Construction of a BGK model from an entropy

minimization principle

Stéphane BRULL, Jacques SCHNEIDER, Vincent PAVAN.

17t october 2016

Stéphane Brull Construction of BGK models. 17t october 2016



0 Introduction

e Monoatomic case
@ Setting of the problem
@ Construction of the model
@ Definition of the relaxation coefficients

9 Polyatomic case
@ Borgnakke-Larsen model
@ Construction of the model
@ Definition of the relaxation coefficients
0 Generalization to gas mixtures
Setting of the problem
@ Navier-Stokes system
@ Chapman-Enskog expansion
@ Construction and properties of the model
o
C

Generalisation to reacting gas mixtures
e onclusions and perspectives

Stéphane Brull Construction of BGK models. 17t october 2016 2/49



Introduction )
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Boltzmann equation

f(t, x, v) : distribution function, t e R, x € R%, v € R3
= number of particles having at time t, position x and the velocity v.

of
a_t + V.fo = Q(f, f)
N——
; M Collision operator
ransport
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Boltzmann equation

f(t, x, v) : distribution function, t e R, x € R%, v € R3
= number of particles having at time t, position x and the velocity v.

of
N——
; M Collision operator
ransport

Collision operator
Q(f,f) f f - Vi, W)[f(t, x, V')f(t, x, v)) = f(t, x, v)f(t, X, vi)|dwadvs,
R3 Js2
where

V=v-(V-V,,0)w, V.=V+{V-V,, Qw, weS?

— High complexity
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Properties of Q(f, f).

Orthogonality relations

Q(f, f)(1,v,|v[*)dv = 0,
R3
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Properties of Q(f, f).

Orthogonality relations

Q(f, f)(1,v,|v[*)dv = 0,
R3

H Theorem

f fin(f)dv <0
R3

Stéphane Brull Construction of BGK models. 17t october 2016 5/49



Properties of Q(f, f).

Orthogonality relations

Q(f, f)(1,v,|v[*)dv = 0,
R3
H Theorem
f fin(f)dv <0
RS
Resolution of Q(f, f) = 0.
P v — uf?
exp(— )
27TT)§ 2T

Q(f,f)=0< F(p,u, T)/f(t,x,v) = (
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Macroscopic quantities
o, uet T : mass, velocity and temperature

1 1
p:f fav, u= —f vidv, T = —f |v—u|2fdv.
R3 P Jr3 3p Jrs

Stress tensor

1

@z—fC@Cfdv, f=M=p0 =pTId

P Jr3

Boltzmann entropy
H(g) = f(glng— g)av.

Space of invariants
K = {1, v, |v[?}. Px : projection on K
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Aim

@ Construct a relaxation operator R(f) = A(G - f) = Q(f, f)
- Go beyond the BGK model,

- As close as possible of Q(f, f),
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Aim

@ Construct a relaxation operator R(f) = A(G - f) = Q(f, f)
- Go beyond the BGK model,

- As close as possible of Q(f, f),

@ Generalization to polyatomic gases : f(t, x, v, I), | : Internal energy
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Aim

@ Construct a relaxation operator R(f) = A(G - f) = Q(f, f)
- Go beyond the BGK model,

- As close as possible of Q(f, f),
@ Generalization to polyatomic gases : f(t, x, v, I), | : Internal energy

@ Generalization to mixtures : fi(t, x, v) (f:= (fi,--- . f))

(t X, V) + v Vifi(t, x, v) ZQK,(fk,f, (Gi - f).
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Chapman-Enskog expansion

Parameter £ Knudsen number. When &£ — 0 = fluid model
Rescaled Boltzmann equation

]
Oif + v Vif = —Q(F. ).
E

Chapman-Enskog expansion
@ Equilibrium state : Q(f,f) =0 & f=M
@ f = M + moments extraction w.r.t. (1, v, v?)
= Euler system

@ f = M + efi + moments extraction w.r.t. (1, v, v?)
= Navier-Stokes system
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Euler system

Order 0
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Euler system

Order 0

(%+V-VX)M:0 (1)

Integration of (1) w.r.t (1, v,|v|?) = Euler system
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Euler system

Order 0

(%+V-VX)M:0 (1)

Integration of (1) w.r.t (1, v,|v|?) = Euler system
Euler system
dip +div(ou) = 0
dt(pu) + divg(pu® u) + Vi(pT) =

1 3 ) 1 5
(9t(p(§|U|2 + ET)) + dlvx(,ou(élul2 + ET)) =
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Computation of f;

Expression of times derivatives w.r.t space derivatives.

o VT
(5 + v VM= (&) : D) - BV) M= L)
V= VV‘T“, £(g) = Q(M, Mg) + Q(Mg, M)

Inversion of the relation = f;
Sonine polynomials

_ e _ Vel
A(v)=vev 3|v| Id, B(v)_2(v 2).

D(u) (viscosity tensor) :

1 1
D(u) = 5(Vxu+ Veu') - 3 dliv(u)ld.
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Navier-Stokes system

Integration of ((% +v- VX)(M +efy) wrt (1,v,|v[?),

dip + divx(pu) =0
di(pu) + divy(pu®u+pT Id — guD(u)) =0

1 3 A 5
6t(p(§|u|2 + ET)) + dlvx(p(§|u|2 +2T) = eV T = auD(v) - u) —0.
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Navier-Stokes system

Integration of ((% +v- VX)(M +efy) wrt (1,v,|v[?),

dip + divx(pu) =0
di(pu) + divy(pu®u+pT Id — guD(u)) =0

1 3 A 5
6t(p(§|u|2 + ET)) + dlvx(p(§|u|2 +2T) = eV T = auD(v) - u) —0.

Transport Coefficients

w=pu(T.p. A, L") : Viscosity, « = «(T,p,B, L") : Heat flux
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Navier-Stokes system

Integration of ((% +v- VX)(M +efy) wrt (1,v,|v[?),

dip + divx(pu) =0
di(pu) + divy(pu®u+pT Id — guD(u)) =0
1 3 1 5
6t(p(§|U|2 + ET)) + divx(p(§|u|2 +2T) = eV T = auD(v) - u) —0.

Transport Coefficients

w=pu(T.p. A, L") : Viscosity, « = «(T,p,B, L") : Heat flux

Prandtl number

Pr =

N O
= I=
Q
Wl N
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Monoatomic case )
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BGK Models

Relaxation operator

QU ) ~ R(f) = L(M=1£), 750

T

where M is defined by

) v — uf?
M(v) = Wexp(—T).
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BGK Models

Relaxation operator

QU ) ~ R(f) = L(M=1£), 750

T

where M is defined by

P v —uf
M(V) = W exp (—T) .
M= minH(g)
geCs

where

1

1
Cf:{QZOS.t.f v gdv:f v [fav}
R3| |2 R3| 2
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Properties of the BGK operator

Conservation laws

fs(M - (1, v,|v[?)dv = (0,0,0),
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Properties of the BGK operator

Conservation laws

fs(M - (1, v,|v[?)dv = (0,0,0),

Equilibrium states

fp(M—f)Infdv—O@f—M,
R3
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Properties of the BGK operator

Conservation laws

f (M=f)(1,v,|v[?)dv = (0,0,0),
R3
Equilibrium states

fp(M—f)Infdv—O@f—M,
R3

H Theorem

f(/\/(—f)lnfdvso.
R3
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Properties of the BGK operator

Conservation laws
f (M=f)(1,v,|v[?)dv = (0,0,0),
RS
Equilibrium states
f pM=f)infdv=0e f=M,
RS
H Theorem

f(/\/(—f)lnfdvso.
R3

Trend to equilibrium

tl!Too f(t) = M.
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Properties of the BGK operator

Conservation laws

fs(M - (1, v,|v[?)dv = (0,0,0),

Equilibrium states

f pM=f)infdv=0e f=M,
R3
H Theorem

f (M-f)Infdv <0.
R3
Trend to equilibrium

lim f(t) = M.

Jim (1) =M

Problem : Prandtl number not correct ~ 1

Remark : Model coming from an entropy minimization problem
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Minimization principle

Aim : Methodology to construct BGK models = correct transport
coefficients up to Navier-Stokes.
The models are researched on the form A(G - f)
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Minimization principle

Aim : Methodology to construct BGK models = correct transport
coefficients up to Navier-Stokes.

The models are researched on the form A(G - f)

Minimization problem

G is researched as

H(G) = grgigﬂ(g),

Cr = {9/ fm(v)gdv:(V(fm(v)fdv)}

span(m(v)) =P
G = exp(a - m(v)) is expected.
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Realisability problems

Let VeRN. Isthere G>0¢eL's.t.
H(G) = minH(g)

under the constraints

f gm(v)dv = V?
R3
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Realisability problems

Let VeRN. Isthere G>0¢eL's.t.
H(G) = minH(g)
under the constraints

f gm(v)dv = V?
R3

CN : V corresponds to a nonnegative L' function
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Realisability problems

Let VeRN. Isthere G>0¢eL's.t.
H(G) = minH(g)
under the constraints

f gm(v)dv = V?
R3

CN : V corresponds to a nonnegative L' function

Characterisation of realisability [M.Junk, 98], [J.Schneider, 2004 ]

Pb : G is not always equal to exp(e - m(v))
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Approach by relaxation coefficients

Relaxation coefficents :

R(f) = Z,-/l,-(G,- - f)

[Levermore, J.S.P., 1996]
Problem : We obtain only Pr > 1.
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Approach by relaxation coefficients

Relaxation coefficents :

R(f) = Z,-/l,-(G,- - f)

[Levermore, J.S.P., 1996]
Problem : We obtain only Pr > 1.

New approach : One unique relaxation coefficient 4 > 0 and different
relaxation rates (1)j=1..n > 0 s.t.

f/l(G —f)ymi(v)dv = —/l,-ffm,-(v)dv, Ym;eP

Conserved quantities : 4; = 0.
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Explanation of the constraints

Assume P = Py @, Vect[mMn+1 ... my] for the scalar product

(o, ) = f Moy av.

Hence for 4; > 0,and i > n
atffm,-dv:f/l(G—f)m,-dv:—/l,-ffm,-dv

:ffm,-dv—>0, Yi>nwhent — +co.
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P =Py &, A(c), for the scalar product (g, ¢y = fMgov,D dv

Aim : Derive a relaxation operator A(G — f), where

G = minH(g). (2)
9¢C¢
Cr={g=0s.t.
f (1, v,|vf?) gdv = f (1, v, |v?) fdv, 3)
R3 R3
f A(g-HA(c)dv = -4 f fA(c)dv, c=v-u} (4)
R3 R3
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P =Py &, A(c), for the scalar product (g, ¢y = fMgov,D dv

Aim : Derive a relaxation operator A(G — f), where

G = minH(g). (2)
9¢C¢
Cr={g=0s.t.
[ vmygar = [ (v @)
R3 R3
f A(g - fA(c) dv = -4 f fA(c)dv, c=v-u}. (4)
R3 R3
Setting v = 1 — %' = (4) can be written
1
—f cecgdv=vO+(1-v)Tld=T 5)
P JRr3
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Main result

Theorem

Letf#0,f>0s.t [(1+|v?)f <+coandve[-3,1],
= the problem (2, 3, 4) has a unique solution G

P 1 —1 )
G(V) = ——— —=(c, T .
i det(277") exp( 2<C ®

Conversely, if the problem (2, 3, 4) has a solution for any f > 0 s.t.
[f(1+ V)2 < +oo, then v e [-5.1].

Arguments : Cs # 0. Ex : Ges € Cy.
M.Junk, J.Schneider = 3 a solution to the minimization problem.

G(v) = exp (- m(v))

a Lagrange associated to constraints
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Chapman-Enskog expansion
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Chapman-Enskog expansion

f is expanded as
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Chapman-Enskog expansion

f is expanded as
f=M(1+ef")).
Computation of 1 and 1y = exact expansion up to Navier-Stokes

T 50T
A =PT _5eT

u 2«
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Chapman-Enskog expansion

0 A
(E"‘V'Vx)f_g(G_f)e

f is expanded as
f=M(1+ef")).
Computation of 1 and 1y = exact expansion up to Navier-Stokes

T T
=Pt o3el
U 2
Prandtl number
J7i A 1

5 2
d 2k A 1-v d 3_>V
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Chapman-Enskog expansion

0 A
(E"‘V'Vx)f_g(G_f)e

f is expanded as
f=M(1 + ef)).

Computation of 1 and 1y = exact expansion up to Navier-Stokes

T T
=Pt o3el
U 2
Prandtl number
5u A 1 2 1
Pr=—-==—= . Pr= — = ——
2k A4 1—v 37 VT2

= Result : Ellipsoidal Statistical Model ([Holway, 1964]).
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H Theorem

Theorem

Forany—— <v<i,

D(f) :f(Gy—f)Infdvso

Moreover D(f) < 0 for -1 < v < 1 equality iff f = M.

[Andries-Le Tallec-Perlat-Perthame 1999].
[Brull-Schneider 2008].

Stéphane Brull Construction of BGK models. 17t october 2016 22/49



Polyatomic case |
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Borgnakke-Larsen model

Microscopic model : [Borgnakke-Larsen, 1975]

Distribution function — f = f(t,x,v,1)
| = internal energy parameter (I > 0) with &(/) = |

§ = internal energy
Discrete energy parameter : Giovangigli

Collision operator : [Bourgat-DesviIIetztes-Le Tallec-Perthame, 1994].
Conserved moments : (1, v, 3|v[? + I5)

6 = number of internal degrees of freedom.
Link between y and ¢

7

Polyatomic Maxwellian distribution

A —up B 2
:%exp(—'v u ——5), Ag1:f e dl.
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Macroscopic quantities

p, u defined as in the monoatomic case
Specific internal energy

1 1 2
e=-— (=Iv = uf® 4 I5) fdvdl.
P Jraxr, 2
€ = ey + eint
ey = — lv—ul“favdl, ejn = — I5 fdvdl.
20 Jr3xr, P Jrexr.,
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Macroscopic quantities

p, u defined as in the monoatomic case
Specific internal energy

1 1
e_—f (=Iv — uf® + I5) f dvdl.
P Jraxr, 2
€ = ey + eint
e = — v —ulfavdl, ey = — I5f dvdl.
2p Jrexr, P Jraxr,
Temperatures are associated to these energies
3+0 3 1)
€= TTeq, € = ETtra €int = ETint-
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P={1,v.,v®V,l)

R(f) = A(G - f), where G is solution of the minimization problem

G = minH(g). (6)
geCy

Ci={g=0s.t.
1 1
f g(1,v, =|cP + I5) dvdl = f f(1,v, =|cR + I5) dvdl,  (7)
R3XR+ 2 R3XR+ 2

1 -, 2 ek .
—Jof = == (= 4+ 15)) (g - f) dvdI
,[Rsxm(sml 555 1)) Ag—T)dv

1 2 |cP
) (— 2__< (o8 I')fddl, 8
szaxm 30— g5 1)) fv (8)

1 1
f (c®c— <lcPld) A(g - f) dvdl = -1 f (c@c—<lclld)fdvdl} (9)
R 3 3

3 XR+ R3 XR+
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Construction of G

A A
0=1-2, Z=1-y(1-9).
PR

1
T:/_)f cocgdvdl=(1-0)(1-v) T ld+vO) + 60 Tgq Id
R3

Stress tensor

@_1fc®cfdvdl.
P

Interpretation : 7~ is a “double convex combinaison”.
Comparison with the Ellipsoidal Statistical Model in the polyatomic case
[P.Andries-P.LeTallec-J.P.Perlat-B.Perthame, 2000]
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Main theorem

Relaxation temperature : Trgj = 0Teq + (1 = 0) Tint,

Theorem

Letf (f+0),f>0s.t [f( (14 v + 15) dvdl < 4o, v € [-1,1] and
0 € [0,1]. Then the problem (6, 7, 8, 9 ) has a unique solution G,

PNs

G= -
det(2nT)(Teq)?

exp(— —{c, G c)— %)

Conversely, if (62, 7, 8, 9) has a unique solutio for any f > 0 s.t.
[f(1+ v+ I5)dvdl < +eo, thenv € [-3,1[ and 6 € [0,1].

[S.B-J.Schneider], 2009
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Definition of 4, 44, Ao.

Tensor for polyatomic Navier-Stokes

O'ij =u (anUi + aX,'Uj - a’d’V(U)éll)

Chapman-Enskog expansion
= Definition of A(p, T, «), 11(po, T, 1) et 12(p, T, i, @).

Result : Ellipsoidal Statistical Model for polyatomic gases
[P.Andries-P.LeTallec-J.P.Perlat-B.Perthame, 2000]

Stéphane Brull Construction of BGK models. 17t october 2016 29/49



Generalization to gas mixtures ]
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Setting of the problem

Aim : Construct a relaxation operator for multi-species basing on (true)
hydrodynamic limit and right kinetic coefficients
(Fick, Soret, Duffour, Fourier, Newton).
= [Brull-Pavan-Schneider, 2012] Fick law.
[Brull, 2015] ES-BGK
Up to now : Approx. of moments exchanges of Boltzmann equation
@ [Garzo-Santos-Brey, 1989]
@ [Kosuge, 2009] (approximation on the Grad 13 moments).
Pb : loss of positivity, no H theorem, uncorrect transport coefficients.
One particular model : [Andries-Aoki-Perthame, 2002]

Good mathematical properties : H theorem, positivity.
Valid only for Maxwellian molecules = uncorrect transport coefficients.

Application to reacting mixtures (Bisi, Groppi, Spiga).
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Navier-Stokes system for a mixture

Navier-Stokes system :

Vie[1,p], din' + V- (n'u+J;) =0,
di(pu) + V- (P+puu+ly) =0,
OE+V-(Eu+Pu] +Jy[u] +Jdq) =0,

Ji, Ju Jq : mass, momentum and heat fluxes.
Thermodynamics of Irreversible Processes assumptions.

o= IELY(F) + LaV(}).
Jg = Z 7 LgV () + LaaV(}):
o = LuuD (u),

- 3. (2nkgT
(i : chemical potential : ’I# = kg (In (ni) - 5 In( ﬂm? ))
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Fick, Dufour, Soret, Fourier coefficients

Phenomenological point of view :
[Chapman-Cowling], [Kurochkin-Makarenko-Tirskii]

j=p j=p
Ji= ) DjVn;+ DyVT, Jq= ) DgjVn;— DeqVT.
=1 =1
Dj; : Fick coefficient : Diffusion
Djt : Soret coefficient : Thermal diffusion
Dq; : Duffour coefficient : Diffusion thermo-effect
Dqq : Fourier coefficient

Relation between diffusion and Onsager matrixes

nkB L,'j
nin;

ij_

Stéphane Brull Construction of BGK models. 17t october 2016
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Distribution function : f := (f;,--- ,fp) — n, u', T'.
Maxwellians distributions : M := (My,--- , Mp).

i=p
Scalar product (f,g) = Zf figiM;idv = Euclidiean norm : || ||.
i=1 VB

Collision invariants K de L2 (M) spanned by :

1 0 M1 Vy mvy miVy myv2
0 0 Mo Vy mavy MoV, mov?2
. b e b . 9 b 9 9
2
0 1 Mp Vx MmpVy MpVz mpV

denoted ¢/, I € {1,...,p + 4}.
Notation : (Cj); = djj (v — u).
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Chapman-Enskog expansion

Pr = Orthogonal projection on K and 1 unit operator

J

Zl’j T -Pg)( V( “’)+A D (u )+§-v(l),

A
ke & T T

@) = mlu-wem-u-Jv-uf|
®) = v-u)
(ﬁ)i = (

New space C = span (I —Px) (Cj).i< [1,p].
(I —Px)(Ci).ie[1,p - 1] basis of C = dim(C) = 3 (p - 1).

u
[1m,(v u)? —ngT],
e’

5n
v-u)|l=mi(v-u —ZKBT].
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Fluxes and transport coefficients

[Chapman, Cowling], [Brull, Pavan, Schneider]
1R Hj — 1
La(9) = - Z(I Pr) (C,-)-V(—?)+A .D(u)+B- v(_).

Fluxes :

Ji=(9.C) =(9.(Z - Px) (C))). Ju=(g.A). Jq=(g.B).
Transport coefficients :

b = g (46 1T -P0) (€. -7 (€)
Lig=Lqi = %(LE,‘ (B). (7 - Px) (Cy))

Loy = 11—0<L‘B‘ (A),A)

lgg = %(Lgf (B).B).
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Properties of the matrix L;;.

Casimir-Onsager relations :

Li Lgq O
L:=| Ly Lgg O is symmetric and non negative.
0 0 Luw

Total mass conservation :

I=p i=p
Zm,-d,-:0=>\{je 1.p], Zm,-L,-j:O = rank(Lj)=p-1.
i=1 i=1

Ker(L) = Vect(my,...,mp,0) = Rank(L) =p
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Idea of the relaxation

Idea : Linear relaxation of non conserved moments
@ Aim : New constraint in the space C = Fick law.

j=p
v fs( Gi—f)w = —/erf (Wr)ret,..p-1) basis of C.
=1V

Important coefficients : Fick, viscosity.

Choice of A, and of w" € C = correct Fick coefficients.
Choice of v = correct viscosity if v > max; 4.

© Resolution of an entropy minimization problem
p
Entropy H(f)= ) | (fiIn(f)-1) av.

3
i—1 VE
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Entropy minimization principle.

(¢I)Ie{1,p+4} basis of K.
Space of constraints : Ci.

v1e[1,p+4],z ¥ fs 81 (gi—fi)dv =0,
geC e |
vre[t,p—1], 528 fowi(gi - f)dv = -4, 7} [ wifidv.
= A'G= min H(f) s.t.
9<Cx(f)
. n' mi (v—u,-)zJ
Yie[1,p], Gi = —exp(—— .
.21, G (2rkg T*/m;)*/2 2kgT"

u; : linear combinations of u’, u; : velocity of g;
Choice of T* = Energy conservation : T* > 0 if v > max, 4.
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Computation of the relaxation coefficients

@ Introduction of L;

- L
L) =>Vije[l,p], Lj = ——.
(Lpdijerr oy = Vi j € 1Pl Lj = ey

@ Diagonalization of L* : spectrum of L* : (I}, W;) et

A =I""= Ficklaws, 1, =0 = Conservation of impulsion.

=p
. _ —Hj 1
Density fluxes : J; = ; LV (T) + L,-qV(T)
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Properties of the BGK model

The Fick relaxation operator satisfies the fundamental properties :
i=p
Vi £ > 0,9, Zf R (F) v = 0 & ¢ € K,
i R3
Vi, f;, > 0, ZfRaﬂ,(f )In(f;)dv <0,
R(f)=0e 3An',u, Ts.tVie[l,p],fi=M,

L=v(Pe+NoPe-1), Aw,) =1 -%)w,, reft,p—1)

is self adjoint and negative on K+ and KerL = K.
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Computation of transport coefficients

Lj(R) = Lj(Boltzmann or experimental)

= (TP ©).(T-Po) (),

1R 5 %
3(L7(B).(1-Pe) (C)) = Lig = La = 5ksT ) L.
=

1 -1 _ 1 — —
o (LT (A).A) = s (A A) = Luu =

nkB T

= correct viscosity if v > max; A,

5k2T3 & n BKAT

<£‘1(§),(I—PK) (Ci)> =Lgg=- QBP ’Z; m; ( )2 Z

ij=1
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Physical context

Mixture with 4 reacting species : A1, Ao, Az Ag

Binary reversible reaction Ai + A = Az + Ag

Collisional models
@ [Rossani, Spiga, 99] : Discrete energy variable
@ [Ern, Giovangigli, 99] : Discrete energy variable : several reactions
@ [Desvilettes, Monaco, Salvarani, 05] : Continous energy variable
BGK models : Discrete energy variable

@ [M.Groppi, G.Spiga, 04] : Generalisation of [Aoki, Andries, Perthame]
No H theorem.

@ = [M.Groppi, Rjasanov, G.Spiga, 09]
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Chemical term

[Groppi, Rjasanov, Spiga, 09] REE(f) = vE(M; - 1),

1

with

3
~ . . 2 .
M; = F;’( m N) exp(— i (V—CI)Q).
2nkg T 2kgT
f', @i and T are computed to have the conservations

[ =) + RE@) v o0, () = (1.3), (1,4), (2.4).

4 4
1 .
Z f miv RE(f) dv = 0, Z f (Em;v2 - E’)R,-CE(f) dv = 0.
i=1 i=1

+ Py, Ay, G, T coupled to mass action law
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The model RVME(f) + RCE(f) satisfies the properties
@ Conservation laws
@ Non-negativity of the solution, H theorem
@ Correct equilibrium states

Slow reacting regime

1
Of° + V- Vyfo = ;R;V'E(f) + ROE(f).

Derivation of a reacting Navier-Stokes model

Stéphane Brull Construction of BGK models. 17t october 2016



Conclusions and perspectives ]
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Conclusion

@ New way to derive BGK models
@ Methodology based on the hydrodynamic limit (exact up to order 1)
@ Based on the relaxation of some appropriate moments

@ Resolution of an entropy minimization problem under moments
constraints

@ Application to complex gases (polyatomic, gas mixtures, ...)
@ Fick relaxation model for slow reactive mixtures

Related results
@ Derivation of an ESBGK model for gas mixtures [Brull, 2015].
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@ Fit other laws : Pb of realisability (See Junk)

@ Chapman-Enskog expansion to Navier Stokes for polyatomic gases
For Euler, [Desvillettes, Monaco, Salvarani]
For Navier-Stokes [Baranger, Bisi, Brull, Desvillettes], Diatomic case
For discrete energy variable, [Giovangigli]

@ Generalize BGK models to polyatomic setting (ESBGK, ...).
@ Reacting gas mixture

@ Numerical implementation
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THANKS FOR YOUR
ATTENTION!!
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