 = KB

0 e
c0mB|ξB|2 , with KB

0 > 0, and a0 ∈ Rn
+
A . This corresponds

to the boundary conditions{
FA+ (0) = a0

FB+ (0) = C0F
B
− (0)

where C0 is the n+B × n
+
B matrix, with the elements

c0ij =
ξB,1j MB

0i〈
D−BM

B
0−, 1

〉
(the discrete version of the diffusive boundary conditions, cf. [10], [2], or [4]),
before the expansion (6).

We consider the case of condensation, i.e. we assume that b < 0, where b
is the first component of b in Eq.(4). For the Boltzmann equation there is a
critical number b− < 0 (where −b− is the speed of sound) [9], such that

k+A = 1 and lA = 0 if b− < b < 0

k+A = 0 and lA = 1 if b = b−

k+A = lA = 0 if b < b−

. (15)

We assume that we have a DVM with a critical number b− < 0, such that
Eq.(15) is fulfilled. In fact, this number can be explicitly calculated for a
plane axially symmetric 12-velocity model (assuming that the solution is
symmetric with respect to the x-axis) see Section 7 below.
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Furthermore, for b− < b < 0 we will assume that

RA+
√
MA /∈ RA+U+

A ,

with U+
A = span(u : LAAu = λDAu, λ > 0) = span(uA1 , ..., u

A
m+
A

), (16)

or, equivalently,

dim(RA+Ũ
+
A ) = m+

A + 1 = n+A, with Ũ+
A = span(uA1 , ..., u

A
n+
A

,
√
MA).

In this case, we can assume that yApA =
√
MA without loss of generality, since

lA = 0.

Remark 1 In fact, we could instead of
√
MA take any vector y ∈ N(LAA),

such that

RA+y /∈ RA+U+
A and

〈
LBAf

B , y
〉

=
〈
SBA(fB , fA), y

〉
= 0,

as yApA .

We introduce the operator C : RnB → Rn
+
B , given by

C = RB+ − CRB−.

We will assume that the set

U+
B = span(Cu : LABu = λDBu, λ > 0) = span(CuB1 , ..., CuBn+

B

)

has non-zero codimension, i.e.

dimU+
B < n+B , (17)

but, also that the set

Ũ+
B = span(CuB1 , ..., CuBn+

B

, C
√
MB)

has codimension 0, i.e.

dim Ũ+
B = n+B . (18)

Therefore, the set U+
B has codimension 1, i.e.

dimU+
B = n+B − 1.

We can without loss of generality assume that

CuB
n+
B

∈ span(CuB1 , ..., CuBn+
B−1

).

If the set U+
B would have had codimension 0, i.e. if dimU+

B = n+B , then the
only possibility would have been fB(x) = 0.

We fix ε to be
ε = min {|h0| , 1} ,
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and the total mass of the gas B to be mtot
B , i.e.

εmB

nB∑
i=1

∞∫
0

√
MB
i f

B
i (x) dx = mtot

B , (19)

for a given positive constant mtot
B . Clearly, the case mtot

B = 0, corresponds to
the case of single species considered in [4].

We now state our main result.

Theorem 2 Assume that we have a DVM with a critical number b− < 0,
such that Eq. (15) is fulfilled, let conditions (17) and (18), for b− < b < 0
also condition (16), be fulfilled, and suppose that 〈h0, h0〉D+

A
is sufficiently

small and that mtot
B is sufficiently small relatively |h0|. Then with

k+A + lA =

{
1 if b− ≤ b < 0
0 if b < b−

conditions on h0, the system (12) with the boundary conditions (13),(14)
under the condition (19), has a locally unique solution.

Theorem 2 is proved in Section 5.

Remark 2 If

MB
0√
MB

∈ U+
B

then condition (17) is fulfilled, since

C MB
0√
MB

= 0.

Half-space problems for the Boltzmann equation are of great importance
in the study of the asymptotic behavior of the solutions of boundary value
problems of the Boltzmann equation for small Knudsen numbers [12],[13].
Half-space problems provide the boundary conditions for the fluid-dynamic-
type equations and Knudsen-layer corrections to the solution of the fluid-
dynamic-type equations in a neighborhood of the boundary. Theorem 2 tells
us that the number of parameters to be specified in the boundary conditions
depends on whether the condensing vapor flow is subsonic or supersonic.
This behavior has earlier been found numerically in [16] and [17] as the
vapor molecules leaving the condensed phase are distributed according to
the Maxwellian at the condensed phase. We can’t be sure that there is any
Maxwellian at rest close enough to the Maxwellian at infinity, but if this is
the case, our results are still valid. To our knowledge, this is the first rigorous
analytical result of this kind and no corresponding results exist for the full
Boltzmann equation.
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5 Proof of the main result

We add (cf. Refs. [19] and [4]) a damping term

−γ(ΨA, ΨB) = −γ(DAP
+
A f

A, DBP
+
B f

B),

to the right-hand side of the system (12) and obtain
DA

dfA

dx
+ LAAf

A = −εLBAfB + SAA(fA, fA) + εSBA(fB , fA)− γΨA

DB
dfB

dx
+ LABf

B = εSBB(fB , fB) + SAB(fA, fB)− γΨB

,

(20)
where γ > 0 and Ψα = DαP

+
α f

α, with

P+
A f

A =



〈
fA(x), yApA

〉
DA〈

yApA , y
A
pA

〉
DA

yApA if b− < b < 0

〈
fA(x), zA1

〉
DA

wA1 if b = b−

0 if b < b−

, and

P+
B f

B =

〈
fB(x),

√
MB

〉
DB〈√

MB ,
√
MB

〉
DB

√
MB .

We can, without loss of generality, assume that

yBpB =
√
MB ,

since lB = 0.
First we consider the corresponding linearized inhomogeneous system

DA
dfA

dx
+ LAAf

A = gA − γDAP
+
A f

A

DB
dfB

dx
+ LABf

B = gB − γDBP
+
B f

B

, (21)

where gα = gα(x) : R+ → Rnα are given functions such that〈
gα (x) ,

√
Mα

〉
= 0. (22)

Below, we will consider the case

b− < b < 0.
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The system (21) with the boundary conditions (13) has (under the as-
sumption that all necessary integrals exist) the general solution, using the
notations in Eqs.(7)-(9),

fA(x) =
qA∑
r=1

βAr (x)uAr +
pA∑
i=1

µAi (x) yAi

fB(x) =
qB∑
r=1

βBr (x)uBr +
pB∑
i=1

µBi (x) yBi

, (23)

where qα = nα − pα and

µαi (x) = −
∞∫
x

µ̃αi (τ) dτ and , i = 1, ..., pα − 1, and µαpα (x) = µαpα (0) e−γx

βαr (x) = βαr (0) e−λ
α
r x +

x∫
0

e(τ−x)λ
α
r β̃αr (τ) dτ , r = 1, ...,m+

α ,

βαr (x) = −
∞∫
x

e(τ−x)λ
α
r β̃αr (τ) dτ , r = m+

α + 1, ..., qα,

(24)
with

µ̃αi (x) = 〈gα (x) , yαi 〉 and β̃αr (x) =
〈gα (x) , uαr 〉

λαr
. (25)

By the boundary conditions (14), we obtain the systems

m+
A∑

r=1

βAr (0)RA+u
A
r + µApA (0)RA+y

A
pA

= h0 +

pA−1∑
i=1

∞∫
0

µ̃Ai (τ) dτ RA+y
A
i +

qA∑
r=m+

A+1

∞∫
0

eτλ
A
r β̃Ar (τ) dτ RA+u

A
r ,

and

n+
B−1∑
r=1

βBr (0) CuBr + µBpB (0) CyBpB = βB
n+
B

(0) CuB
n+
B

+

qB∑
r=n+

B+1

∞∫
0

eτλ
B
r β̃Br (τ) dτ CuBr +

pB−1∑
i=1

∞∫
0

eτλ
B
r µ̃Bi (τ) dτ CyBi ,

with C = RB+ − CRB−. (26)

For a0 = MA
+ , we have the trivial solution fA = 0. Therefore, we consider

only non-zero h0,

h0 =
1√
MA

+

(a0 −MA
+ ) 6= 0,
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below. The system (26) has (under the assumption that all necessary integrals
exist) a solution, with a free parameter ϑ = βB

n+
B

(0) , if we assume that

conditions (16), (17), and (18) are fulfilled.

Theorem 3 Assume that conditions (16), (17), (18), and (22) are fulfilled
and that all necessary integrals exist. Then the system (21) with the boundary
conditions (13),(14), has a solution, with a free parameter

ϑ = βB
n+
B

(0) ,

given by Eqs.(23)-(26).

Note that ϑ will be determined by condition (19).
We fix a number σ, such that

0 < 2σ ≤ min {|λα| 6= 0; det(λαDα − LAα) = 0} and 2σ ≤ γ

and introduce the norm (cf. [11] and [4])

|h|σ = sup
x≥0

eσx |h (x)| ,

the Banach space

X =
{
h ∈ B0[0,∞) | |h|σ <∞

}
and its closed convex subset

SR =
{
h ∈ B0[0,∞) | |h|σ ≤ R |h0|

}
,

where R is a, so far, undetermined positive constant.
We assume that conditions (16), (17), and (18) are fulfilled and introduce

the operator Θ(f) = (ΘA(f), ΘB(f)) on X , defined by
ΘA(f) =

qA∑
r=1

βAr (f(x))uAr +
pA∑
i=1

µAi (f(x)) yAi

ΘB(f) =
qB∑
r=1

βBr (f(x))uBr +
pB∑
i=1

µBi (f(x)) yBi

,

where qα = nα − pα and

µαi (f(x)) = −
∞∫
x

µ̃αi (f(τ)) dτ and , i = 1, ..., pα − 1,

µαpα (f(x)) = µαpα (f(0)) e−γx

βαr (f(x)) = βαr (f(0)) e−λ
α
r x +

x∫
0

e(τ−x)λ
α
r β̃αr (f(τ)) dτ , r = 1, ...,m+

α ,

βαr (f(x)) = −
∞∫
x

e(τ−x)λ
α
r β̃αr (f(τ)) dτ , r = m+

α + 1, ..., qα,
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with βα1 (f(0)) , ..., βα
m+
α

(f(0)), and µAk (f(0)) given by the systems

m+
A∑

r=1

βAr (f(0))RA+u
A
r + µApA (f(0))RA+y

A
pA = h0

+

kA−1∑
i=1

∞∫
0

µ̃Ai (f (τ)) dτ RA+y
A
i +

qA∑
r=m++1

∞∫
0

eτλ
A
r β̃Ar (f (τ)) dτ RA+u

A
r ,

n+
B−1∑
r=1

βBr (f(0)) CuBr + µBpB (f(0)) CyBpB = ϑCuB
n+
B

+

qB∑
r=n+

B+1

∞∫
0

eτλ
B
r β̃Br (f (τ)) dτ CuBr +

pB−1∑
i=1

∞∫
0

eτλ
B
r µ̃Bi (f (τ)) dτ CyBi ,

and βB
n+
B

(f(0)) = ϑ, ϑ ∈ R,

C = RB+ − CRB−, and
µ̃Ai (f) =

〈
−εLBAfB + SAA

(
fA, fA

)
+ εSBA

(
fB , fA

)
, yAi

〉
β̃Ar (f) =

〈
−εLBAfB + SAA

(
fA, fA

)
+ εSBA

(
fB , fA

)
, uAr

〉
β̃Br (f) =

〈
εSBB

(
fB , fB

)
+ SAB

(
fA, fB

)
, uBr

〉 .

Lemma 1 Let f, h ∈ X , assume that conditions (16), (17), and (18) are
fulfilled, and fix a positive constant Kϑ > 0. Then there is a positive constant
K (independent of f and h), such that

|Θ(0)|σ ≤ K |h0| , (27)

|Θ(f)−Θ(h)|σ ≤ K(|f |σ + |h|σ + |h0|) |f − h|σ , (28)

for all ϑ, such that |ϑ| ≤ Kϑ |h0|.
Proof The proof can be carried out in a similar way to the proof of the
corresponding lemma in the case of single-component gases (Lemma 5.2 in
[4]), noting that∣∣Sαβ(fα, fβ)− Sαβ(hα, hβ)

∣∣
2σ

=
∣∣Sαβ(fα − hα, fβ) + Sαβ(hα, fβ − hβ)

∣∣
2σ

≤ Kαβ
1 (
∣∣fβ∣∣

σ
|fα − hα|σ + |hα|σ

∣∣fβ − hβ∣∣
σ
)

and ∣∣LBA(fB − hB)
∣∣
σ
≤ K2

∣∣fB − hB∣∣
σ
.

ut
Theorem 4 Let conditions (16), (17), and (18) be fulfilled and fix a positive
constant Kϑ > 0. Then there is a positive number δ0, such that if

|h0| ≤ δ0,

then the system (20) with the boundary conditions (13),(14), has a unique
solution f = f(x) in SR for a suitable chosen R, for all ϑ, such that

|ϑ| ≤ Kϑ |h0| .
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Proof By estimates (27) and (28), there is a positive number K such that

|Θ(f)|σ = |Θ(f)−Θ(0) +Θ(0)|σ ≤ K(|h0|+ |f |2σ + |h0| |f |σ) (29)

if f ∈ X .
Let

R = 2K and δ0 =
1

R2 +R
.

By estimates (28) and (29)

|Θ(f)|σ ≤ (
1

2
+
R2 +R

2
|h0|)R |h0| ≤ R |h0|

and

|Θ(f)−Θ(h)|σ ≤ (2R+ 1)K |h0| |f − h|σ ≤ % |f − h|σ ,

with % =
2R2 +R

2
δ0 < 1,

if f, h ∈ SR and |h0| ≤ δ0.
The theorem follows by the contraction mapping theorem. ut

Theorem 5 The solution of Theorem 4 is a solution of the problem
(12),(13),(14) if and only if

P+
A f

A(0) = 0.

Proof The relations

µαpα(f(x)) = µαpα(f(0))e−γx,

are fulfilled if f(x) is a solution of Theorem 4. Hence,

P+
α f

α(0) = 0 if and only if P+
α f

α(x) ≡ 0.

But,

P+
B f

B(0) =

〈
fB(0),

√
MB

〉
DB〈√

MB ,
√
MB

〉
DB

√
MB

and〈
fB(0),

√
MB

〉
DB

=
〈
CRB−f

B(0), RB+
√
MB

〉
D+
B

−
〈
RB−f

B(0), RB−
√
MB

〉
D−B

=

n+
B∑

i,j=1

ξB,1i MB
0i

ξB,1j

√
MB
n+
B+j〈

D−BM
B
0−, 1

〉 fB
n+
B+j

(0)−
n−B∑
j=1

ξB,1j

√
MB
n+
B+j

fB
n+
B+j

(0) = 0,

since D−B = D+
B , n−B = n+B , MB

0− = MB
0+ etc.. Hence,

P+
B f

B(x) ≡ 0 and P+
A f

A(0) = 0 if and only if P+
A f

A(x) ≡ 0.

ut
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We remind that, since b− < b < 0,

ΨA = P+
A f

A =

〈
fA(x), yApA

〉
DA〈

yApA , y
A
pA

〉
DA

yAk

and denote by Iγ the linear solution operator

Iγ(h0, ϑ) = fA(0),

where f(x) is given by

DA
dfA

dx
+ LAAf

A + γΨA = −εLBAfB

DB
dfB

dx
+ LABf

B = 0

RA+f
A(0) = h0 and CfB(0) = 0

f =
(
fA, fB

)
→ 0, as x→∞

.

Similarly, we denote by Iγ the nonlinear solution operator

Iγ(h0, ϑ) = fA(0),

where f(x) is given by

DA
dfA

dx
+ LAAf

A + γΨA = SAA
(
fA, fA

)
+ εSBA

(
fB , fA

)
− εLBAfB

DB
dfB

dx
+ LABf

B = εSBB
(
fB , fB

)
+ SAB

(
fA, fB

)
RA+f

A(0) = h0 and CfB(0) = 0
f =

(
fA, fB

)
→ 0, as x→∞

.

By Theorem 5, the solution of Theorem 4 is a solution of the problem
(12),(13),(14) if and only if

P+
A I

γ(h0, ϑ) = 0.

Let

r1 =
r′1√

〈r′1, r′1〉D+
A

, with r′1 = RA+y
A
kA −

m+
A∑

r=1

〈
RA+y

A
kA
, RA+u

A
r

〉
D+
A〈

RA+u
A
r , R

A
+u

A
r

〉
D+
A

RA+ur 6= 0.

Then

P+
A Iγ(h0, 0) = 0⇔ h0 ∈ R

⊥
D

+
A , where

R
⊥
D

+
A =

{
u ∈ Rn

+
A

∣∣∣ 〈u, r1〉D+
A

= 0
}
,

and

Iγ(h0, ϑ) = Ĩγ(a1, h1, ϑ), where

h0 = a1r1 + h1, with h1 ∈ R
⊥
D

+
A and a1 = 〈h0, r1〉D+

A
.
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Lemma 2 Suppose that

P+
A I

γ(h0, ϑ) = 0.

Then h0 is a function of h1 and ϑ, if 〈h0, h0〉D+
A

and

mtot
B

ε
= mB

nB∑
i=1

∞∫
0

√
MBfBi (x) dx

are sufficiently small.

Proof It is obvious that Iγ(0, 0) = 0 and that we for the Fréchet derivative
of Iγ(εh0, 0) have

d

dε
Iγ(εh0, 0)

∣∣∣∣
ε=0

= Iγ(h0, 0).

Then

∂

∂a1

〈
Ĩγ(a1, h1, ϑ), yAkA

〉
DA

∣∣∣∣
(0,...,0)

=
d

dε

〈
Iγ(εr1, 0), yAkA

〉
DA

∣∣∣∣
ε=0

=
〈
Iγ(r1, 0), yAkA

〉
DA
6= 0.

By the implicit function theorem,〈
Ĩγ(a1, h1, ϑ), yAkA

〉
DA

= 0

defines

a1 = a1(h1, ϑ)

if 〈h0, h0〉D+
A

and ϑ are sufficiently small. Clearly,

Kmϑ ≤
mtot
B

ε
,

for some positive constant Km. Hence, ϑ is sufficiently small if
mtot
B

ε
is suffi-

ciently small. ut

The cases b < b− and b = b− can be treated in a similar way. In the case
b < b−, we are done by Theorem 4. In the case b = b− we can modify the
proof inspired by the proof for single species in a recent unpublished work by
the author. In this work the result in [4] is improved, by getting rid of some
quite restrictive conditions in the degenerate cases (as l > 0), essentially built
on the use of a different damping term in the proof than in [4].
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6 Exact solution for a reduced six+four-velocity model

We now consider the case when the vapor, gas A, is modeled by a six-velocity
model with velocities

(±1, 0) and (±1,±1),

and the non-condensable gas B is modelled by the classical Broadwell model
[8] in plane with velocities

(±m,±m), where m =
mA

mB
.

Note that for the Broadwell model we have only two linearly independent
collision invariants, as the mass vector and the energy vector are linearly
dependent, even if mass, momentum, and energy all are preserved. For a
flow axially symmetric around the x-axis we obtain the reduced system

dFA1
dx

= σ1q1 + σ2q2

dFA2
dx

= −σ1q1 + σ3q3

−dF
A
3

dx
= −σ1q1 − σ2q2

−dF
A
4

dx
= σ1q1 − σ3q3

m
dFB1
dx

= σ2q2 + σ3q3

−mdFB2
dx

= −σ2q2 − σ3q3

,

where

q1 = FA2 F
A
3 − FA1 FA4 , q2 = FA3 F

B
1 − FA1 FB2 , q3 = FA4 F

B
1 − FA2 FB2 ,

FA1 (x) = FA(x, (1, 0)), FA2 (x) = FA(x, (1, 1)) = FA(x, (1,−1)),

FA3 (x) = FA(x, (−1, 0)), FA4 (x) = FA(x, (−1, 1)) = FA(x, (−1,−1)),

FB1 (x) = FB(x, (m,m)) = FB(x, (m,−m)), and

FB2 (x) = FB(x, (−m,m)) = FB(x, (−m,−m)),

or equivalently
DA

dFA

dx
= QAA(FA, FA) +QBA(FB , FA)

DB
dFB

dx
= QAB(FA, FB) +QBB(FB , FB)

,
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where

DA = diag(1, 1,−1,−1), DB = diag(m,−m), FA =
(
FA1 , F

A
2 , F

A
3 , F

A
4

)
,

FB =
(
FB1 , F

B
2

)
, QAA(FA, FA) = σ1q1(1,−1,−1, 1),

QBA(FB , FA) = σ2q2(1, 0,−1, 0) + σ3q3(0, 1, 0,−1),

QAB(FA, FB) = (σ2q2 + σ3q3) (1,−1), and QBB(FB , FB) = 0.

The set of collision invariants are generated by the collision invariants
φ0 = (1, 1, 1, 1, 0, 0)
φ1 = (0, 0, 0, 0, 1, 1)
φ2 = (1, 1,−1,−1, 1,−1)
φ3 = (1, 2, 1, 2, 2m, 2m)

,

and the Maxwellians are of the form

M =
(
MA,MB

)
, with MA = sA(1, q, p, pq) and MB = sB(1, p), (30)

where p, q, sA, sB > 0.
We consider the case when p > 1 (corresponding to condensation) and

assume the boundary conditions
(
FA1 (0)
FA2 (0)

)
= sA0

(
1
q0

)
FB1 (0) = FB2 (0)

,

at the condensed phase, and

FA →MA = sA(1, q, p, pq), and FB → 0 as x→∞,

at the far end. We note that for this simplified model diffuse and specular
reflection coincide for gas B.

We denote

F =
(
MA, 0

)
+
√
Mf ,

for the Maxwellian of the form (30), such that FA → MA and sB = 1. We
let ε = 1 here, cf. Eq.(6). We obtain the system (note that SBB(fB , fB) = 0)

dfA

dx
+D−1A LAAf

A = D−1A (SAA(fA, fA) + SBA(fB , fA)− LBAfB)

dfB

dx
+D−1B LABf

B = D−1B SAB(fA, fB)

,

(31)
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where

D−1A LAA = sAσ1

 −pq p
√
q
√
pq −√pq

p
√
q −p −√pq √p

−√pq √pq q −√q√
pq −√p −√q 1

 ,

D−1A LBA =
√
sA

 σ2p −σ2
√
p

σ3p
√
b −σ3

√
pq

σ2
√
p −σ2

σ3
√
pq −σ3

√
q

 ,

D−1B LAB =
sA

m
(σ2 + σ3b)

(
p −√p√
p −1

)
,

D−1A SAA(fA, fA) = σ1q1
√
sA(
√
pq,−√p,√q,−1),

D−1A SBA(fB , fA) = σ2q2(
√
p, 0, 1, 0) + σ3q3(0,

√
p, 0, 1), and

D−1B SAB(fA, fB) =

√
sA

m
(σ2q2 + σ3q3

√
q)(
√
p, 1).

The new boundary conditions are
(
fA1 (0)
fA2 (0)

)
=

1√
sAq

(√
q(sA0 − sA)
sA0 q0 − sAq

)
fB1 (0) =

√
pfB2 (0)

, (32)

at the condensed phase, and

fA → 0 and fB → 0 as x→∞,

at the infinity.
The linearized collision operators LAA and LAB are symmetric and semi-

positive and have the null-spaces

N(LAA) = span(yA1 , y
A
2 , y

A
3 ) and N(LAB) = span(yB) with yB = (1,

√
p),

yA1 = (
√
p,
√
pq, 1,

√
q), yA2 = (1, 0,

√
p, 0), and yA3 = (0, 1, 0,

√
p).

The non-zero eigenvalues of D−1A LAA and D−1B LAB are (remind that p > 1)

λA = sAσ1(1 + q)(p− 1) > 0 and λB =
sA

m
(σ2 + σ3q)(p− 1) > 0,

respectively, with corresponding eigenvectors

uA = (
√
pq,−√p,√q,−1) and uB = (

√
p, 1).

We decompose {
fA = µA1 y

A
1 + µA2 y

A
2 + µA3 y

A
3 + βAuA

fB = µByB + βBuB
.
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By Eq.(31)
dµB

dx
=
dµA2
dx

=
dµA3
dx

= 0,

and, since µB → 0, µA2 → 0, and µA3 → 0 as x→∞,

µB = µA2 = µA3 = 0.

Then
SAA(fA, fA) = SBA(fB , fA) = SAB(fA, fB) = 0.

Hence, we have a linear system
dfA

dx
+D−1A LAAf

A = −D−1A LBAf
B

dfB

dx
+D−1B LABf

B = 0

,

or, equivalently, 

dβA

dx
+ λAβA = −βB√q(σ2 − σ3)

dµA1
dx

= −βB p− 1

1 + q
(σ2 + σ3q)

dβB

dx
+ λBβB = 0

. (33)

Solving system (33), with the boundary conditions βB → 0, βA → 0, and
µA1 → 0 as x→∞, we obtain
βA = βB0

√
q
σ2 − σ3
λB − λA

e−λ
Bx + ke−λ

Ax

µA1 = βB0
m

sA (1 + q)
e−λ

Bx

βB = βB0 e
−λBx

, with βB0 = βB(0) and k constant.

If we fix the total amount of gas B to be mtot
B , then

mtot
B = 2mBβ

B
0

√
p

∞∫
0

e−λ
Bx dx = 2mBβ

B
0

√
p

λB
,

and, hence,

βB0 =
λBmtot

B

2mB
√
p

=
sAmtot

B

2mA
√
p

(σ2 + σ3q)(p− 1).

By the boundary conditions (32) at the condensed phase,

1√
sAq

(√
q(sA0 − sA)
sA0 q0 − sAq

)
=
√
p(βB0

√
q
σ2 − σ3
λB − λA

+ k)

(√
q
−1

)
+
√
pβB0

m

sA (1 + q)

(
1√
q

)
.
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Then

k =
sA0 − sA√
sApq

+ βB0
√
q
σ2 − σ3
λA − λB

− mβB0
sA
√
q (1 + q)

,

and we obtain the solvability condition

sA0 (1 + q0) = sA(1 + q) +
mtot
B

√
sA

2mB
(σ2 + σ3q)(p− 1).

All our assumptions in Section 4 are fulfilled for this reduced model, if
we allow b− = −∞ in Eq.(15), even if it is a drawback that our model is
simplified and that all the non-linear terms disappear. We have that

dim(RB+ − CRB−)U+
B = 0 = n+B − 1,

and, especially,

MB
0√
MB

=
sB0√
p

(
√
p, 1) ∈ span(uB).

Furthermore,

RA+
√
MA =

√
sA(1,

√
q) /∈ span(

√
q,−1) = span(uA) and

N(LAB) = span(
√
MB).

We don’t need any smallness assumptions on the total amount of the gas B,
or on the closeness of the far Maxwellian and the Maxwellian at the wall for
the gas A, due to the disappearance of the quadratic terms. We note that,
in agreement with our main result in Section 4, we have exactly

k+A + l = k+A = 1

solvability condition.

7 Twelve+six-velocity model

We now consider the case when the vapor, gas A, is modelled by a twelve
velocity model with velocities

(±1,±1), (±1,±3) and (±3,±1),

and the non-condensable gas B is modelled by a six-velocity model with
velocities

(±m, 0) and (±m,±m), where m =
mA

mB
.

We assume that we have a flow axially symmetric around the x-axis and
obtain the reduced system

D
dF

dx
= Q(F, F ),
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where

D =

(
DA 0
0 DB

)
, with

DA = (1, 1, 3,−1,−1,−3) and DB = (m,m,−m,−m) ,

F =
(
FA1 , ..., F

A
6 , F

B
7 , ..., F

B
10

)
,

FA1 (x) = FA(x, (1, 1)) = FA(x, (1,−1)),

FA2 (x) = FA(x, (1, 3)) = FA(x, (1,−3)),

FA3 (x) = FA(x, (3, 1)) = FA(x, (3,−1)),

FA4 (x) = FA(x, (−1, 1)) = FA(x, (−1,−1)),

FA5 (x) = FA(x, (−1, 3)) = FA(x, (−1,−3)),

FA6 (x) = FA(x, (−3, 1)) = FA(x, (−3,−1)),

FB1 (x) = FB(x, (m, 0)), FB2 (x) = FB(x, (m,m)) = FB(x, (m,−m)),

FB3 (x) = FB(x, (−m, 0)), FB4 (x) = FB(x, (−m,m)) =B F (x, (−m,−m)),

and

Q(f, f)

= (σ1q1 + σ2q2 + σ3q3 + σ6q6 + σ7q7, σ1q1 − σ2q2 + σ4q4 + σ8q8 + σ9q9,

−σ1q1 − σ4q4,−σ1q1 − σ2q2 − σ3q3 − σ6q6 − σ7q7,
σ2q2 − σ3q3 + σ4q4 − σ8q8 − σ9q9, σ3q3 − σ4q4, σ5q5 − σ6q6 − σ8q8,
−σ5q5 − σ7q7 − σ9q9,−σ5q5 + σ6q6 + σ8q8, σ5q5 + σ7q7 + σ9q9),

with

q1 = FA3 F
A
4 − FA1 FA2 , q2 = FA2 F

A
4 − FA1 FA5 , q3 = FA4 F

A
5 − FA1 FA6 ,

q4 = FA3 F
A
6 − FA2 FA5 , q5 = FB2 F

B
3 − FB1 FB4 , q6 = FA4 F

B
1 − FA1 FB3 ,

q7 = FA4 F
B
2 − FA1 FB4 , q8 = FA5 F

B
1 − FA2 FB3 , q9 = FA5 F

B
2 − FA2 FB4 ,

and σ1, ..., σ9 ≥ 0.

The Maxwellians are of the form

M =
(
MA,MB

)
, with MA = sA(p2, p2q8, q8, p4q8, p4q8, p6q8),

MB = sB(1, qm, p2, p2qm), and p, q, sA, sB > 0. (34)

We consider the case when p > 1 (corresponding to condensation) and
assume the boundary conditions

FA1 (0)
FA2 (0)
FA3 (0)

 =

a0,1
a0,2
a0,3


(
FB1 (0)
FB2 (0)

)
=

1

1 + qm0

(
1 1
qm0 qm0

)(
FB3 (0)
FB4 (0)

) ,



25

at the condensed phase, and

FA →MA = sA(p2, p2q8, q8, p4q8, p4q8, p6q8) and FB → 0 as x→∞,

at infinity.
We denote

F =
(
MA, 0

)
+
√
Mf ,

for the Maxwellian of the form (34), such that FA →MA and sB = 1. Then
we obtain a system

dfA

dx
+D−1A LAAf

A = D−1A (SAA(fA, fA) + εSBA(fB , fA)− εLBAfB)

dfB

dx
+D−1B LABf

B = εD−1B SBB(fB , fB) +D−1B SAB(fA, fB)

,

where, in particular,

D−1B LAB

=
sAp2

m

p2(σ6 + q8σ8) 0 −p(σ6 + q8σ8) 0
0 p2(σ7 + q8σ9) 0 −p(σ7 + q8σ9)

p(σ6 + q8σ8) 0 −(σ6 + q8σ8) 0
0 p(σ7 + q8σ9) 0 −(σ7 + q8σ9)

 .

The new boundary conditions are

 fA1 (0)
fA2 (0)
fA3 (0)

 =
1

pq4
√
sA

 q4(a0,1 − sAp2)
a0,2 − sAp2q8
p(a0,3 − sAq8)


(
fB1 (0)
fB2 (0)

)
=

p

(1 + qm0 )qm/2

(
qm/2 qm

1 qm/2

)(
fB3 (0)
fB4 (0)

) ,

at the condensed phase, and

fA → 0 and fB → 0 as x→∞,

at the far end.
The linearized collision operator LAB has the null-space

N(LAB) = span(yB1 , y
B
2 ) with yB1 = (1, 0, p, 0) and yB2 = (0, 1, 0, p),

and the non-zero eigenvalues of D−1B LAB are (remind that p > 1)

λB1 =
sAp2

m
(σ6 + q8σ8)(p2 − 1) > 0 and λB2 =

sAp2

m
(σ7 + q8σ9)(p2 − 1) > 0,

with corresponding eigenvectors

uB1 = (p, 0, 1, 0) and uB2 = (0, p, 0, 1) .
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Then

(RB+ − CRB−)uB1 =
pqm0

(1 + qm0 )qm/2
(qm/2,−1) = − qm0

qm/2
(RB+ − CRB−)uB2 ,

and, therefore,

dim(RB+ − CRB−)span(uB1 , u
B
2 ) = 1 = n+B − 1.

Especially,

MB
0√
MB

=
sB0

pqm/2
(pqm/2, pqm0 , q

m/2, qm0 ) ∈ span(uB1 , u
B
2 ).

Furthermore,

(RB+ − CRB−)
√
MB = (1− p2(1 + qm)

1 + qm0
, qm/2 − p2(1 + qm)qm0

(1 + qm0 )qm/2
)

/∈ (RB+ − CRB−)span(uB1 , u
B
2 ),

and, hence,

dim(RB+ − CRB−)span(uB1 , u
B
2 ,
√
MB) = 2 = n+B .

Let us now consider the twelve-velocity plane DVM

(±1,±1) , (±3,±1) and (±1,±3) .

The Maxwellians are of the form

MA = sA(p2, p2q8, q8, p4q8, p4q8, p6q8),

where q = e−c, p = e−b and sA = eae3b−2c, a, b and c are constant, and the
null-space of LAA is

N(LAA) = span (φ1, φ2, φ3) ,

where
φA1 =

√
MA(1, 1, 1, 1, 1, 1) =

√
sA(p, pq4, q4, p2, p2q4, p3q4)

φA2 =
√
MA(1, 1, 3,−1,−1,−3) =

√
sA
(
p, pq4, 3q4,−p2,−p2q4,−3p3q4

)
φA3 =

√
MA(2, 10, 10, 2, 10, 10) = 2

√
sA
(
p, 5pq4, 5q4, p2, 5p2q4, 5p3q4

) .

If we denote ϕ1 = (1, 0, 0, p, 0, 0)
ϕ2 = (q−4,−1, 0, 0,−2p,−3p2)
ϕ3 =

(
0, p, 1, 0, p2, p3

) ,

then

span (ϕ1, ϕ2, ϕ3) = span
(
φA1 , φ

A
2 , φ

A
3

)
,
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and,

KA = (〈ϕi, ϕj〉DA) =

1− p2 q−4 0
q−4 q−8 + 1− 4p2 − 27p4 −p+ 2p3 + 9p5

0 −p+ 2p3 + 9p5 3 + p2 − p4 − 3p6

 .

Hence,

detKA = 3(1− p2)(1− (4 + q−8)p2 − 2

3
(41 + 2q−8)p4 − (4 + q−8)p6 + p8)

= 3(1− p2)(1− 2Sp2 + p4)(1 + 2S̃p2 + p4),

where

S =
1

4q8

(
1 +

4

q8
+

√
1 +

40

3q8
(1 +

10

q8
)

)
> 1 and

S̃ =
1

4q8

(
−1− 4

q8
+

√
1 +

40

3q8
(1 +

10

q8
)

)
> 0.

Therefore,

detKA = 0⇔ p = 1∨p =

√
S ±

√
S2 − 1⇔ b = 0∨b = − ln(S ±

√
S2 − 1)

2
.

But,

S −
√
S2 − 1 =

1

S +
√
S2 − 1

< 1,

and hence,

detKA = 0⇔ b = 0 ∨ b = b± = ± ln(S +
√
S2 − 1)

2
.

Furthermore,

detKA = −P (p− 1)(p−
√
S +

√
S2 − 1)(p−

√
S −

√
S2 − 1), where

P = 3(p+

√
S +

√
S2 − 1)(p+

√
S −

√
S2 − 1)(1 + p)(1 + 2S̃p2 + p4) > 0.

Hence, if we consider different values of negative b, b < 0, (i.e. p > 1) we
obtain

b < b− : detKA < 0⇒ k+A = 0 ∨ k+A = 2

b = b− : detKA = 0⇒ k+A = 0 ∨ k+A = 1 ∨ k+A = 2

b− < b < 0 : detKA > 0⇒ k+A = 1 ∨ k+A = 3.

By the method of Routh-Hurwitz we obtain the following values for k+A , k−A ,
and lA, depending on the value of b, b < 0;

b < b− : k+A = l = 0, k−A = 3

b = b− : k+A = 0, k−A = 2, lA = 1

b− < b < 0 : k+A = 1, k−A = 2, lA = 0.
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Remark 3 One can, by similar arguments and the Routh-Hurwitz method
obtain the following values for k+A , k−A , and lA, for b ≥ 0 (i.e. p ≤ 1);

b = 0 : k+A = 0, k−A = 1, lA = 2

0 < b < b+ : k+A = 2, k−A = 1, lA = 0

b = b+ : k+A = 2, k−A = 0, lA = 1

b > b+ : k+A = 3, k−A = lA = 0.

The only condition of our necessary conditions we haven’t proved for this
model is condition (16) when b− < b < 0. This we have to leave open for
now. However, it seems most likely, especially for b sufficiently close to 0,
that also condition (16) is fulfilled for this model.
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