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Isaac Newton (1642-1726) at age 47
(oil painting by Godfrey Kneller)
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1687: Newton publishes the first edition of

Philosophiae Naturalis Principia Mathematica
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The equations of motion of the classical n-body problem in
Euclidean space R3:

mir̈i =
n∑

j=1,j 6=i

mimj(rj − ri)

r3ij
, i = 1, n,

where mi, i = 1, n, are the masses, ri = (xi, yi, zi), i = 1, n,
represent the position vectors, and

rij = |ri − rj|, i, j ∈ {1, . . . , n}

denote the distances between the bodies mi and mj. We take
the units such that the gravitational constant is 1.
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Integrals of motion

- energy (1):
∑

1≤i<j≤n
mimj
rij

+ 1
2

∑n
i=1mi|ri|2 = h (constant)

- centre of mass (3):
∑n

i=1miri = 0

- linear momentum (3):
∑n

i=1miṙi = 0

- angular momentum (3):
∑n

i=1miri × ṙi = c (constant)

1887: Heinrich Bruns shows that there are no other algebraic
linearly independent integrals of motion
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Carl Friedrich Gauss (1777-1855) and his heliotrope
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János Bolyai (1802-1860) and Nikolai Lobachevsky (1792-1856)
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Setting

The space in which the motion of the bodies takes place is:

M3
κ = {(w, x, y, z)|w2 + x2 + y2 + σz2 = κ−1(z > 0 if κ < 0)},

where σ is the signum function

σ =

{
+1, for κ > 0

−1, for κ < 0

notice that
M3

1 = S3 and M3
−1 = H3
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Notations

Consider m1, . . . ,mn > 0 in R4 for κ > 0 and M3,1 (Minkowski
space) for κ < 0, with positions given by

qi = (wi, xi, yi, zi), i = 1, n

q = (q1, . . . ,qn) is the configuration of the system

∇qi := (∂wi , ∂xi , ∂yi , σ∂zi), ∇ := (∇q1 , . . . ,∇qn) is the gradient

For a := (aw, ax, ay, az),b := (bw, bx, by, bz),

a · b := (awbw + axbx + ayby + σazbz)

is the inner product
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Potential

For κ 6= 0, the force function is

Uκ(q) =
∑

1≤i<j≤n

mimj|κ|1/2κqi · qj
[σ(κqi · qi)(κqj · qj)− σ(κqi · qj)2]1/2

−Uκ is the potential (a homogeneous function of degree 0).

Euler’s formula for homogeneous functions:

qi · ∇qiUκ(q) = 0, i = 1, n.
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Equations of motion

Using variational methods (constrained Lagrangian dynamics),
we obtain the equations of motion:

miq̈i = ∇qiUκ(q)−miκ(q̇i · q̇i)qi,

qi · qi = κ−1, qi · q̇i = 0, κ 6= 0, i = 1, n

∇qiUκ(q) =
n∑
j=1
j 6=i

mimj|κ|3/2(κqj · qj)[(κqi · qi)qj − (κqi · qj)qi]
[σ(κqi · qi)(κqj · qj)− σ(κqi · qj)2]3/2

,

i = 1, n
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Elimination of κ

Coordinate and time-rescaling transformations

qi = |κ|−1/2ri, i = 1, n and τ = |κ|3/4t

lead to the equations of motion

r′′i =
n∑

j=1,j 6=i

mj[rj − σ(ri · rj)ri]
[σ − σ(ri · rj)2]3/2

− σ(r′i · r′i)ri, i = 1, n,

where
′ =

d

dτ
, ri · ri = |κ|qi · qi = |κ|κ−1 = σ
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The positive case and the negative case

Equations of motion in S3:

q̈i =
n∑

j=1,j 6=i

mj[qj − (qi · qj)qi]
[1− (qi · qj)2]3/2

− (q̇i · q̇i)qi,

qi · qi = 1, qi · q̇i = 0, i = 1, n

Equations of motion in H3:

q̈i =
n∑

j=1,j 6=i

mj[qj + (qi · qj)qi]
[(qi · qj)2 − 1]3/2

+ (q̇i · q̇i)qi,

qi · qi = −1, qi · q̇i = 0, i = 1, n
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Hamiltonian form

p := (p1, . . . ,pn), pi := miq̇i, i = 1, n, momenta

T (q,p) = 1
2

∑n
i=1m

−1
i (pi · pi)(σqi · qi), kinetic energy

H(q,p) = T (q,p)− U(q), Hamiltonian function
q̇i = ∇piH(q,p) = m−1i pi,

ṗi = −∇qiH(q,p) = ∇qiU(q)− σm−1i (pi · pi)qi,
qi · qi = σ, qi · pi = 0, i = 1, n
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The wedge product

Consider the basis

ew = (1, 0, 0, 0), ex = (0, 1, 0, 0), ey = (0, 0, 1, 0), ez = (0, 0, 0, 1)

The wedge product of
u = (uw, ux, uy, uz),v = (vw, vx, vy, vz) ∈ R4 is defined as

u ∧ v := (uwvx − uxvw)ew ∧ ex + (uwvy − uyvw)ew ∧ ey+
(uwvz − uzvw)ew ∧ ez + (uxvy − uyvx)ex ∧ ey+
(uxvz − uzvx)ex ∧ ez + (uyvz − uzvy)ey ∧ ez,

where ew ∧ ex, ew ∧ ey, ew ∧ ez, ex ∧ ey, ex ∧ ez, ey ∧ ez represent
the bivectors that form a canonical basis of the exterior
Grassmann algebra over R4
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Integrals of the total angular momentum

n∑
i=1

miqi ∧ q̇i = c,

where c =
cwxew∧ex+cwyew∧ey+cwzew∧ez+cxyex∧ey+cxzex∧ez+cyzey∧ez,
with the coefficients cwx, cwy, cwz, cxy, cxz, cyz ∈ R
– on components, 6 integrals:

n∑
i=1

mi(wiẋi − ẇixi) = cwx,
n∑
i=1

mi(wiẏi − ẇiyi) = cwy,

n∑
i=1

mi(wiżi − ẇizi) = cwz,
n∑
i=1

mi(xiẏi − ẋiyi) = cxy,

n∑
i=1

mi(xiżi − ẋizi) = cxz,
n∑
i=1

mi(yiżi − ẏizi) = cyz
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Isometries in S3

In some suitable basis, rotations can be written as

A =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ

 , θ, φ ∈ [0, 2π)

– simple rotations (elliptic): lead to new solutions
– double rotations (elliptic-elliptic): lead to new solutions
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Isometries in H3

In some suitable basis, rotations can be written as

B =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 coshφ sinhφ
0 0 sinhφ coshφ

 , θ ∈ [0, 2π), φ ∈ R,

– simple rotations (elliptic): lead to new solutions
– simple rotations (hyperbolic): lead to new solutions
– double rotations (elliptic-hyperbolic): lead to new solutions

C =


1 0 0 0
0 1 −ξ ξ
0 ξ 1− ξ2/2 ξ2/2
0 ξ −ξ2/2 1 + ξ2/2

 , ξ ∈ R.

– simple rotations (parabolic): lead to no solutions
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Relative equilibria (RE) in S3

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, n,

[positive elliptic] :


wi(t) = ri cos(αt+ ai)

xi(t) = ri sin(αt+ ai)

yi(t) = yi (constant)

zi(t) = zi (constant),

with w2
i + x2i = r2i , r

2
i + y2i + z2i = 1, i = 1, n

[positive elliptic−elliptic] :


wi(t) = ri cos(αt+ ai)

xi(t) = ri sin(αt+ ai)

yi(t) = ρi cos(βt+ bi)

zi(t) = ρi sin(βt+ bi),

with w2
i + x2i = r2i , y

2
i + z2i = ρ2i , r

2
i + ρ2i = 1, i = 1, n

Florin Diacu The n-body problem



Relative equilibria (RE) in H3

[negative elliptic] :


wi(t) = ri cos(αt+ ai)

xi(t) = ri sin(αt+ ai)

yi(t) = yi (constant)

zi(t) = zi (constant),

with w2
i + x2i = r2i , r

2
i + y2i − z2i = −1, i = 1, n

[negative hyperbolic] :


wi(t) = wi (constant)

xi(t) = xi (constant)

yi(t) = ηi sinh(βt+ bi)

zi(t) = ηi cosh(βt+ bi),

with y2i − z2i = −η2i , w2
i + x2i − η2i = −1, i = 1, n

[negative elliptic−hyperbolic] :


wi(t) = ri cos(αt+ ai)

xi(t) = ri sin(αt+ ai)

yi(t) = ηi sinh(βt+ bi)

zi(t) = ηi cosh(βt+ bi),

with w2
i + x2i = r2i , y

2
i − z2i = −η2i , so r2i − η2i = −1, i = 1, n
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Fixed points (FP) in S3

– equilateral triangle on a great circle of a great sphere (equal masses, 3BP)
– any scalene acute triangle on a great circle of a great sphere (non-equal
masses, 3BP)
– regular tetrahedron in a great sphere (equal masses, 4BP)
– two equilateral triangles, each on complementary great circles (equal
masses, 6 BP):

w1 = 1, x1 = 0, y1 = 0, z1 = 0,

w2 = −1/2, x2 =
√
3/2, y2 = 0, z2 = 0,

w3 = −1/2, x3 = −
√
3/2, y3 = 0, z3 = 0,

w4 = 0, x4 = 0, y4 = 1, z4 = 0,

w5 = 0, x5 = 0, y5 = −1/2, z5 =
√
3/2,

w6 = 0, x6 = 0, y6 = −1/2, z6 = −
√
3/2,

– two, not necessarily congruent, scalene acute triangles, each on one of two
complementary great circles (non-equal masses, 6 BP)
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Complementary circles in S3

Definition 1
Two great circles, C1 and C2, of two different great spheres of S3

are called complementary if there is a coordinate system wxyz
such that

C1 = S1
wx = {(0, 0, y, z)|y2 + z2 = 1},

C2 = S1
yz = {(w, x, 0, 0)|w2 + x2 = 1}.

Complementary circles form a Hopf link in a Hopf fibration,

h : S3 → S2, h(w, x, y, z) = (w2+x2−y2−z2, 2(wz+xy), 2(xz−wy)),

which takes circles of S3 to points of S2. Using the stereographic
projection, it can be shown that the circles C1 and C2 are linked.
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Distance between complementary circles

Since, in S3, the distance between two points, a and b, is

d(a,b) = cos−1(a · b),

it follows that if a ∈ C1 and b ∈ C2, then

d(a,b) = π/2 = constant

Therefore if the body m1 is on C1 and the body m2 is on C2, the
magnitude of the attraction between them is the same, no
matter where each of them lies on the respective circle
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Clifford tori in S3

A remarkable family of surfaces in R4 are the Clifford tori

T2
rρ = {(r cos θ, r sin θ, ρ cosφ, ρ sinφ) | r2 + ρ2 = 1, 0 ≤ θ, φ < 2π},

which lie in S3. Indeed, the Euclidean distance from the origin of
the coordinate system to any point of a Clifford torus is

(r2 cos2 θ + r2 sin2 θ + ρ2 cos2 φ+ ρ2 sin2 φ)1/2 = (r2 + ρ2)1/2 = 1

Unlike the standard torus, the Clifford torus is a flat surface,
which divides S3 into two solid tori, for which it forms the
boundary
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Heegaard splitting of S3

The Clifford torus with r = ρ = 1/
√
2 provides the standard

genus 1 splitting of S3, a case in which the two solid tori are
congruent.

A 3D projection of a 4D foliation of S3 into Clifford tori
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Qualitative behaviour of RE in S3

Theorem 2

Assume that, in the curved n-body problem in S3, n ≥ 2, with bodies of
masses m1, . . . ,mn > 0, positive elliptic and positive elliptic-elliptic relative
equilibria exist. Then the corresponding solution q may have one of the
following properties:
(i) it is a (simply rotating) positive elliptic RE, with the body of mass mi

moving on a (not necessarily geodesic) circle Ci, i = 1, n, of a 2-sphere in S3;
in the hyperplanes wxy and wxz, the circles Ci are parallel with the plane wx;
another possibility is that some bodies rotate on a great circle of a great
sphere, while the other bodies stay fixed on a complementary great circle of
another great sphere.
(ii) it is a (doubly rotating) positive elliptic-elliptic RE, with some bodies
rotating on a great circle of a great sphere and the other bodies rotating on a
complementary great circle of another great sphere; another possibility is
that each body mi is moving on the Clifford torus T2

riρi , i = 1, n.
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Lagrangian RE as in (i)

w1(t) = r cosωt, x1(t) = r sinωt,

y1(t) = y (constant), z1(t) = z (constant),

w2(t) = r cos(ωt+ 2π/3), x2(t) = r sin(ωt+ 2π/3),

y2(t) = y (constant), z2(t) = z (constant),

w3(t) = r cos(ωt+ 4π/3), x3(t) = r sin(ωt+ 4π/3),

y3(t) = y (constant), z3(t) = z (constant).

Given m := m1 = m2 = m3 > 0, r ∈ (0, 1), and y, z with
r2 + y2 + z2 = 1, we can always find two frequencies,

α+ =
2

r

√
2m√

3r(4− 3r2)3/2
and α− = −2

r

√
2m√

3r(4− 3r2)3/2
;

cwx = 3mω 6= 0 and cwy = cwz = cxy = cxz = cyz = 0.
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Stability of Lagrangian RE in S2

Regina Martínez and Carles Simó: On S2, the Lagrangian RE
with masses m1 = m2 = m3 = 1 are linearly stable for
r ∈ (r1, r2) ∪ (r3, 1), where r =

√
1− z2,

r1 = 0.55778526844099498188467226566148375,

r2 = 0.68145469725865414807206661241888645,

r3 = 0.92893280143637470996280353121615412,

truncated to 35 decimal digits.
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Example of RE as in (ii) on Clifford tori

Place the bodies m1 = m2 = m3 = m4 at the vertices of a regular
tetrahedron. Then m1 and m2 move on the Clifford torus with
r = 0 and ρ = 1, which is the only Clifford torus in the class of a
given foliation of S3 that is also a great circle of S3. The bodies of
mass m3 and m4 move on the Clifford torus with r =

√
6
3

and
ρ =

√
3
3

:

w1 = 0, x1 = 0, y1 = cos(αt+ π/2), z1 = sin(αt+ π/2),

w2 = 0, x2 = 0, y2 = cos(αt+ b2), z2 = sin(αt+ b2),

with sin b2 = −1
3

and cos b2 =
2
√
2

3
,
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Example of RE as in (ii) on Clifford tori

w3 =

√
6

3
cos(αt+ 3π/2), x3 =

√
6

3
sin(αt+ 3π/2),

y3 =

√
3

3
cos(αt+ b3), z3 =

√
3

3
sin(αt+ b3),

with cos b3 = −
√
6
3

and sin b3 = −
√
3
3

, and

w4 =

√
6

3
cos(αt+ π/2), x4 =

√
6

3
sin(αt+ π/2),

y4 =

√
3

3
cos(αt+ b4), z4 =

√
3

3
sin(αt+ b4),

with cos b4 = −
√
6
3

and sin b4 = −
√
3
3

. notice that b3 = b4.
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RE generated from FP configurations in S3

Theorem 3

Consider the bodies of masses m1, . . . ,mn > 0, n ≥ 2, in S3. Then an
RE generated from a fixed point configuration may have one of the
following properties:
(i) it is a (simply rotating) positive elliptic RE for which all bodies rotate
on the same great circle of a great sphere of S3;
(ii) it is a (simply rotating) positive elliptic RE for which some bodies
rotate on a great circle of a great sphere, while the other bodies are
fixed on a complementary great circle of a different great sphere;
(iii) it is a (doubly rotating) positive elliptic-elliptic RE for which some
bodies rotate with frequency α 6= 0 on a great circle of a great sphere,
while the other bodies rotate with frequency β 6= 0 on a
complementary great circle of a different sphere; the frequencies may
be different in size, i.e. |α| 6= |β|;
(iv) it is a (doubly rotating) positive elliptic-elliptic RE with frequencies
α, β 6= 0 equal in size, i.e. |α| = |β|.
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Example of RE as in (ii)
This is a solution of the 6-body problem with two equilateral triangles, one
inscribed in a great circle of a great sphere and the other inscribed in a
complementary great circle of another great sphere. The first triangle rotates
uniformly, while the second triangle is fixed:

m1 = m2 = m3 = m4 = m5 = m6 =: m,

q = (q1,q2,q3,q4,q5,q6), qi = (wi, xi, yi, zi), i ∈ {1, 2, 3, 4, 5, 6},

w1 = cosαt, x1 = sinαt, y1 = 0, z1 = 0,

w2 = cos(αt+ a), x2 = sin(αt+ a), y2 = 0, z2 = 0,

w3 = cos(αt+ b), x3 = sin(αt+ b), y3 = 0, z3 = 0,

w4 = 0, x4 = 0, y4 = 1, z4 = 0,

w5 = 0, x5 = 0, y5 = −1

2
, z5 =

√
3

2
,

w6 = 0, x6 = 0, y6 = −1

2
, z6 = −

√
3

2
,

where a = 2π/3 and b = 4π/3.
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Example of RE as in (iii)
In general, the orbit described below is quasiperiodic:

w1 = cosαt, x1 = sinαt,

y1 = 0, z1 = 0,

w2 = cos(αt+ 2π/3), x2 = sin(αt+ 2π/3),

y2 = 0, z2 = 0,

w3 = cos(αt+ 4π/3), x3 = sin(αt+ 4π/3),

y3 = 0, z3 = 0,

w4 = 0, x4 = 0,

y4 = cosβt, z4 = sinβt,

w5 = 0, x5 = 0,

y5 = cos(βt+ 2π/3), z5 = sin(βt+ 2π/3),

w6 = 0, x6 = 0,

y6 = cos(βt+ 4π/3), z6 = sin(βt+ 4π/3).

cwx = 3mα 6= 0, cyz = 3mβ 6= 0, cwy = cwz = cxy = cxz = 0
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Qualitative behaviour of RE in H3

Theorem 4

In the curved n-body problem in H3, n ≥ 2, with bodies of masses
m1, . . . ,mn > 0, every RE may have one of the following properties:
(i) it is a (simply rotating) negative elliptic RE, with the body of mass mi

moving on a circle Ci, i = 1, n, of a hyperbolic 2-sphere in H3; in the
hyperplanes wxy and wxz, the planes of the circles Ci are parallel with the
plane wx;
(ii) it is a (simply rotating) negative hyperbolic relative equilibrium, with the
body of mass mi moving on some (not necessarily geodesic) hyperbola Hi of
a hyperbolic 2-sphere in H3, i = 1, n; in the hyperplanes wyz and xyz, the
planes of the hyperbolas Ci are parallel with the plane yz;
(iii) it is a (doubly rotating) negative elliptic-hyperbolic relative equilibrium,
with the body of mass mi moving on the hyperbolic cylinder

C2
riρi = {(ri cos θ, ri sin θ, ηi sinh ι, ηi cosh ι) | r

2
i − η2i = −1, θ ∈ [0, 2π), ι ∈ R},

i = 1, n.
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Eulerian RE as in (ii)

The motion described below takes place on a hyperbolic
2-sphere, and is not periodic:

w1 = 0, x1 = 0, y1 = sinh βt, z1 = cosh βt,

w2 = 0, x2 = x (constant), y2 = η sinh βt, z2 = η cosh βt,

w3 = 0, x3 = −x (constant), y3 = η sinh βt, z3 = η cosh βt,

Given m := m1 = m2 = m3 > 0, x > 0, η > 0 with x2 − η2 = −1,
there exist two non-zero frequencies,

β+ =
1

2η

√
1 + 4η2

η(η2 − 1)3/2
and β− = − 1

2η

√
1 + 4η2

η(η2 − 1)3/2
;

cwx = cwy = cwz = cxy = cxz = 0, cyz = mβ(1− 2η2)
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Example of RE as in (iii)

The motion described below takes place on a hyperbolic
cylinder, and is not periodic:

w1 = 0, x1 = 0, y1 = sinh βt, z1 = cosh βt,

w2 = r cosαt, x2 = r sinαt, y2 = η sinh βt, z2 = η cosh βt,

w3 = −r cosαt, x3 = −r sinαt, y3 = η sinh βt, z3 = η cosh βt.

cwx = 2mαr2, cyz = −1− 2βη2, cwy = cwz = cxy = cxz = 0
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Extension of the equations to κ = 0

miq̈i =
n∑

j=1,j 6=i

mimj

[
qj −

(
1− κr2ij

2

)
qi

]
r3ij

(
1− κr2ij

4

)3/2 − κmi(q̇i · q̇i)qi, i = 1, n,

where m1,m2, . . . ,mn > 0 represent the masses, the vectors ri
are given by

qi = ri + (0, 0, 0, (σκ)1/2), ri = (xi, yi, zi, ωi), i = 1, n,

and

rij :=


[(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + (ωi − ωj)2]1/2, κ > 0

[(xi − xj)2 + (yi − yj)2 + (zi − zj)2]1/2, κ = 0

[(xi − xj)2 + (yi − yj)2 + (zi − zj)2 − (ωi − ωj)2]1/2, κ < 0.
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The explicit equations



ẍi =
∑n

j=1,j 6=i

mj

[
xj−
(
1−

κr2ij
2

)
xi

]
r3ij

(
1−

κr2
ij
4

)3/2 − κ(ṙi · ṙi)xi

ÿi =
∑n

j=1,j 6=i

mj

[
yj−
(
1−

κr2ij
2

)
yi

]
r3ij

(
1−

κr2
ij
4

)3/2 − κ(ṙi · ṙi)yi

z̈i =
∑n

j=1,j 6=i

mj

[
zj−
(
1−

κr2ij
2

)
zi

]
r3ij

(
1−

κr2
ij
4

)3/2 − κ(ṙi · ṙi)zi

ω̈i =
∑n

j=1,j 6=i

mj

[
ωj−
(
1−

κr2ij
2

)
ωi+

σ(σκ)
1
2 r2ij

2

]
r3ij

(
1−

κr2
ij
4

)3/2 − (ṙi · ṙi)[κωi + σ(σκ)
1
2 ],

i = 1, n.
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Constraints

κ(x2i + y2i + z2i + σω2
i ) + 2(σκ)1/2ωi = 0,

κ(xiẋi + yiẏi + ziżi + σωiω̇i) + (σκ)1/2ω̇i = 0, i = 1, n.
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newtonian equations

For κ = 0 we recover the Newtonian equations:

mir̈i =
n∑

j=1,j 6=i

mimj(rj − ri)

r3ij
, i = 1, n,

with ri = (xi, yi, zi, 0), i = 1, n
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Bifurcation of the first integrals

– Integral of energy:
for all κ ∈ R: 1 integral (no bifurcation)

– Integrals of the centre of mass:
κ = 0: 3 integrals
κ 6= 0: 0 integrals

– Integrals of the linear momentum:
κ = 0: 3 integrals
κ 6= 0: 0 integrals

– Integrals of the total angular momentum:
κ = 0: 3 integrals
κ 6= 0: 6 integrals
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Thank you very much!
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