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Abstract We consider a non-linear half-space problem related to the con-
densation problem for the discrete Boltzmann equation and extend some
known results for a single-component gas to the case when a non-condensable
gas is present. The vapor is assumed to tend to an assigned Maxwellian at in-
finity, as the non-condensable gas tends to zero at infinity. We assume that the
vapor is completely absorbed and that the non-condensable gas is diffusively
reflected at the condensed phase and that the vapor molecules leaving the
condensed phase are distributed according to a given distribution. The condi-
tions, on the given distribution, needed for the existence of a unique solution
of the problem are investigated. We also find exact solvability conditions and
solutions for a simplified six+four-velocity model, as the given distribution
is a Maxwellian at rest, and study a simplified twelve+six-velocity model.
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1 Introduction

In this paper we consider the condensation problem for a single-component
gas or vapor when a non-condensable gas is present [15]. Formulation and
motivation of the problem can be found in [15]. The vapor is assumed to tend
to an assigned Maxwellian M2 with a flow velocity towards the condensed
phase, at infinity, while the non-condensable gas tends to zero at infinity.
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Steady condensation of the vapor takes place at the condensed phase, which
is held at a constant temperature. We assume that the vapor is completely
absorbed and that the non-condensable gas is diffusively reflected at the
condensed phase, i.e. there is no net flow across the condensed phase and
the gas molecules leaving the condensed phase are distributed according to
a non-drifting Maxwellian M at the condensed phase. The vapor molecules
leaving the condensed phase are distributed according to a given distribution.
The conditions, on the given distribution at the condensed phase, needed for
the existence of a unique solution of the problem are investigated. We assume
that the given distribution is sufficiently close to the Maxwellian M2 at the
infinity and that the total mass of the non-condensable gas relatively this
distance is sufficiently small. The explicit number of conditions on the given
distribution is given in Theorem 2, under some assumptions on the discrete
velocity models for the gases.The typical case is that the given distribution is
the Maxwellian at the condensed phase [15]. However, we can’t be sure that
there is any Maxwellian at rest close enough to the Maxwellian at infinity,
but if there is, of course our results are valid also in this case.

Similar problems have been studied for the discrete Boltzmann equation
for single species (a vapor in the absence of a non-condensable gas) [4],[3],
and references therein, and binary mixtures of two vapors [5], as well as
for the full Boltzmann equation for single species [19],[1],[20] and binary
mixtures [18], and references therein. For the discrete Boltzmann equation,
one obtain for binary mixtures of two vapors a similar structure as for single-
component gases [5]. One can then extend results for half-space problems
of single-component gases [2], [4] to yield also for binary mixtures of two
vapors. However, though, both complete absorption and diffuse reflection
conditions are considered (at least implicitly) for both single-component gases
and binary mixtures of two vapors in [4] and [5], the situation will be different
when one of the gases is non-condensable. The fact that the distribution
function for the non-condensable gas tends to zero at infinity changes the
situation. First of all we can not use the standard transformation used in
[4] and [5], but we use instead a slight modification of it, which changes the
structure of the obtained system. Secondly, the trivial case when the non-
condensable gas is absent, i.e. the case of a single-component gas considered
in [4] and [19], is a trivial solution of the system. Therefore, in difference
to the case of a vapor, we need, in the case of a non-condensable gas, to
have a free parameter, which will later be settled by fixing the amount of the
non-condensable gas. Hence, even if our proof is influenced by the proof in
[4] (and [19]) for single-component gases, we have to take these differences
into account. To our knowledge, there is no corresponding results for the full
Boltzmann equation up to now.

The paper is organized as follows. In Section 2 we present the discrete
velocity model for binary mixtures and some of its properties. We make a
transformation and obtain a transformed system, presented with some of its
properties in Section 3. In Section 4 we present our assumptions and our main
result in Theorem 2. The proof of our main result (Theorem 2) is presented
in Section 5. In Section 6 we find an exact solvability condition and the
solution for a simplified six+four-velocity model, for which the non-linear



problem becomes linear. Here the vapor molecules leaving the condensed
phase are distributed according to the Maxwellian at the condensed phase.
In Section 7 we prove all the necessary conditions for existence, except one,
which still is most likely to be fulfilled, for a simplified twelve+six-velocity
model.

2 Discrete velocity models (DVMs) for binary mixtures

We first remind some properties of the discrete Boltzmann equation, or the
general discrete velocity model (DVM), for binary mixtures [5].

The planar stationary discrete Boltzmann equation for a binary mixture
of the gases A and B reads

FA
fz“’l‘dd;} = QM(IFA FA) + QPAFP FY) i =1, .. na,
dFP v
B,1 AB A B BB B B L
& = QP (FALFR) + QFF(FPFP), j=1,..n,

where V, = {£¢,...,6%} C R4 a,B € {A, B} are finite sets of velocities,
Fr = F¥(x) = F¥(x,&) for i = 1,...,n4, and F* = F* (x,&) represents
the microscopic density of particles (of the gas a)) with velocity £ at position
x € R. We denote by m, the mass of a molecule of the gas a. Here and
below, a, 8 € {A, B}.

For a function g® = g*(§) (possibly depending on more variables than &),
we will identify g® with its restrictions to the set V¢, but also when suitable
consider it like a vector function

g% = (97, 9n.), with g@* = g* (£).

The collision operators Q”*(F#, F*) in (1) are given by

QI (FP Py =" Z I (B,0) (FeF — FAFY) fori=1,...n
k=1 j,l=1

where it is assumed that the collision coefficients Fi’}l (B,a), with 1 < i,k <
ne and 1 < 7,1 < ng, satisfy the relations

Fi’;l (o, ) = Fﬁl (o, ) and Fi];l(ﬁ,a) =1I(8,a) = F;f(a,ﬁ) >0
with equality unless the conservation laws
2 2
« «@ a2 @2
Mags+mag) = ma&i +mag] and me |8 +mg €] = maleg?+ms €|
are satisfied. We denote

F=(FAF%) = (F*(),F?(¢) and Q(F,F)
— (QAA(FA,FA) + QBA(FB,FA),QAB(FA,FB) —|—QBB(FB,FB)) )



Then the system (1) can be rewritten as

P —q k),

where
Dy 0 . L eanl
D= < 0 DB> , with Dy, = diag(&, ..., €21,

We consider the case of non-zero €', €' # 0, and we can then (without
loss of generality) assume that

D+ 0
Da:( 0 —D>’

D} = diag(§',...,€%)) and D = —diag(gz;lﬂ, o €01), with

a,l a,l a,l a,l
& ,...75712 > 0 and fn;r_H, v & < 0.

where

The collision operator Q(f, f) can be obtained from the bilinear expres-
sions

1 &

Qi(F.G) =5 Y THAAEG+GIF - FG - GIF}Y)
Gk, =1
na np
+= Z > IE(B,A)FAGP + GRFP — FAGP - GFP), i=1,...na,
k 1j,l=1
and
npg na
Qnasi (F,G) Z > A B)(FPG + GEFS - FPG) — GPF)
k 1j5,l=1

+ Z IMB,B)(FPGP + GEFP — FPGP — GPFP),i=1,..,np.
]kl 1

Denoting
QF,G)=(Q1(F,G),....Qn (F,G)), with n =n4 + ng,
we see that, for arbitrary F' and G
QF,G)=Q(G,F).
A vector ¢ = (qu, ¢B ) is a collision invariant if and only if
O+ 0] = ¢ +@f

for all indices 1 < i,k < ny, 1 < 4,1 < ng and o, € {A, B}, such that



We consider below only DVMs, such that the DVMs for the gases A and
B are normal, i.e. the only collision invariants of the forms ¢ = (¢A, O) and

¢ = (0,¢%), respectively, fulfills

¢a = ¢a(§> = o + Mab - £+ cmy |§|23

for some constant a,,c € R and b € R?. It is also preferable that any general
collision invariant of our DVMs is of the form

6= (¢",0"), with 6% = ¢(§) = aa + mab-E+ema |, (2)
for some constant a4, ap,c € R and b € R?. In this case the equation

(0, Q(F,F)) =0
has the general solution (2). Here and below, we denote by (-, -) the Euclidean
scalar product on R™. Such DVMs, being normal both considering the gases
together as a mixture as well as considering them separately as single species,
is called supernormal [7]. This property is fulfilled for the continuous Boltz-
mann equation. In the discrete case we can obtain so called spurious (unphys-
ical) collision invariants. However, possible spurious collision invariants (for

the mixture) don’t seem to affect the qualitative properties of our results.
We would also like our DVMs to fulfill that the equation

(6,Q*F (FA,FP)) =0 (3)
has the general solution ¢ = a, where a is constant. We call a supernormal
DVM fulfilling condition (3) for optinormal. This property is fulfilled for the

continuous Boltzmann equation [14], but not necessarily for a DVM. However,
we will below see that we can relax this assumption a little.

Ezxample 1 The DVM, with
ma = 2mp,

where the vapor, gas A, is modeled by the twelve-velocity model with veloc-
ities
(£1,41), (£1,4+3), and (£3, +1),
and the non-condensable gas B is modeled by the six-velocity model with
velocities
(£2,0) and (£2, +4),

is optinormal.

A binary Maxwellian distribution (or just a bi-Maxwellian) is a function

M = (M*,MP),
such that
Q(M,M)=0and M >0 for all 1 <i <mn,.

All bi-Maxwellians are of the form M = e?, where ¢ is a collision invariant,
i.e. for normal models we will have

M = (M*,MP), with M* = ¢*" = etatmab-Etemale]” (4)
We will study distributions F', such that

F — (MA, 0) as z — oo, where MA = 9" = gaatmab-ttemalel®, (5)



3 Transformed system

For a bi-Maxwellian

M= (M*,eMP),
where M@ = 9" = gatmab-étemalél® anq ¢ is a so far undetermined positive
constant less or equal to 1, 0 < € < 1, we obtain, by denoting

F=(M*0)+VMf, (6)
in Eq.(1), the system
A
DA% + Laaft = —eLpaf? +SaalfA f4) +eSpa(f2, )
B )
DB% + Lapf? =eSpp(fB, fB) + San(f4, fP)

where

naA mna
(Laaf?),==2> Y \/MATE (A A)(\ MAFE — [ MAFD),

k=1j,l=1

np nNA
(Lapf?), == \/MADE(A, B)(\/ MAFE — \[MAFR), and

k=1j,1=1
naA mnp

(Leaf®), == > \MPIE B G ML P —JMALD),
k=1j,1=1

. -/
fori=1,...nagand i =1,....np,

and the quadratic parts S,z are given by

ng N

(Sap(F £7), =33/ MerH (0, B — 10 f)) i =1, mp.

k=1j,l=1

The matrices L 4, are symmetric and semi-positive. Furthermore,

LABfB =0 if fB c Span(\/W),
Laaf? =0if and only if f4 = vVMAp4,

where ¢ = (¢A, O) is a collision invariant,

(LoafP VMA) = (Spa(fP, F4),VMA) = (San(f*, 7). VMP ) =0,

and

(Saalf*, £, VMAs") =0
In the continuous case ker(L 4p) = span(v M B) [14], so for an optimal model

N(LAB) = span(v MB),



(cf. assumption (3)). We will, however, relax this assumption below. Here
and below, we denote by N(Lyg) the null-space of Lyg.
By assumption (5)
f—0asz— oco.

We denote by nt, where nt +n; = n,, and m2, with m} +m; = qa,
the numbers of positive and negative eigenvalues (counted with multiplicity)
of the matrices D, and D_'L4, respectively, and by mQ the number of
zero eigenvalues of DL s,. Moreover, we denote by k}, k-, and l,, with
kX + k = kq, where ko, + lo = pa, the numbers of positive, negative, and

zero eigenvalues of the p, X p, matrix K,, with entries kf; = <yf‘, y;‘>D =
<y?, Day;“> , such that {yf‘, ceey yg‘a} is a basis of the null-space of L4,, i.e.
in our case,

d+2, pg > 1, and span (yf, ...,yg‘ﬁ) =N(Laa)

— span(VMA, VMAGH L VMAET VA ¢4,

We remind that we by (-,-) denote the Euclidean scalar product on R™ and
below we also denote
<" '>Da = <'7 Da'> .

We now remind a result by Bobylev and Bernhoff in [6] (see also [2]) and
apply it in a specific case of interest for us.

pA

Theorem 1 The numbers of positive, negative and zero eigenvalues of
D 'L, are given by

mp =nt —kF —1,

=n, —k, —lo .

In the proof of Theorem 1 bases

a a a a a a a a
Uy, "'7uqaay1 ’ "'7yk0721 30y Zlaawl ’ "'awl(, (7)
of R" « € {A, B}, such that

y®, 2% € N(Laa), Dy Laqw® = 2% and D' Lagu® = \2u2 (8)

7l
and
(ug,up)p = A2y, with AT, oA >0and AT A <0,
<yf‘,y}l>Dm = 7;8;;, with 77, ""%?I > 0 and 72‘34_1, s Vi <0,
(uf,2)p, = (W wt)p, = Wy p, = (W) p, = (24 p, =0,
(wlws)p, = (2,2)p, =0and (W, z) b = s, 9)

are constructed.
If we assume that

ng = ng, or equivalently np = 27”%,



and that
St = (=Pt B2 L ePh P S0, for i =1,..,n}, (10)

then
Dy =D},

Let b be the first component of b in Eqs.(4). If we assume that b < 0, then
kp =1,
since
nb
(VMPVMP) =3 el 1 e @) up <o,
Dp 5
i=1
For an optimal model
Ky =1
(cf. condition (3)) and hence,
ki =1 =0and mj =n}. (11)
We will relax condition (3) by assuming
kp =pp > 1.

Then the conditions (11) are still satisfied.

4 Main result

We consider the non-linear system

d A
DACJi; + Laaf* = —eLpaf® + Saa(f*, ) +eSpa(f?, f4)
- . (12)
Dp——+ Lapf? = eSpp(fP, f?)+ Sas(f*, f7)
where the solution tends to zero at infinity, i.e.
fAx) = 0and fB(z) = 0 as z — oo, (13)

and

Lpaf?,Spa(fP, f4) € span(VMA), Saa(f2, f*) € N(Laa)*,
and SaB S N(LAB)L.

We define the projections

+ -
R :R™ — R" and R® : R" — R™ ,n; =n, —n

)

by
Ris=s% =(s1,...,8,+) and R%s = s% = (s,+,,..,8n,)



for s* = (s1, ..., Sn,, )-
We will below assume that ny = ng, and that the symmetry relation
(10) is fulfilled. Furthermore, we assume that

kE = PB-

Then
kg =lp :O,m‘g :n‘g and Dy = DE.

At £ = 0 we assume the boundary conditions
f2(0) = ho and ££(0) = Cf(0) (14)

where C' is the ng X ng matrix, with the elements

B,1 [ArB B

T DM )P

1
N

2
where M = K(])Becom3|55| , with K >0, and ag € R™A. This corresponds
to the boundary conditions

Ff (0) = Qo
FP(0) = CoFP(0)

and

ho = (ao—Mf) E]an‘,

where Cy is the nE X n} matrix, with the elements
B,1;3rB
P & My;
0ij = TH— B I\
(DyME 1)

(the discrete version of the diffusive boundary conditions, cf. [10], [2], or [4]),
before the expansion (6).

We consider the case of condensation, i.e. we assume that b < 0, where b
is the first component of b in Eq.(4). For the Boltzmann equation there is a
critical number b_ < 0 (where —b_ is the speed of sound) [9], such that

ki=1landls=0ifb_<b<0
ki=0andls=1ifb=0b_ : (15)
ki =1a=0ifb<b_
We assume that we have a DVM with a critical number b_ < 0, such that
Eq.(15) is fulfilled. In fact, this number can be explicitly calculated for a

plane axially symmetric 12-velocity model (assuming that the solution is
symmetric with respect to the z-axis) see Section 7 below.
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Furthermore, for b_ < b < 0 we will assume that
RIVMA ¢ RIUT,
with U} = span(u : Laau = ADau, A > 0) = span(uf, ...,ufﬁ), (16)
or, equivalently,
dim(RfﬁX) =m} +1=n}, with (72' = span(ufl, ..., uﬁx, VMA),
In this case, we can assume that y;,“A = v/ M4 without loss of generality, since
la=0.

Remark 1 In fact, we could instead of vV M4 take any vector y € N(Laa),
such that

Ry ¢ RIUT and (Lpaf®,y) = (Spa(f”, f4).y) =0,

as y;‘A.

We introduce the operator C : R"3 — R"g, given by

C=RE - CRE.
We will assume that the set
U}y =span(Cu : Lapu = ADpu, A > 0) = span(Cu?’, ...,Cufg)
has non-zero codimension, i.e.
dim U} < nf, (17)
but, also that the set
Tj’g = span(Cu?, ...,CufE,C\/W)

has codimension 0, i.e.
dimUp} = nf. (18)
Therefore, the set Ug has codimension 1, i.e.
: + _ o+
dimUg =ng — 1.
We can without loss of generality assume that
Cufg € span(Cu?, ""Cufqu)'

If the set Ug would have had codimension 0, i.e. if dim Uz-; = n} then the

only possibility would have been fZ(z) = 0.
We fix € to be
e = min {|ho|, 1},
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and the total mass of the gas B to be mi!, i.e.

emBZ/\/MffiB (z) dz = m'S", (19)
=17

for a given positive constant m'st. Clearly, the case m'g" = 0, corresponds to

the case of single species considered in [4].
We now state our main result.

Theorem 2 Assume that we have a DVM with a critical number b_ < 0,
such that Eq. (15) is fulfilled, let conditions (17) and (18), for b_ < b < 0
also condition (16), be fulfilled, and suppose that <h07h0>Dj is sufficiently

small and that m'S* is sufficiently small relatively |ho|. Then with

Lifb <b<0
+ _ —
kA“A{osz<b

conditions on hg, the system (12) with the boundary conditions (13),(14)
under the condition (19), has a locally unique solution.

Theorem 2 is proved in Section 5.

Remark 2 If
Mg
VMB

then condition (17) is fulfilled, since

+
e U}

C M§?
VMB

Half-space problems for the Boltzmann equation are of great importance
in the study of the asymptotic behavior of the solutions of boundary value
problems of the Boltzmann equation for small Knudsen numbers [12],[13].
Half-space problems provide the boundary conditions for the fluid-dynamic-
type equations and Knudsen-layer corrections to the solution of the fluid-
dynamic-type equations in a neighborhood of the boundary. Theorem 2 tells
us that the number of parameters to be specified in the boundary conditions
depends on whether the condensing vapor flow is subsonic or supersonic.
This behavior has earlier been found numerically in [16] and [17] as the
vapor molecules leaving the condensed phase are distributed according to
the Maxwellian at the condensed phase. We can’t be sure that there is any
Maxwellian at rest close enough to the Maxwellian at infinity, but if this is
the case, our results are still valid. To our knowledge, this is the first rigorous
analytical result of this kind and no corresponding results exist for the full
Boltzmann equation.

=0.
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5 Proof of the main result

We add (cf. Refs. [19] and [4]) a damping term

—(Wa, W) = —y(DaP} 4, DpPy fP),

to the right-hand side of the system (12) and obtain

d A
Da CJJ; + Laaf* = —eLpafP + Saa(f* f*) +eSpa(fP, f4) —10a
d B ’
DBE + Lapf? = eSpp(fP, %) + Sap(f*, f?) — 15

(20)
where v > 0 and ¥,, = D, P f*, with

(S @) yp0)

Da_ A -
Yy, b <b<O0
<y;74A’yIl)4A> B

+ A _ Da q
at (FA@), 2ty witifb=b_ n
0ifb<b_
(FP(@),vIP)
PEfP = Dz \/\[B,
(VMP VP

We can, without loss of generality, assume that
B _ \/AfB
yPB - M )

since g = 0.
First we consider the corresponding linearized inhomogeneous system

d A
Da——+ Laaf* =ga—yDaPy f4
x
[ , (21)
DB% + Lapf® =g —vDpP} fP
where g, = go(z) : R4 — R™ are given functions such that
(ga (@), VM=) = 0. (22)

Below, we will consider the case

b_<b<O.
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The system (21) with the boundary conditions (13) has (under the as-
sumption that all necessary integrals exist) the general solution, using the
notations in Egs.(7)-(9),

fA(x) = qul BA (@) ult + 3 it () yit

i=1

B & 4B B %2 B B 2)
r= 1=
where ¢, = no — po and
=— f pg(r)drand ,i=1,..,ps — 1, and p§ (x) = pg (0)e*
B (x) = B2 (0) e + feﬁ—wfég (1) dr, 7 =1,..,m{,
B (x ——fe(T DN B () dr, r =mE 41,0, gas
(24)
with
o e o o \T 7u76’Y
7 () = (g (0), ) and B ) = 9201050 (25)
T
By the boundary conditions (14), we obtain the systems
ZBA Rﬁu +/J’1?A ( )R+yPA
pa—1 %
=ho + /u (1) dr Rty + Z e B2 (7) dr R4u,
=1 7p r= mA+1 0
njg—l
and Y 7 (0)Cul + iy, (0)Cyp, = B (0)Culs
r=1
4B 5 pB—1
+ ) /TA BE () drcuP +Z/ 7) dr CyP,
r—nE«Fl 0
with C = RY — CRJE : (26)

For ag = M. f, we have the trivial solution f4 = 0. Therefore, we consider

only non-zero hy,
1

i

ho = (ao — Mf) 7é 0,
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below. The system (26) has (under the assumption that all necessary integrals
exist) a solution, with a free parameter ¢ = ,Bg (0), if we assume that
B

conditions (16), (17), and (18) are fulfilled.
Theorem 3 Assume that conditions (16), (17), (18), and (22) are fulfilled

and that all necessary integrals exist. Then the system (21) with the boundary
conditions (13),(14), has a solution, with a free parameter

given by Eqs.(23)-(26).

Note that ¢ will be determined by condition (19).
We fix a number o, such that

0 < 20 < min {|AY| # 0; det(A*Dy — Lao) =0} and 20 <~
and introduce the norm (cf. [11] and [4])

|h| = supe® |h(z)|,

x>0

o

the Banach space
X ={heB0,00) ||h], <o}

and its closed convex subset
Sr = {h € B°[0,00) ||h|, < Rl|hol},

where R is a, so far, undetermined positive constant.
We assume that conditions (16), (17), and (18) are fulfilled and introduce
the operator O(f) = (O4(f),Op(f)) on X, defined by

w55l (f(2))
=1

)up +Zuz fx)yP

=1

where ¢, = no — po and

e (f(z)) :—fuz (f(r))drand ,i=1,..,ps — 1,
i (F) = o, O e
B (f(x)) = B (£(0)) e + Ofe(T_’”)ng (f(r)) dr,r=1,..md,

Be(f =— fe(T x) a (f(r)dr,r=m}f +1,...,qa,
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5 /ﬁf‘(f())dTRwl Z /”Aﬁ“‘ (f (7)) dr R,
0

> BP(FO)Cul +up, (f(0))Cyp, = dCul’.

pp—1 ¢

/”‘B ) dr CuB + Z/ ™ a2 (f () drcy?,
0

and B2, (f(0)) =0, 9 € R,
C= Rf — CRB, and
Z@A (f) = <_ELBAfB + SAA (.anfA) +€SBA (fBafA) 7yzA>
B (f) = (—eLpafP + Saa (f4, 1) +eSpa (f7, 1) ,uit) .
BP(f) =(eSpr (fP, fP) + Sap (4, f7) ,u?)

Lemma 1 Let f,h € X, assume that conditions (16), (17), and (18) are
fulfilled, and fix a positive constant Ky > 0. Then there is a positive constant
K (independent of f and h), such that

10(0)], < K [hol , (27)
for all ¥, such that |9| < Ky |ho].

Proof The proof can be carried out in a similar way to the proof of the
corresponding lemma in the case of single-component gases (Lemma 5.2 in
[4]), noting that

‘Saﬁ(favfﬂ) - aﬁ(ha hﬁ | ‘Saﬁ - havfﬂ) +Sa[3(ha,f6 - ‘20
< K171, 107 = bl + 100, [ 17 = 7))
and
|[Lpa(f? = hP)|, < Ko [P = 0P|,
O

Theorem 4 Let conditions (16), (17), and (18) be fulfilled and fix a positive
constant Ky > 0. Then there is a positive number oy, such that if

|ho| < o,

then the system (20) with the boundary conditions (13),(14), has a unique
solution f = f(x) in Sg for a suitable chosen R, for all ¥, such that

|19| < Ky ‘h()‘ .
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Proof By estimates (27) and (28), there is a positive number K such that
O, = 18(f) = ©(0) + O(0)|, < K(lho| + |£15 + kol If],)  (29)

if feX.
Let 1
RZQK and (50: m
By estimates (28) and (29)
1 R? +R
(N, <(5+ |ho|) R |ho| < R |ho

2

and

O(f) =), < QR+ 1)K [hol |[f = hl, < el|f = hl,,

2R?+ R
with g = P2 R
if f,h S SR and |h0‘ < 50.
The theorem follows by the contraction mapping theorem. O

Theorem 5 The solution of Theorem 4 is a solution of the problem
(12),(13),(14) if and only if

Py fA(0) =0.
Proof The relations
tip, (f (@) = pp, ((0))e ™7,
are fulfilled if f(x) is a solution of Theorem 4. Hence,
Pl £%(0) = 0 if and only if P f*(z) = 0.

But,
(£7(0).VaIP)
PP (0) = Do /37E
(VAP or)
and
<fB(0)’ \/W>DB

- <CR?fB<0>,Rf¢W>D+ - (R212(0).REVALP)

B,1 B
_ Z 5B 1 fj V M"B+J 253 1
- (DpME 1) nB—H \ My +] ++]

4,j=1
since Dy = DE, ng = ng, MO_ = MO+ etc.. Hence,

Pt fP(z) =0 and P f4(0) = 0 if and only if P} f*(z) = 0.
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We remind that, since b_ < b < 0,

poa @b, 4
Ua=Pyf" = T4 AN Yk
<ypA’ypA>DA
and denote by I” the linear solution operator
1" (ho, 9) = £(0),
where f(z) is given by
D ar Laaft+Ps = —eLpaf?
At Aaf? +1Wa = —eLpaf
d B
DBL + Lapf? =0
dx
R4 £4(0) = ho and CfB(0) =0
f= (fA,fB) — 0, as x — o0

Similarly, we denote by Z” the nonlinear solution operator

7 (ho,9) = 4(0),

where f(z) is given by
df4 "
DA% +Laaf? +v¥a = Saa
B
DBE + Lapf® =eSep (f2, %) + Sas (4. fP)
R fA(0) = hg and CfB(0) =0
f= (fA7fB) — 0, asx —

By Theorem 5, the solution of Theorem 4 is a solution of the problem
(12),(13),(14) if and only if

(fA4 f4) +eSpa (fB, f4) —eLpaf®

PHT(ho,¥) = 0.

Let
7] . mk <Rﬂy£A,Riuf>D+
N ey T g
Then
PAT(ho.0) = 0 & ho € R, where
R2E ={ue R | (ur)pr =0},
and

77 (ho,¥) = I (a1, hy, ), where

1
ho = ayry + hy, with hy € R D} and a; = <h07r1>DX
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Lemma 2 Suppose that
P{T7(ho,9) = 0.

Then hg is a function of hy and 9, if <ho,hO>D:g and

tot np T

u: :mBZ/vMBfiB(x) dx

€
=17

are sufficiently small.

Proof It is obvious that Z7(0,0) = 0 and that we for the Fréchet derivative
of Z7(ehg,0) have

d
—717(ehy,0 =1"(ho,0).
de (E 05 )EZO ( 05 )
Then
9 <f7(a1 hi,®), yi > 4 (I7(er1,0), 9,
Oaq TS Tka Dal,....0) de 1 Ika/ Dy £=0

= <H7(r1,0),y,?A>DA 7é 0.

By the implicit function theorem,

<f’y(al7hl719)7y]?A>D =0
A

defines
a1 = a1(hq,9)

if (ho, ho) Dt and ¢ are sufficiently small. Clearly,

tot
m
K9 < —8

)
€

tot
m
for some positive constant K,,. Hence, 9 is sufficiently small if —2- is suffi-
€

ciently small. a

The cases b < b_ and b = b_ can be treated in a similar way. In the case
b < b_, we are done by Theorem 4. In the case b = b_ we can modify the
proof inspired by the proof for single species in a recent unpublished work by
the author. In this work the result in [4] is improved, by getting rid of some
quite restrictive conditions in the degenerate cases (as ! > 0), essentially built
on the use of a different damping term in the proof than in [4].
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6 Exact solution for a reduced six-+four-velocity model

We now consider the case when the vapor, gas A, is modeled by a six-velocity
model with velocities

(£1,0) and (£1,=+1),

and the non-condensable gas B is modelled by the classical Broadwell model
[8] in plane with velocities

(£m,+m), where m = na
mp

Note that for the Broadwell model we have only two linearly independent
collision invariants, as the mass vector and the energy vector are linearly
dependent, even if mass, momentum, and energy all are preserved. For a
flow axially symmetric around the z-axis we obtain the reduced system

dF
dr 01q1 + 0242
X
dF
e —01q1 + 0343
X
dF
——— = —01q1 — 0242
dx
dFA ’
———— = 0141 —03Q3
dx
dFP
m-o T T 022 +03q3
T
dFP
- = —02(42 — 03Q3
dxr

where

o = F3'F' — F{F{ a2 = F'FF — F{'Fy’ ,q3 = F{'F — F'Fy’,
Ff'(z) = F4(x,(1,0)), F5'(z) = FA(x, (1,1)) = F4(x, (1,-1)),
FiMx) = FA(z,(=1,0)), F{!(z) = F(z,(-1,1)) = F4(x, (-1,-1)),
FB(z) = FB(z,(m,m)) = FB(z, (m,—m)), and
Fy () = FP(x,(~=m,m)) = F¥(z, (~m, —m)),

or equivalently

drt AA(pA A BA(pB pA
DA = QM(FA, F4) + QPA(FP, 1)
dFB AB (A B BB (B B 7
Dy = QMP(FA, FP) + QPP (FP, FP)

dz
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where
Dy = diag(1,1,-1,-1), Dp = diag(m,—m), F** = (F{", i, F{!, F{') ,
FP = (FP,FP), Q*(FA FY) = o1 (1,-1,-1,1),
QBA(FBa FA) = U2Q2(17Oa _170) + 03q3<07 1a 0) _1)a
QAP (F4, FP) = (022 + 03q3) (1, —1), and QPP (FP, FP) = 0.

The set of collision invariants are generated by the collision invariants

oo =(1,1,1,1,0,0)

¢1 - <07070a0717 1)

¢2 = (17 1,-1,-1,1, _1) ’
¢3 = (172a 15272m’2m)

and the Maxwellians are of the form
M = (M*,MP), with M* = s*(1,¢,p,pq) and MP® = sP(1,p),  (30)

where p, g, 54,55 > 0.
We consider the case when p > 1 (corresponding to condensation) and
assume the boundary conditions

at the condensed phase, and
FA = M2 =51,q,p,pq), and FP — 0 as  — oo,

at the far end. We note that for this simplified model diffuse and specular
reflection coincide for gas B.
We denote

F=(M"0)+VMf,

for the Maxwellian of the form (30), such that F4 — M#4 and s® = 1. We
let € = 1 here, cf. Eq.(6). We obtain the system (note that Spg(fZ, f) = 0)

A
% + D3 Laafh = D3 (SaalfA, f2) + SpalfB, f4) — Lpaf®)
de 1 5 . W en )
o T P05 Lapf” =Dy Sap(f7.f7)

(31)
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where

—pq P4 /Pq —/Pq
D{'Laa = shoy | PVL —P —VPL VP

—Pa pa 4 —Jq |’
VPG =P —va 1
ogop  —02./D

D' Lps = VsA o3pvVb —03,/Dq 7
0'2\/]3 —02
034/P4 —03,/q

A
—1 _ s P =P
DB LAB - m(02+03b)<\/ﬁ -1 )7

DzlsAA(fAv fA) = qul\/siA(\/pi7 _\/ﬁv \/EL _1)7
D‘XlsBA(fB7 fA) = 02q2(\/ﬁa 0, 17()) + 03(13(07 \/@ 0, 1)7 and

A
D' Sas(f4, %) = \/5(02% +03¢3v/0) (V) 1).

The new boundary conditions are

(518) = e (452

fE(0) = P17 (0)

at the condensed phase, and

; (32)

fA = 0and f2 = 0as z — oo,

at the infinity.
The linearized collision operators L 44 and L 4p are symmetric and semi-
positive and have the null-spaces

N(Laa) = span(yi',y3', y3') and N(Lapg) = span(y”) with y” = (1, /p),
yi = (VPP 1, V/a), y3' = (1,0,/p,0), and y3' = (0,1,0,/p).
The non-zero eigenvalues of DZILAA and DBILAB are (remind that p > 1)
A

M=5s%1(14+¢)(p—1)>0and N\ = %(02 +o3q)(p—1) >0,

respectively, with corresponding eigenvectors
ut = (v/Pq; —/D,\/q, —1) and uP = (vp, 1).
We decompose
FA =iyl + psys + pglys + Bt
{fB = uByB + BBy ‘
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By Eq.(31) . ) )
dp” _ dpy _ dpg

de  dx dr
and, since u® — 0, ug — 0, and /J? — 0 as x — o0,
pt =g = g = 0.
Then
Saa(f4 14 = Spa(f?, ) = Sap(f4, %) =0

Hence, we have a linear system

de 1 A —1 B
e +D, Laaf®=-D, Lpaf
B ’
CJ;— +D3'LapfB =0
or, equivalently,
d
. N L
d:ul pp—1
—— . 33
. B 174 (02 + 03q) (33)
d B
5 +APBP =0

Solving system (33), with the boundary conditions 8% — 0, g4 — 0, and
pit — 0 as © — oo, we obtain

09 — 03 _\B VA
AZﬁOB\/Z])\Bi)\Ae A x+ke A

A_gB_ M APz , with 82 = 8P(0) and k constant.
=8 SA(l—i—q)e 0 (0)

ﬂB _ 50367)\53:

If we fix the total amount of gas B to be m!g’, then

m%"t—QmB,@O f/ —A xdm—ngﬁfj\g,
and, hence,
)\Bmtot SAmtot
563: B = = (02 +039)(p—1).
QmB\/f) 2ma+/p

By the boundary conditions (32) at the condensed phase,

1% (\/5(86‘ - SA)>

A A
s Spdo —s7°¢

=5 o () e ()



23

Then
56‘ — 54 09 — 03 mpe

74, B — s
V/54pq Fo \/EAA — A8 sAq(1+q)

and we obtain the solvability condition

k:

migty/sA

53 (1+q0) = " (1+9) + —5-—

(o2 +03q)(p—1).

All our assumptions in Section 4 are fulfilled for this reduced model, if
we allow b_ = —oo in Eq.(15), even if it is a drawback that our model is
simplified and that all the non-linear terms disappear. We have that

dim(RY — CRP)U} =0=n}, -1,

and, especially,

L 5 % (\[ 1) ( )
= 'p, 1) € span(u”).
v M \/>p

Furthermore,

RAVMA = VsA(1,/q) ¢ span(,/q, —1) = span(u”) and
N(Lap) = span(VMB).

We don’t need any smallness assumptions on the total amount of the gas B,
or on the closeness of the far Maxwellian and the Maxwellian at the wall for
the gas A, due to the disappearance of the quadratic terms. We note that,
in agreement with our main result in Section 4, we have exactly

Ei+l=kl=1

solvability condition.

7 Twelve+tsix-velocity model

We now consider the case when the vapor, gas A, is modelled by a twelve
velocity model with velocities

(£1,+1), (£1,+3) and (£3,£1),

and the non-condensable gas B is modelled by a six-velocity model with
velocities
ma
(£m,0) and (£m, +m), where m = ——.
mp
We assume that we have a flow axially symmetric around the z-axis and
obtain the reduced system

dF

D= = QF.F),
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where
_(Da O .
D= ( 0 DB>,W1th
Dy=(,1,3,-1,—-1,-3) and Dg = (m,m,—m,—m),
F=(Ft . FFP PR,

Ff'(z) = FA(z,(1,1)) = F4(x, (1, -1)),
FiMx) = FA(2,(1,3)) = F4(x, (1, -3)),
Fi(x) = FA(2,(3,1)) = F4(x, (3, -1)),
Fi'(x) = FA(z,(=1,1)) = F(z, (-1,-1)),
Fil(x) = F4(z,(=1,3)) = F(z, (~1,-3)),
Fgl(a) = FA(2,(=3,1)) = F4(z, (=3, -1)),
Ff(z) = FP(x,(m,0)), Fy (x) = FP(x, (m,m)) = F(x, (m, —m)),
F () = FP(x, (-=m,0)), F{ (z) = FP(z,(=m,m)) =7 F(z,(=m,—m)),
and
Qf. f)
= (01q1 + 02q2 + 03q3 + 06Gs + 0747, 01q1 — 02q2 + T4qs + 08Gs + T9qo,
—0141 — 0444, —0141 — 0242 — 0343 — 046 — 0747,
02(2 — 03G3 + 0444 — 0848 — 0949, 03G3 — 04G4,05G5 — 06qe — 08]8,
—05q5 — 0747 — 0949, —05q5 + 0646 + 08qs, 0505 + 07G7 + 09q9),
with

¢ = F{F — FF ¢ = F{'F' - F'F g3 = F'F' — F{'F,
qu=F{F) —F)F s = FPFP — FPEP ¢o = FAFP — FAFP,
g = F{'Fy —F{'F{ qs = F{'FP — F'Fy g = F{'Fy’ — F3'F(,
and o1,...,09 > 0.
The Maxwellians are of the form
M = (M4, MP), with M* = s*(p?,p*¢®, ¢%, p*¢®, p* ¢, p°d®),
MP = sB(1,q™,p?, p*q™), and p,q,s*,s% > 0. (34)

We consider the case when p > 1 (corresponding to condensation) and
assume the boundary conditions

FlA(O) ag,1
Fs40) | = | aoz
F?;A(O) a0,3

)

(FH) - () (30)
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at the condensed phase, and
FA = MA =54, P’ ¢%,p*¢*,p'¢®,p°¢®) and F¥ — 0 as 2 — oo,

at infinity.
We denote
F=(M*0)+VMf,

for the Maxwellian of the form (34), such that F4 — M4 and s® = 1. Then
we obtain a system

A
% + D3 Laaf* = D3 (Saalf* f4) + eSpa(fP, f4) — eLpaf®)
B b)
% + D3'Lapf? = eDg'Spp(f5, f5) + D5'Sas(f4, f7)

where, in particular,

D5'Lag
L (Plostdos) 0 plogtiio) 0
_sp 0 p*(o7 + ¢0y) 0 —p(o7 + ¢%ay)
m p(o6 + ¢®0s) 0 —(0o6 + ¢q%0s) 0

0 plo7 +qo9) 0 —(07 + ¢®9)
The new boundary conditions are

1 q4(a071 - SAP2)

Agog 2.8
0 = apo — S

2 0,2 p-q
(0) pgtyv/sA plaos s4¢%)

(50)) = ("1 ) (30)

at the condensed phase, and

)

fA = 0and f8 = 0as z — oo,

at the far end.
The linearized collision operator L 45 has the null-space

N(Lap) = span(y{,y2) with y£ = (1,0,p,0) and y& = (0,1,0,p),
and the non-zero eigenvalues of DglL Ap are (remind that p > 1)

A2 A2

mp (06 + qog)(p® — 1) > 0 and \J = Snf (o7 + ¢Bo9)(p* — 1) > 0,

s
B _
A =

with corresponding eigenvectors

uP = (p,0,1,0) and uZ = (0,p,0,1) .



26

Then

Pqq"’ m 490"
(Rf —CRE)ui’ = W(q 2, -1) = —q,f/g (RE — CRE)uy,

and, therefore,

dim(RY — CRP)span(uf’, uf)

Especially,

ME sB

\/ﬁ = T (pa™2, pag . q™"*, qi") € span(uf , ub).
Furthermore,

(L+4q™) o PO+ qm)q()”)

2
(RE—CREWMB =1 -2 -T1 /4
1+ g

(I +q5)qm/?
¢ (R — CRE)span(uf,uy),
and, hence,
dim(R? — CRP)span(uf,uf, VMB) =2 =nj}.

Let us now consider the twelve-velocity plane DVM

(£1,£1), (£3,+1) and (£1,+3).

The Maxwellians are of the form
M4 =2, p°¢%, % p'd®, v ®, 0 ),
,p=-e"and s* = e%32¢ g, b and ¢ are constant, and the

where g = e~ ¢

null-space of L g4 is
N(LAA) = Span (¢17 ¢27 ¢3) B

where

¢ = VMA(1,1,1,1,1,1) = VsA(p, pg*, ¢*, 0, p*¢*, pP®)

¢124 =V MA(L 1737 _15 _17 _3) =V SA (pqu4a 3q4a _p2’ _p2q4’ _3p3q4)
o8 = VMA(2,10,10,2,10,10) = 2v/54 (p, 5pg*, 5¢*, p%, 5p>¢*, 5p3¢*)

If we denote
v1 =(1,0,0,p,0,0)
Y2 = (q_47 _17 07 07 _2pa _3p2) )
¢3 = (0,p,1,0,p?,p%)

then
span (@17 Y2, <P3) = span (¢i47 ¢124a ¢§4) )
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and,
1—p? —4 0
Ka=({pipi)p,)=| ¢* a+1—4p* =27p* —p+2p° 4+ 9p°
0 —p+2p*+9p°  3+p? —pt—3p°
Hence,

2
det Ka = 3(1=p*)(1 = (4+¢7)p" = 3(41+2¢7)p" = 4+ ¢7")p" +°)

=3(1 - p?)(1 — 25p? + p)(1 + 25p% + p?),

where

5= 1 <1+48+ 1+?jlqog(1+;0)> > 1 and
Therefore,
det Ky=0&p=1Vp= Si\/ﬁ@bzovb:—@.
But, 1

SV l= g e <t

and hence,

detKAzO@b:O\/b:bi:j;@_
Furthermore,

det Ky =—P(p—-1)(p—\S+VS?—1)(p—1\/S—+5%—1), where
P=3(p+\/S+V52-1)(p+1/S—52—1)(1+p)(1+25p*+p*) > 0.

Hence, if we consider different values of negative b, b < 0, (i.e. p > 1) we
obtain

b<b_:detKs<0=kf=0VEkl=2
b=b_:detKy=0=k}=0VEki=1Vkl=2
bo<b<0:detKa>0=ki=1Vk}=3.

By the method of Routh-Hurwitz we obtain the following values for kj", kL,
and [ 4, depending on the value of b, b < 0;

b<b_:ki=1=0k =3
b=0b_:k; =0k, =2,l4=1
bo <b<0:kf=1k;=214=0.
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Remark 3 One can, by similar arguments and the Routh-Hurwitz method
obtain the following values for k‘j{, k. and Iy, for b >0 (i.e. p < 1);

b=0:ki=0k;=1,1p=2
0<b<by:ki=2k;=114a=0

b=by ki =2k;=0la=1

b>by ki =3k;=14a=0.

The only condition of our necessary conditions we haven’t proved for this

model is condition (16) when b_ < b < 0. This we have to leave open for
now. However, it seems most likely, especially for b sufficiently close to 0,
that also condition (16) is fulfilled for this model.
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