Construction of a *BGK* model from an entropy minimization principle

Stéphane BRULL, Jacques SCHNEIDER, Vincent PAVAN.

17th october 2016

Plan

- Introduction
- Monoatomic case
 - Setting of the problem
 - Construction of the model
 - Definition of the relaxation coefficients
- Polyatomic case
 - Borgnakke-Larsen model
 - Construction of the model
 - Definition of the relaxation coefficients
- Generalization to gas mixtures
 - Setting of the problem
 - Navier-Stokes system
 - Chapman-Enskog expansion
 - Construction and properties of the model
 - Generalisation to reacting gas mixtures
- 5 Conclusions and perspectives

Introduction

Boltzmann equation

f(t, x, v): distribution function, $t \in \mathbb{R}_+$, $x \in \mathbb{R}^3$, $v \in \mathbb{R}^3$ \Rightarrow number of particles having at time t, position x and the velocity v.

$$\underbrace{\frac{\partial f}{\partial t} + v.\nabla_{x}f}_{transport} = \underbrace{Q(f, f)}_{Collision \ operator}$$

Collision operator

$$Q(f,f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} B(v - v_*, \omega) [f(t, x, v') f(t, x, v'_*) - f(t, x, v) f(t, x, v_*)] d\omega dv_*$$

where

$$V' = V - \langle V - V_*, \omega \rangle \omega, \quad V'_* = V + \langle V - V_*, \omega \rangle \omega, \quad \omega \in \mathbb{S}^2$$

→ High complexity

4 / 49

Boltzmann equation

f(t, x, v): distribution function, $t \in \mathbb{R}_+$, $x \in \mathbb{R}^3$, $v \in \mathbb{R}^3$ \Rightarrow number of particles having at time t, position x and the velocity v.

$$\underbrace{\frac{\partial f}{\partial t} + v.\nabla_{X}f}_{transport} = \underbrace{Q(f, f)}_{Collision \ operator}$$

Collision operator

$$Q(f,f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} B(v - v_*, \omega) [f(t, x, v') f(t, x, v_*') - f(t, x, v) f(t, x, v_*)] d\omega dv_*,$$

where

$$v' = v - \langle v - v_*, \omega \rangle \omega, \quad v'_* = v + \langle v - v_*, \omega \rangle \omega, \quad \omega \in \mathbb{S}^2$$

→ High complexity

Properties of Q(f, f).

Orthogonality relations

$$\int_{\mathbb{R}^3} Q(f,f)(1,v,|v|^2)dv = 0,$$

H Theorem

$$\int_{\mathbb{R}^3} f \ln(f) dv \le 0$$

Resolution of Q(f, f) = 0.

$$Q(f,f) = 0 \Leftrightarrow \exists (\rho, u, T) / f(t, x, v) = \frac{\rho}{(2\pi T)^{\frac{2}{3}}} \exp(-\frac{|v - u|^2}{2T})$$

Properties of Q(f, f).

Orthogonality relations

$$\int_{\mathbb{R}^3} Q(f,f)(1,v,|v|^2)dv = 0,$$

H Theorem

$$\int_{\mathbb{R}^3} f \ln(f) dv \le 0$$

Resolution of Q(f, f) = 0.

$$Q(f,f) = 0 \Leftrightarrow \exists (\rho, u, T) / f(t, x, v) = \frac{\rho}{(2\pi T)^{\frac{2}{3}}} \exp(-\frac{|v - u|^2}{2T})$$

Properties of Q(f, f).

Orthogonality relations

$$\int_{\mathbb{R}^3} Q(f,f)(1,v,|v|^2)dv = 0,$$

H Theorem

$$\int_{\mathbb{R}^3} f \ln(f) dv \le 0$$

Resolution of Q(f, f) = 0.

$$Q(f,f) = 0 \Leftrightarrow \exists (\rho, u, T) / f(t, x, v) = \frac{\rho}{(2\pi T)^{\frac{2}{3}}} \exp(-\frac{|v - u|^2}{2T})$$

Notations

Macroscopic quantities

 ρ , u et T: mass, velocity and temperature

$$\rho = \int_{\mathbb{R}^3} f \, dv, \quad \ u = \frac{1}{\rho} \int_{\mathbb{R}^3} v f \, dv, \quad \ T = \frac{1}{3\rho} \int_{\mathbb{R}^3} |v - u|^2 f \, dv.$$

Stress tensor

$$\Theta = rac{1}{
ho} \int_{\mathbb{R}^3} c \otimes c \, \mathit{fdv}, \qquad \mathit{f} = \mathcal{M} \Rightarrow
ho \Theta =
ho \, \mathsf{T} \, \mathit{Id}$$

Boltzmann entropy

$$\mathcal{H}(g) = \int (g \ln g - g) dv.$$

Space of invariants

 $\mathbb{K} = \{1, v, |v|^2\}.$ $P_{\mathbb{K}}$: projection on \mathbb{K}

Aim

- Construct a relaxation operator $R(f) = \lambda(G f) \approx Q(f, f)$
 - Go beyond the BGK model,
 - As close as possible of Q(f, f),
- Generalization to polyatomic gases : f(t, x, v, I), I: Internal energy
- ullet Generalization to mixtures : $f_i(t,x,v)$ (${f f}:=(f_1,\cdots,f_p)$)

$$\frac{\partial f_i}{\partial t}(t, x, v) + v \cdot \nabla_x f_i(t, x, v) = \sum_{k=1}^{\kappa=\rho} Q_{ki}(f_k, f_i) \approx \lambda (G_i - f_i)$$

Aim

- Construct a relaxation operator $R(f) = \lambda(G f) \approx Q(f, f)$
 - Go beyond the BGK model,
 - As close as possible of Q(f, f),
- Generalization to polyatomic gases : f(t, x, v, I), I: Internal energy
- Generalization to mixtures : $f_i(t, x, v)$ ($\mathbf{f} := (f_1, \dots, f_p)$)

$$\frac{\partial f_i}{\partial t}(t,x,v) + v \cdot \nabla_x f_i(t,x,v) = \sum_{k=1}^{k=p} Q_{ki}(f_k,f_i) \approx \lambda (G_i - f_i)$$

Aim

- Construct a relaxation operator $R(f) = \lambda(G f) \approx Q(f, f)$
 - Go beyond the BGK model,
 - As close as possible of Q(f, f),
- Generalization to polyatomic gases : f(t, x, v, I), I: Internal energy
- Generalization to mixtures : $f_i(t, x, v)$ ($\mathbf{f} := (f_1, \dots, f_p)$)

$$\frac{\partial f_i}{\partial t}(t,x,v) + v \cdot \nabla_x f_i(t,x,v) = \sum_{k=1}^{k=p} Q_{ki}(f_k,f_i) \approx \lambda(G_i - f_i).$$

Chapman-Enskog expansion

Parameter ε Knudsen number. When $\varepsilon \to 0 \Rightarrow$ fluid model Rescaled Boltzmann equation

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{1}{\varepsilon} Q(f, f).$$

Chapman-Enskog expansion

- Equilibrium state : $Q(f, f) = 0 \Leftrightarrow f = \mathcal{M}$
- f = M + moments extraction w.r.t. $(1, v, v^2)$ \Rightarrow Euler system
- $f = \mathcal{M} + \varepsilon f_1$ + moments extraction w.r.t. $(1, v, v^2)$ \Rightarrow Navier-Stokes system

Euler system

Order 0

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) \mathcal{M} = 0 \tag{1}$$

Integration of (1) w.r.t $(1, v, |v|^2) \Rightarrow$ Euler system Euler system

$$\partial_{t}\rho + div(\rho u) = 0$$

$$\partial_{t}(\rho u) + div_{x}(\rho u \otimes u) + \nabla_{x}(\rho T) = 0$$

$$\partial_{t}\left(\rho(\frac{1}{2}|u|^{2} + \frac{3}{2}T)\right) + div_{x}\left(\rho u(\frac{1}{2}|u|^{2} + \frac{5}{2}T)\right) = 0$$

Euler system

Order 0

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) \mathcal{M} = 0 \tag{1}$$

Integration of (1) w.r.t $(1, v, |v|^2) \Rightarrow$ Euler system

Euler system

$$\partial_{t}\rho + \operatorname{div}(\rho u) = 0$$

$$\partial_{t}(\rho u) + \operatorname{div}_{x}(\rho u \otimes u) + \nabla_{x}(\rho T) = 0$$

$$\partial_{t}\left(\rho(\frac{1}{2}|u|^{2} + \frac{3}{2}T)\right) + \operatorname{div}_{x}\left(\rho u(\frac{1}{2}|u|^{2} + \frac{5}{2}T)\right) = 0$$

Euler system

Order 0

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) \mathcal{M} = 0 \tag{1}$$

Integration of (1) w.r.t $(1, v, |v|^2) \Rightarrow$ Euler system

Euler system

$$\begin{array}{rcl} \partial_t \rho + \text{div}(\rho u) & = & 0 \\ \partial_t (\rho \, u) + \text{div}_X (\rho \, u \otimes u) + \nabla_X (\rho T) & = & 0 \\ \partial_t \! \left(\! \rho (\frac{1}{2} |u|^2 + \frac{3}{2} T) \right) + \text{div}_X \! \left(\! \rho u (\frac{1}{2} |u|^2 + \frac{5}{2} T) \right) & = & 0. \end{array}$$

Computation of f_1

Expression of times derivatives w.r.t space derivatives.

$$\left(\frac{\partial}{\partial t} + v \cdot \nabla_{x}\right) \mathcal{M} = \left(\mathbb{A}(V) : \mathbb{D}(u) - \mathcal{B}(V) \frac{\nabla_{x} T}{\sqrt{T}}\right) \mathcal{M} = \mathcal{L}(f_{1})$$

$$V = \frac{v - u}{\sqrt{T}}, \quad \mathcal{L}(g) = Q(M, Mg) + Q(Mg, M)$$

Inversion of the relation $\Rightarrow f_1$

Sonine polynomials

$$\mathbb{A}(v) = v \otimes v - \frac{1}{3}|v|^2 Id, \quad \mathbf{B}(v) = \frac{v}{2}(v^2 - \frac{5}{2}).$$

 $\mathbb{D}(u)$ (viscosity tensor):

$$\mathbb{D}(u) = \frac{1}{2}(\nabla_{\scriptscriptstyle X} u + \nabla_{\scriptscriptstyle X} u^t) - \frac{1}{3} div(u) Id.$$

Navier-Stokes system

Integration of
$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) (\mathcal{M} + \varepsilon f_1)$$
 w.r.t $(1, \mathbf{v}, |\mathbf{v}|^2)$,
$$\partial_t \rho + \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u}) = 0$$

$$\partial_t (\rho \mathbf{u}) + \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u} \otimes \mathbf{u} + \rho T \operatorname{Id} - \varepsilon \mu \mathbb{D}(\mathbf{u})) = 0$$

$$\partial_t \left(\rho(\frac{1}{2}|\mathbf{u}|^2 + \frac{3}{2}T)\right) + \operatorname{div}_{\mathbf{x}}\left(\rho(\frac{1}{2}|\mathbf{u}|^2 + \frac{5}{2}T) - \varepsilon \kappa \nabla_{\mathbf{x}}T - \varepsilon \mu \mathbb{D}(\mathbf{u}) \cdot \mathbf{u}\right) = 0.$$

Transport Coefficients

$$\mu=\mu(T,
ho,\mathbb{A},\mathcal{L}^{-1})$$
 : Viscosity, $\kappa=\kappa(T,
ho,\mathbf{B},\mathcal{L}^{-1})$: Heat flux

Prandtl number

$$Pr = \frac{5}{2} \frac{\mu}{\kappa} \approx \frac{2}{3}.$$

Navier-Stokes system

Integration of
$$\left(\frac{\partial}{\partial t} + v \cdot \nabla_{x}\right) (\mathcal{M} + \varepsilon f_{1})$$
 w.r.t $(1, v, |v|^{2})$, $\partial_{t}\rho + div_{x}(\rho u) = 0$ $\partial_{t}(\rho u) + div_{x}(\rho u \otimes u + \rho T Id - \varepsilon \mu \mathbb{D}(u)) = 0$ $\partial_{t}\left(\rho\left(\frac{1}{2}|u|^{2} + \frac{3}{2}T\right)\right) + div_{x}\left(\rho\left(\frac{1}{2}|u|^{2} + \frac{5}{2}T\right) - \varepsilon \kappa \nabla_{x}T - \varepsilon \mu \mathbb{D}(u) \cdot u\right) = 0.$

Transport Coefficients

$$\mu = \mu(T, \rho, \mathbb{A}, \mathcal{L}^{-1})$$
: Viscosity, $\kappa = \kappa(T, \rho, \mathbf{B}, \mathcal{L}^{-1})$: Heat flux

Prandtl number

$$Pr = \frac{5}{2} \frac{\mu}{\kappa} \approx \frac{2}{3}$$

Navier-Stokes system

Integration of
$$\left(\frac{\partial}{\partial t} + v \cdot \nabla_x\right) (\mathcal{M} + \varepsilon f_1)$$
 w.r.t $(1, v, |v|^2)$, $\partial_t \rho + div_x(\rho u) = 0$ $\partial_t (\rho u) + div_x(\rho u \otimes u + \rho T Id - \varepsilon \mu \mathbb{D}(u)) = 0$

 $\partial_t \left(\rho(\frac{1}{2}|u|^2 + \frac{3}{2}T) \right) + \operatorname{div}_x \left(\rho(\frac{1}{2}|u|^2 + \frac{5}{2}T) - \varepsilon \kappa \nabla_x T - \varepsilon \mu \mathbb{D}(u) \cdot u \right) = 0.$

Transport Coefficients

$$\mu = \mu(T, \rho, \mathbb{A}, \mathcal{L}^{-1})$$
: Viscosity, $\kappa = \kappa(T, \rho, \mathbf{B}, \mathcal{L}^{-1})$: Heat flux

Prandtl number

$$Pr = \frac{5}{2} \frac{\mu}{\kappa} \approx \frac{2}{3}.$$

Monoatomic case

BGK Models

Relaxation operator

$$Q(f,f) \sim R(f) = \frac{1}{\tau}(\mathcal{M} - f), \quad \tau > 0$$

where \mathcal{M} is defined by

$$\mathcal{M}(v) = \frac{\rho}{(2\pi T)^{3/2}} \exp\left(-\frac{|v-u|^2}{2T}\right).$$

$$\mathcal{M} = \min_{g \in C_f} \mathcal{H}(g)$$

where

$$C_f = \{g \ge 0 \text{ s.t. } \int_{\mathbb{R}^3} \begin{pmatrix} 1 \\ v \\ v^2 \end{pmatrix} g \, dv = \int_{\mathbb{R}^3} \begin{pmatrix} 1 \\ v \\ v^2 \end{pmatrix} f \, dv \}$$

BGK Models

Relaxation operator

$$Q(f,f) \sim R(f) = \frac{1}{\tau}(\mathcal{M} - f), \quad \tau > 0$$

where \mathcal{M} is defined by

$$\mathcal{M}(v) = \frac{\rho}{(2\pi T)^{3/2}} \exp\left(-\frac{|v-u|^2}{2T}\right).$$

$$\mathcal{M} = \min_{g \in C_f} \mathcal{H}(g)$$

where

$$C_f = \{g \ge 0 \text{ s.t. } \int_{\mathbb{R}^3} \begin{pmatrix} 1 \\ v \\ v^2 \end{pmatrix} g dv = \int_{\mathbb{R}^3} \begin{pmatrix} 1 \\ v \\ v^2 \end{pmatrix} f dv \}$$

Conservation laws

$$\int_{\mathbb{R}^3} (\mathcal{M} - f)(1, v, |v|^2) dv = (0, 0, 0),$$

Equilibrium states

$$\int_{\mathbb{R}^3} \rho(\mathcal{M} - f) \ln f \, dv = 0 \Leftrightarrow f = \mathcal{M},$$

H Theorem

$$\int_{\mathbb{R}^3} (\mathcal{M} - f) \ln f \, dv \le 0.$$

Trend to equilibrium

$$\lim_{t\to+\infty}f(t)=\mathcal{M}.$$

<u>Problem</u>: Prandtl number not correct ≈ 1 <u>Remark</u>: Model coming from an entropy minimization problem

Conservation laws

$$\int_{\mathbb{R}^3} (\mathcal{M} - f)(1, v, |v|^2) dv = (0, 0, 0),$$

Equilibrium states

$$\int_{\mathbb{R}^3} \rho(\mathcal{M} - f) \ln f \, dv = 0 \Leftrightarrow f = \mathcal{M},$$

H Theorem

$$\int_{\mathbb{R}^3} (\mathcal{M} - f) \ln f \, dv \le 0.$$

Trend to equilibrium

$$\lim_{t\to+\infty}f(t)=\mathcal{M}.$$

<u>Problem</u>: Prandtl number not correct ≈ 1 <u>Remark</u>: Model coming from an entropy minimization pro

Conservation laws

$$\int_{\mathbb{R}^3} (\mathcal{M} - f)(1, v, |v|^2) dv = (0, 0, 0),$$

Equilibrium states

$$\int_{\mathbb{R}^3} \rho(\mathcal{M} - f) \ln f \, dv = 0 \Leftrightarrow f = \mathcal{M},$$

H Theorem

$$\int_{\mathbb{R}^3} (\mathcal{M} - f) \ln f \, dv \le 0.$$

Trend to equilibrium

$$\lim_{t\to+\infty}f(t)=\mathcal{M}.$$

<u>Problem</u>: Prandtl number not correct ≈ 1 <u>Remark</u>: Model coming from an entropy minimization pro

Conservation laws

$$\int_{\mathbb{R}^3} (\mathcal{M} - f)(1, v, |v|^2) dv = (0, 0, 0),$$

Equilibrium states

$$\int_{\mathbb{R}^3} \rho(\mathcal{M} - f) \ln f \, dv = 0 \Leftrightarrow f = \mathcal{M},$$

H Theorem

$$\int_{\mathbb{R}^3} (\mathcal{M} - f) \ln f \, dv \le 0.$$

Trend to equilibrium

$$\lim_{t\to+\infty}f(t)=\mathcal{M}.$$

Problem: Prandtl number not correct ≈ 1

Remark: Model coming from an entropy minimization problem.

Conservation laws

$$\int_{\mathbb{R}^3} (\mathcal{M} - f)(1, v, |v|^2) dv = (0, 0, 0),$$

Equilibrium states

$$\int_{\mathbb{R}^3} \rho(\mathcal{M} - f) \ln f \, dv = 0 \Leftrightarrow f = \mathcal{M},$$

H Theorem

$$\int_{\mathbb{R}^3} (\mathcal{M} - f) \ln f \, dv \le 0.$$

Trend to equilibrium

$$\lim_{t\to+\infty}f(t)=\mathcal{M}.$$

Problem : Prandtl number not correct ≈ 1

Remark: Model coming from an entropy minimization problem

14 / 49

Minimization principle

<u>Aim</u>: Methodology to construct BGK models \Rightarrow correct transport coefficients up to Navier-Stokes.

The models are researched on the form $\lambda(G - f)$

Minimization problem

G is researched as

$$\mathcal{H}(G) = \min_{g \in C_f} \mathcal{H}(g),$$

$$C_f = \{g / \int \mathbf{m}(v) g dv = \mathcal{V}(\int \mathbf{m}(v) f dv)\}$$

$$span(\mathbf{m}(v)) = \mathbb{P} \ G = \exp(lpha \cdot \mathbf{m}(v))$$
 is expected

Minimization principle

<u>Aim</u>: Methodology to construct BGK models \Rightarrow correct transport coefficients up to Navier-Stokes.

The models are researched on the form $\lambda(G - f)$

Minimization problem

G is researched as

$$\mathcal{H}(G) = \min_{g \in C_f} \mathcal{H}(g),$$

$$C_f = \{g / \int \mathbf{m}(v) g dv = \mathcal{V}(\int \mathbf{m}(v) f dv)\}$$

$$span(\mathbf{m}(v)) = \mathbb{P}$$

 $G = \exp(\alpha \cdot \mathbf{m}(v))$ is expected.

Realisability problems

Let $\mathcal{V} \in \mathbb{R}^N$. Is there $G \ge 0 \in L^1$ s.t.

$$\mathcal{H}(G) = \min \mathcal{H}(g)$$

under the constraints

$$\int_{\mathbb{R}^3} g \, \mathbf{m}(v) dv = \mathcal{V}?$$

CN : V corresponds to a nonnegative L^1 function

Characterisation of realisability [M.Junk, 98], [J.Schneider, 2004]

Pb : G is not always equal to $exp(\alpha \cdot \mathbf{m}(v))$

Realisability problems

Let $\mathcal{V} \in \mathbb{R}^N$. Is there $G \ge 0 \in L^1$ s.t.

$$\mathcal{H}(G) = \min \mathcal{H}(g)$$

under the constraints

$$\int_{\mathbb{R}^3} g \, \mathbf{m}(v) dv = \mathcal{V}?$$

 $CN: \mathcal{V}$ corresponds to a nonnegative L^1 function

Characterisation of realisability [M.Junk, 98], [J.Schneider, 2004]

Pb : G is not always equal to $exp(\alpha \cdot \mathbf{m}(v))$

Realisability problems

Let $\mathcal{V} \in \mathbb{R}^N$. Is there $G \ge 0 \in L^1$ s.t.

$$\mathcal{H}(G) = \min \mathcal{H}(g)$$

under the constraints

$$\int_{\mathbb{R}^3} g \, \mathbf{m}(v) dv = \mathcal{V}?$$

 $CN: \mathcal{V}$ corresponds to a nonnegative L^1 function

Characterisation of realisability [M.Junk, 98], [J.Schneider, 2004]

Pb : G is not always equal to $\exp(\alpha \cdot \mathbf{m}(v))$

Approach by relaxation coefficients

Relaxation coefficents:

$$R(f) = \sum_{i} \lambda_{i} (G_{i} - f)$$

[Levermore, J.S.P., 1996]

Problem : We obtain only $Pr \ge 1$.

New approach : One **unique** relaxation coefficient $\lambda > 0$ and **different** relaxation rates $(\lambda)_{i=1...N} \geq 0$ s.t.

$$\int \lambda(G-f) \, m_i(v) dv = -\lambda_i \int f \, m_i(v) dv, \, \, \forall m_i \in \mathbb{P}$$

Conserved quantities : $\lambda_i=0$.

Approach by relaxation coefficients

Relaxation coefficents:

$$R(f) = \sum_{i} \lambda_{i} (G_{i} - f)$$

[Levermore, J.S.P., 1996]

Problem : We obtain only $Pr \ge 1$.

New approach : One **unique** relaxation coefficient $\lambda > 0$ and **different** relaxation rates $(\lambda)_{i=1\cdots N} \geq 0$ s.t.

$$\int {\color{blue}\lambda} (G-f) \, m_i(v) dv = - {\color{blue}\lambda}_i \int f \, m_i(v) dv, \ \forall m_i \in \mathbb{P}$$

Conserved quantities : $\lambda_i = 0$.

Explanation of the constraints

Assume $\mathbb{P} = \mathbb{P}_0 \oplus_{\perp} \mathcal{V}ect[m_{n+1} \dots m_N]$ for the scalar product

$$\langle arphi, \psi
angle = \int \mathcal{M} arphi \psi \ \mathsf{d} \mathsf{v}.$$

Hence for $\lambda_i > 0$, and i > n

$$\partial_t \int f m_i dv = \int \lambda (G - f) m_i dv = -\lambda_i \int f m_i dv$$

$$\Rightarrow \int f m_i dv \to 0, \ \forall i > n \text{ when } t \to +\infty.$$

$\mathbb{P} = \mathbb{P}_0 + v \otimes v$

 $\mathbb{P}=\mathbb{P}_0\oplus_{\perp}\mathbb{A}(c),$ for the scalar product $\langle arphi,\psi
angle=\int\mathcal{M}arphi\psi\,dv$

Aim : Derive a relaxation operator $\lambda(G - f)$, where

$$G = \min_{g \in C_f} \mathcal{H}(g). \tag{2}$$

 $C_f = \{g \ge 0 \text{ s.t. }$

$$\int_{\mathbb{R}^3} (1, v, |v|^2) \, g dv = \int_{\mathbb{R}^3} (1, v, |v|^2) \, f dv, \tag{3}$$

$$\int_{\mathbb{R}^3} \lambda(g-f) \mathbb{A}(c) \, dv = -\lambda_1 \int_{\mathbb{R}^3} f \mathbb{A}(c) dv, \quad c = v - u \}. \tag{4}$$

Setting $v=1-rac{\lambda_1}{\lambda}\Rightarrow$ (4) can be written

$$\frac{1}{\rho} \int_{\mathbb{R}^3} c \otimes c \, g dv = v \Theta + (1 - v) T I d = T \tag{5}$$

$\mathbb{P} = \mathbb{P}_0 + v \otimes v$

 $\mathbb{P}=\mathbb{P}_0\oplus_{\perp}\mathbb{A}(c),$ for the scalar product $\langle arphi,\psi
angle=\int\mathcal{M}arphi\psi\,dv$

Aim : Derive a relaxation operator $\lambda(G - f)$, where

$$G = \min_{g \in C_f} \mathcal{H}(g). \tag{2}$$

 $C_f = \{g \ge 0 \text{ s.t. }$

$$\int_{\mathbb{R}^3} (1, v, |v|^2) \, g dv = \int_{\mathbb{R}^3} (1, v, |v|^2) \, f dv, \tag{3}$$

$$\int_{\mathbb{R}^3} \lambda(g-f) \mathbb{A}(c) \, dv = -\lambda_1 \int_{\mathbb{R}^3} f \mathbb{A}(c) dv, \quad c = v - u \}. \tag{4}$$

Setting $v = 1 - \frac{\lambda_1}{\lambda} \Rightarrow (4)$ can be written

$$\frac{1}{\rho} \int_{\mathbb{R}^3} c \otimes c \, g dv = \nu \Theta + (1 - \nu) T I d = \mathcal{T}$$
 (5)

Main result

Theorem

Let $f \neq 0$, $f \geq 0$ s.t. $\int (1 + |v|^2) f < +\infty$ and $v \in [-\frac{1}{2}, 1[$, \Rightarrow the problem (2, 3, 4) has a unique solution G

$$G(v) = \frac{\rho}{\sqrt{det(2\pi T)}} \exp\left(-\frac{1}{2}\langle c, T^{-1}c\rangle\right).$$

Conversely, if the problem (2, 3, 4) has a solution for any $f \ge 0$ s.t. $\int f(1 + |v|)^2 < +\infty$, then $v \in [-\frac{1}{2}, 1[$.

Arguments : $C_f \neq \emptyset$. Ex : $G_{ES} \in C_f$.

M.Junk, J.Schneider $\Rightarrow \exists$ a solution to the minimization problem.

$$G(v) = \exp(\alpha \cdot \mathbf{m}(v))$$

 α Lagrange associated to constraints

$$\left(\frac{\partial}{\partial t}+\mathbf{v}\cdot\nabla_{\mathbf{x}}\right)\mathbf{f}=\frac{\lambda}{\varepsilon}(\mathbf{G}-\mathbf{f}),$$

f is expanded as

$$f = \mathcal{M}(1 + \varepsilon f^{(1)}).$$

Computation of λ and $\lambda_1 \Rightarrow$ exact expansion up to Navier-Stokes

$$\lambda_1 = \frac{\rho T}{\mu}, \quad \lambda = \frac{5}{2} \frac{\rho T}{\kappa}.$$

Prandtl number

$$Pr = \frac{5}{2} \frac{\mu}{\kappa} = \frac{\lambda}{\lambda_1} = \frac{1}{1 - \nu}.$$
 $Pr = \frac{2}{3} \rightarrow \nu = -\frac{1}{2}$

⇒ Result : Ellipsoidal Statistical Model ([Holway, 1964]).

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) \mathbf{f} = \frac{\lambda}{\varepsilon} (\mathbf{G} - \mathbf{f}),$$

f is expanded as

$$f=\mathcal{M}(1+\varepsilon f^{(1)}).$$

Computation of λ and $\lambda_1 \Rightarrow$ exact expansion up to Navier-Stokes

$$\lambda_1 = \frac{\rho T}{\mu}, \quad \lambda = \frac{5}{2} \frac{\rho T}{\kappa}.$$

Prandtl number

$$Pr = \frac{5}{2} \frac{\mu}{\kappa} = \frac{\lambda}{\lambda_1} = \frac{1}{1 - \nu}.$$
 $Pr = \frac{2}{3} \rightarrow \nu = -\frac{1}{2}$

⇒ Result : Ellipsoidal Statistical Model ([Holway, 1964]).

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) \mathbf{f} = \frac{\lambda}{\varepsilon} (\mathbf{G} - \mathbf{f}),$$

f is expanded as

$$f=\mathcal{M}(1+\varepsilon f^{(1)}).$$

Computation of λ and $\lambda_1 \Rightarrow$ exact expansion up to Navier-Stokes

$$\lambda_1 = \frac{\rho T}{\mu}, \quad \lambda = \frac{5}{2} \frac{\rho T}{\kappa}.$$

Prandtl number

$$Pr = \frac{5}{2} \frac{\mu}{\kappa} = \frac{\lambda}{\lambda_1} = \frac{1}{1 - \nu}.$$
 $Pr = \frac{2}{3} \rightarrow \nu = -\frac{1}{2}$

 \Rightarrow Result : Ellipsoidal Statistical Model ([Holway, 1964]).

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) \mathbf{f} = \frac{\lambda}{\varepsilon} (\mathbf{G} - \mathbf{f}),$$

f is expanded as

$$f=\mathcal{M}(1+\varepsilon f^{(1)}).$$

Computation of λ and $\lambda_1 \Rightarrow$ exact expansion up to Navier-Stokes

$$\lambda_1 = \frac{\rho T}{\mu}, \quad \lambda = \frac{5}{2} \frac{\rho T}{\kappa}.$$

Prandtl number

$$Pr = \frac{5}{2} \frac{\mu}{\kappa} = \frac{\lambda}{\lambda_1} = \frac{1}{1 - \nu}.$$
 $Pr = \frac{2}{3} \rightarrow \nu = -\frac{1}{2}$

 \Rightarrow Result : Ellipsoidal Statistical Model ([Holway, 1964]).

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) \mathbf{f} = \frac{\lambda}{\varepsilon} (\mathbf{G} - \mathbf{f}),$$

f is expanded as

$$f=\mathcal{M}(1+\varepsilon f^{(1)}).$$

Computation of λ and $\lambda_1 \Rightarrow$ exact expansion up to Navier-Stokes

$$\lambda_1 = \frac{\rho T}{\mu}, \quad \lambda = \frac{5}{2} \frac{\rho T}{\kappa}.$$

Prandtl number

$$Pr = \frac{5}{2} \frac{\mu}{\kappa} = \frac{\lambda}{\lambda_1} = \frac{1}{1 - \nu}.$$
 $Pr = \frac{2}{3} \rightarrow \nu = -\frac{1}{2}$

⇒ Result : Ellipsoidal Statistical Model ([Holway, 1964]).

H Theorem

Theorem

For any $-\frac{1}{2} \le \nu < 1$,

$$D(f) = \int (G_v - f) \ln f \, dv \le 0$$

Moreover D(f) < 0 for $-\frac{1}{2} \le \nu < 1$ equality iff $f = \mathcal{M}$.

[Andries-Le Tallec-Perlat-Perthame 1999]. [Brull-Schneider 2008].

Polyatomic case

Borgnakke-Larsen model

Microscopic model: [Borgnakke-Larsen, 1975]

Distribution function $\rightarrow f = f(t,x,v,l)$

I= internal energy parameter $(I\geq 0)$ with $\varepsilon(I)=I^{\frac{2}{\delta}}=$ internal energy

Discrete energy parameter : Giovangigli

Collision operator : [Bourgat-Desvillettes-Le Tallec-Perthame, 1994].

Conserved moments : $(1, v, \frac{1}{2}|v|^2 + I^{\frac{2}{\delta}})$

 $\delta =$ number of internal degrees of freedom.

Link between γ and δ

$$\gamma = \frac{\delta + 5}{\delta + 3}, \quad \delta = 2 \Rightarrow \gamma = \frac{7}{5}$$

Polyatomic Maxwellian distribution

$$\mathcal{M} = \frac{\rho \Lambda_\delta}{(2\pi T_{eq})^{\frac{3}{2}} (T_{eq})^{\frac{\delta}{2}}} \exp\biggl(-\frac{|v-u|^2}{2T_{eq}} - \frac{I_{\delta}^2}{T_{eq}} \biggr), \quad \Lambda_\delta^{-1} = \int_{\mathbb{R}_+} e^{-I_{\delta}^2} \, dI.$$

Macroscopic quantities

 $ho,\,u$ defined as in the monoatomic case Specific internal energy

$$e=rac{1}{
ho}\int_{\mathbb{R}^3 imes\mathbb{R}_+}ig(rac{1}{2}|v-u|^2+I^{rac{2}{\delta}}ig)\,f\,dvdI.$$

 $e = e_{tr} + e_{int}$

$$e_{tr} = \frac{1}{2\rho} \int_{\mathbb{R}^3 \times \mathbb{R}_+} |v - u|^2 f \, dv dl, \quad e_{int} = \frac{1}{\rho} \int_{\mathbb{R}^3 \times \mathbb{R}_+} I^{\frac{2}{\delta}} f \, dv dl.$$

Temperatures are associated to these energies

$$e = \frac{3+\delta}{2} T_{eq}, \quad e_{tr} = \frac{3}{2} T_{tr}, \quad e_{int} = \frac{\delta}{2} T_{int}.$$

Macroscopic quantities

 $ho,\,u$ defined as in the monoatomic case Specific internal energy

$$\mathbf{e} = rac{1}{
ho} \int_{\mathbb{R}^3 imes \mathbb{R}_+} (rac{1}{2} |v-u|^2 + I^{rac{2}{\delta}}) \, f \, dv dl.$$

 $e = e_{tr} + e_{int}$

$$e_{tr} = \frac{1}{2\rho} \int_{\mathbb{R}^3 \times \mathbb{R}_+} |v - u|^2 f \, dv dl, \quad e_{int} = \frac{1}{\rho} \int_{\mathbb{R}^3 \times \mathbb{R}_+} I^{\frac{2}{\delta}} f \, dv dl.$$

Temperatures are associated to these energies

$$e = \frac{3+\delta}{2} T_{eq}, \quad \ e_{tr} = \frac{3}{2} T_{tr}, \quad \ e_{int} = \frac{\delta}{2} T_{int}.$$

$$\mathbb{P} = \{1, v, v \otimes v, I^{\frac{2}{\delta}}\}$$

 $R(f) = \lambda(G - f)$, where G is solution of the minimization problem

$$G = \min_{g \in C_f} \mathcal{H}(g). \tag{6}$$

26 / 49

 $C_f = \{g \ge 0 \text{ s.t.} \}$

$$\int_{\mathbb{R}^3 \times \mathbb{R}_+} g\left(1, v, \frac{1}{2} |c|^2 + I^{\frac{2}{\delta}}\right) dv dI = \int_{\mathbb{R}^3 \times \mathbb{R}_+} f\left(1, v, \frac{1}{2} |c|^2 + I^{\frac{2}{\delta}}\right) dv dI, \qquad (7)$$

$$\int_{\mathbb{R}^{3}\times\mathbb{R}_{+}} \left(\frac{1}{3}|c|^{2} - \frac{2}{3+\delta}\left(\frac{|c|^{2}}{2} + I_{\delta}^{2}\right)\right) \lambda(g-f) dvdI$$

$$= -\lambda_{2} \int_{\mathbb{R}^{3}\times\mathbb{R}_{+}} \left(\frac{1}{3}|c|^{2} - \frac{2}{3+\delta}\left(\frac{|c|^{2}}{2} + I_{\delta}^{2}\right)\right) f dvdI, \tag{8}$$

$$\int_{\mathbb{R}^3 \times \mathbb{R}_+} \left(c \otimes c - \frac{1}{3} |c|^2 Id \right) \lambda(g - f) \, dv dI = -\lambda_1 \int_{\mathbb{R}^3 \times \mathbb{R}_+} \left(c \otimes c - \frac{1}{3} |c|^2 Id \right) f \, dv dI \} \quad (9)$$

Construction of G

$$\theta = 1 - \frac{\lambda_2}{\lambda}, \quad \frac{\lambda_1}{\lambda} = 1 - \nu(1 - \theta).$$

$$\mathcal{T} = \frac{1}{\rho} \int_{\mathbb{R}^3} c \otimes c \, g \, dv \, dl = (1 - \theta) \left((1 - v) \, T_{tr} \, ld + v \Theta \right) + \theta \, T_{eq} \, ld$$

Stress tensor

$$\Theta = \frac{1}{\rho} \int c \otimes c \, f \, dv \, dl.$$

Interpretation : \mathcal{T} is a "double convex combinaison".

Comparison with the Ellipsoidal Statistical Model in the polyatomic case [P.Andries-P.LeTallec-J.P.Perlat-B.Perthame, 2000]

Main theorem

Relaxation temperature : $T_{rel} = \theta T_{eq} + (1 - \theta) T_{int}$,

Theorem

Let f ($f \neq 0$), $f \geq 0$ s.t. $\int f(1 + |v|^2 + l^{\frac{2}{\theta}}) dvdl < +\infty$, $v \in [-\frac{1}{2}, 1[$ and $\theta \in [0, 1]$. Then the problem (6, 7, 8, 9) has a unique solution G,

$$G = rac{
ho \Lambda_{\delta}}{\sqrt{det(2\pi \mathcal{T})}(T_{ea})^{rac{\delta}{2}}} \exp\Bigl(-rac{1}{2}\langle c, \mathcal{T}^{-1}c
angle - rac{I^{rac{\delta}{\delta}}}{T_{rel}}\Bigr).$$

Conversely, if (6, 7, 8, 9) has a unique solutio for any $f \ge 0$ s.t. $\int f(1+|\mathbf{v}|^2+I^{\frac{2}{\delta}}) \, d\mathbf{v} d\mathbf{l} < +\infty, \text{ then } \mathbf{v} \in [-\frac{1}{2}, 1[\text{ and } \theta \in [0, 1].$

[S.B-J.Schneider], 2009

Definition of λ , λ_1 , λ_2 .

Tensor for polyatomic Navier-Stokes

$$\sigma_{ij} = \mu \left(\partial_{x_j} u_i + \partial_{x_i} u_j - \alpha \operatorname{div}(u) \delta_{ij} \right).$$

Chapman-Enskog expansion

$$\Rightarrow$$
 Definition of $\lambda(\rho, T, \kappa)$, $\lambda_1(\rho, T, \mu)$ et $\lambda_2(\rho, T, \mu, \alpha)$.

<u>Result</u>: Ellipsoidal Statistical Model for polyatomic gases [P.Andries-P.LeTallec-J.P.Perlat-B.Perthame, 2000]

Generalization to gas mixtures

Setting of the problem

Aim: Construct a relaxation operator for multi-species basing on (true) hydrodynamic limit and right kinetic coefficients (Fick, Soret, Duffour, Fourier, Newton).

⇒ [Brull-Pavan-Schneider, 2012] Fick law.

[Brull, 2015] ES-BGK

Up to now: Approx. of moments exchanges of Boltzmann equation

- [Garzò-Santos-Brey, 1989]
- [Kosuge, 2009] (approximation on the Grad 13 moments).

Pb: loss of positivity, no H theorem, uncorrect transport coefficients.

One particular model : [Andries-Aoki-Perthame, 2002] Good mathematical properties : H theorem, positivity.

Valid only for Maxwellian molecules ⇒ uncorrect transport coefficients.

Application to reacting mixtures (Bisi, Groppi, Spiga).

Navier-Stokes system for a mixture

Navier-Stokes system:

$$\begin{aligned} \forall i \in [1, \rho], \ \partial_t n^i + \nabla \cdot (n^i \mathbf{u} + \mathbf{J}_i) &= 0, \\ \partial_t (\rho \, \mathbf{u}) + \nabla \cdot (\mathbb{P} + \rho \, \mathbf{u} \otimes \mathbf{u} + \mathbb{J}_{\mathbf{u}}) &= 0, \\ \partial_t E + \nabla \cdot (E \mathbf{u} + \mathbb{P} [\mathbf{u}] + \mathbb{J}_{\mathbf{u}} [\mathbf{u}] + \mathbf{J}_q) &= 0, \end{aligned}$$

 \mathbf{J}_i , $\mathbb{J}_{\mathbf{u}}$ $\mathbf{J}_{\mathbf{q}}$: mass, momentum and heat fluxes.

Thermodynamics of Irreversible Processes assumptions.

$$\begin{array}{lcl} \mathbf{J}_{i} & = & \sum_{j=1}^{j=p} \mathsf{L}_{ij} \nabla \left(\frac{-\mu_{j}}{T} \right) & + & \mathsf{L}_{i\mathbf{q}} \nabla \left(\frac{1}{T} \right), \\ \mathbf{J}_{\mathbf{q}} & = & \sum_{j=1}^{j=p} \mathsf{L}_{\mathbf{q}j} \nabla \left(\frac{-\mu_{j}}{T} \right) & + & \mathsf{L}_{\mathbf{q}\mathbf{q}} \nabla \left(\frac{1}{T} \right), \\ \mathbb{J}_{\mathbf{u}} & = & & \mathsf{L}_{\mathbf{u}\mathbf{u}} \mathbb{D} \left(\mathbf{u} \right), \end{array}$$

$$\mu_i$$
: chemical potential: $\frac{\mu_i}{T} = k_B \left(\ln \left(n_i \right) - \frac{3}{2} \ln \left(\frac{2\pi k_B T}{m_i} \right) \right)$.

Fick, Dufour, Soret, Fourier coefficients

Phenomenological point of view:

[Chapman-Cowling], [Kurochkin-Makarenko-Tirskii]

$$J_i = \sum_{j=1}^{j=p} D_{ij} \nabla n_j + D_{iT} \nabla T, \quad J_{\mathbf{q}} = \sum_{j=1}^{j=p} D_{\mathbf{q}j} \nabla n_j - D_{\mathbf{q}\mathbf{q}} \nabla T.$$

 D_{ij} : Fick coefficient : Diffusion

Dit: Soret coefficient: Thermal diffusion

Dai: Duffour coefficient: Diffusion thermo-effect

Dag: Fourier coefficient

Relation between diffusion and Onsager matrixes

$$D_{ij} = -\frac{nk_BL_{ij}}{n_in_i}$$

Notations

Distribution function : $\mathbf{f} := (f_1, \dots, f_p) \to n^i, u^i, T^i$. Maxwellians distributions : $\mathbf{M} := (\mathcal{M}_1, \dots, \mathcal{M}_p)$.

Scalar product
$$\langle \mathbf{f}, \mathbf{g} \rangle = \sum_{i=1}^{i=p} \int_{\mathbb{R}^3} f_i g_i \mathcal{M}_i \, dv \Rightarrow \text{Euclidiean norm} : \| \|.$$

Collision invariants \mathbb{K} de $\mathbb{L}^2(M)$ spanned by :

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}, \begin{pmatrix} m_1 v_x \\ m_2 v_x \\ \vdots \\ m_p v_x \end{pmatrix}, \begin{pmatrix} m_1 v_y \\ m_2 v_y \\ \vdots \\ m_p v_y \end{pmatrix}, \begin{pmatrix} m_1 v_z \\ m_2 v_z \\ \vdots \\ m_p v_z \end{pmatrix}, \begin{pmatrix} m_1 \mathbf{v}^2 \\ m_2 \mathbf{v}^2 \\ \vdots \\ m_p \mathbf{v}^2 \end{pmatrix}$$

denoted ϕ^{l} , $l \in \{1, ..., p + 4\}$.

Notation : $(\mathbf{C}_i)_i = \delta_{ii} (\mathbf{v} - \mathbf{u})$.

 $\mathcal{P}_{\mathbb{K}}=$ Orthogonal projection on \mathbb{K} and \mathcal{I} unit operator

$$\mathcal{L}_{B}(g) = rac{1}{k_{B}} \sum_{j=1}^{j=p} \left(I - \mathcal{P}_{\mathbb{K}} \right) \left(\mathbf{C}_{j} \right) \cdot \nabla \left(-rac{\mu_{j}}{T} \right) + \mathbb{A} : \mathbb{D} \left(\mathbf{u} \right) + \widetilde{\mathbf{B}} \cdot \nabla \left(rac{1}{T} \right),$$

$$(\mathbb{A})_{i} = m_{i} \left[(\mathbf{v} - \mathbf{u}) \otimes (\mathbf{v} - \mathbf{u}) - \frac{1}{3} (\mathbf{v} - \mathbf{u})^{2} \mathbb{I} \right],$$

$$(\mathbf{B})_{i} = (\mathbf{v} - \mathbf{u}) \left[\frac{1}{2} m_{i} (\mathbf{v} - \mathbf{u})^{2} - \frac{5}{2} k_{B} T \right],$$

$$(\widetilde{\mathbf{B}})_{i} = (\mathbf{v} - \mathbf{u}) \left[\frac{1}{2} m_{i} (\mathbf{v} - \mathbf{u})^{2} - \frac{5n}{2\rho} k_{B} T \right].$$

New space $\mathbb{C} = span(I - \mathcal{P}_{\mathbb{K}})(\mathbf{C}_{i}), i \in [1, p].$ $(I - \mathcal{P}_{\mathbb{K}})(\mathbf{C}_{i}), i \in [1, p - 1] \text{ basis of } \mathbb{C} \Longrightarrow \dim(\mathbb{C}) = 3(p - 1).$

Fluxes and transport coefficients

[Chapman, Cowling], [Brull, Pavan, Schneider]

$$\mathcal{L}_{B}(g) = \frac{1}{k_{B}} \sum_{j=1}^{j=p} \left(I - \mathcal{P}_{\mathbb{K}} \right) \left(\mathbf{C}_{j} \right) \cdot \nabla \left(-\frac{\mu_{j}}{T} \right) + \mathbb{A} : \mathbb{D} \left(\mathbf{u} \right) + \widetilde{\mathbf{B}} \cdot \nabla \left(\frac{1}{T} \right).$$

Fluxes:

$$\mathbf{J}_{i} = \left\langle \mathbf{g}, \mathbf{C}_{i} \right\rangle = \left\langle \mathbf{g}, \left(\mathcal{I} - \mathcal{P}_{\mathbb{K}} \right) \left(\mathbf{C}_{i} \right) \right\rangle, \quad \mathbb{J}_{u} = \left\langle \mathbf{g}, \mathbb{A} \right\rangle, \quad \mathbf{J}_{\mathbf{q}} = \left\langle \mathbf{g}, \widetilde{\mathbf{B}} \right\rangle.$$

Transport coefficients:

$$\begin{split} L_{ij} &= \frac{1}{3k_B} \left\langle \mathcal{L}_B^{-1} \left[\left(I - \mathcal{P}_{\mathbb{K}} \right) \left(\mathbf{C}_i \right) \right], \left(I - \mathcal{P}_{\mathbb{K}} \right) \left(\mathbf{C}_j \right) \right\rangle \\ L_{iq} &= L_{qi} &= \frac{1}{3} \left\langle \mathcal{L}_B^{-1} \left(\widetilde{\mathbf{B}} \right), \left(I - \mathcal{P}_{\mathbb{K}} \right) \left(\mathbf{C}_i \right) \right\rangle \\ L_{uu} &= \frac{1}{10} \left\langle \mathcal{L}_B^{-1} \left(\mathbb{A} \right), \mathbb{A} \right\rangle \\ L_{qq} &= \frac{1}{3} \left\langle \mathcal{L}_B^{-1} \left(\widetilde{\mathbf{B}} \right), \widetilde{\mathbf{B}} \right\rangle. \end{split}$$

Properties of the matrix $L_{i,i}$.

Casimir-Onsager relations:

$$\mathbf{L} := \left[\begin{array}{ccc} L_{ij} & L_{i\mathbf{q}} & 0 \\ L_{\mathbf{q}i} & L_{\mathbf{q}\mathbf{q}} & 0 \\ 0 & 0 & L_{\mathbf{u}\mathbf{u}} \end{array} \right] \quad \text{is symmetric and non negative}.$$

Total mass conservation:

$$\sum_{i=1}^{i=p} m_i \mathbf{J}_i = 0 \Rightarrow \forall j \in [1,p], \ \sum_{i=1}^{i=p} m_i L_{ij} = 0 \ \Rightarrow \ rank(L_{ij}) = p-1.$$

$$Ker(\mathbf{L}) = Vect(m_1, ..., m_p, 0) \Rightarrow Rank(\mathbf{L}) = p$$

Idea of the relaxation

Idea: Linear relaxation of non conserved moments

1 Aim : New constraint in the space $\mathbb{C} \Rightarrow \text{Fick law}$.

$$\nu \sum_{j=1}^{j=p} \int_{\mathbb{R}^3} \left(G_j - f_j \right) w_j^r = -\lambda_r \sum_{j=1}^{j=p} \int_{\mathbb{R}^3} f_j w_j^r, \quad (\mathbf{w}_r)_{r \in \{1, \dots, p-1\}} \text{ basis of } \mathbb{C}.$$

Important coefficients: Fick, viscosity.

Choice of λ_r and of $w^r \in \mathbb{C} \Rightarrow$ correct Fick coefficients. Choice of $\nu \Rightarrow$ correct viscosity if $\nu \ge \max_r \lambda_r$.

Resolution of an entropy minimization problem

Entropy
$$\mathcal{H}(\mathbf{f}) = \sum_{i=1}^{p} \int_{\mathbb{R}^{3}} (f_{i} \ln(f_{i}) - f_{i}) d\mathbf{v}.$$

Entropy minimization principle.

 $(\phi^I)_{I \in \{1,p+4\}}$ basis of \mathbb{K} . Space of constraints : C_f .

$$\begin{split} \mathbf{g} \in C_{\mathbf{f}} &\Leftrightarrow \left\{ \begin{array}{l} \forall I \in [1, p+4] \,, \sum_{i=1}^{i=p} \int_{\mathbb{R}^3} \phi_i^J(g_i - f_i) \, d\mathbf{v} = 0, \\ \forall r \in [1, p-1] \,, \sum_{i=1}^{i=p} \int_{\mathbb{R}^3} \mathbf{w}_i^r(g_i - f_i) d\mathbf{v} = -\lambda_r \sum_{i=1}^{i=p} \int_{\mathbb{R}^3} \mathbf{w}_i^r f_i d\mathbf{v}. \\ &\Rightarrow \exists ! \; \mathbf{G} = \min_{g \in C_{\mathbf{f}}(\mathbf{f})} \mathcal{H}(\mathbf{f}) \quad s.t. \\ \forall i \in [1, p] \,, \; G_i = \frac{n^i}{(2\pi k_B T^*/m_i)^{3/2}} \exp\left(-\frac{m_i \, (\mathbf{v} - \mathbf{u}_i)^2}{2k_B T^*}\right). \end{split}$$

 \mathbf{u}_i : linear combinations of \mathbf{u}^i , u_i : velocity of g_i Choice of $T^* \Rightarrow$ Energy conservation: $T^* \ge 0$ if $v \ge \max_r \lambda_r$.

Computation of the relaxation coefficients

• Introduction of L_{ij}^*

$$(L_{ij})_{i,j\in \llbracket 1,p\rrbracket} \Rightarrow \forall i,j\in \llbracket 1,p\rrbracket\,,\ L_{ij}^* = \frac{L_{ij}}{\lVert \mathbf{C}_i\rVert \lVert \mathbf{C}_j\rVert}.$$

• Diagonalization of L^* : spectrum of L^* : $(I_r^*, \mathbf{w}_r)_{r \in \{1, ..., p-1\}} \cup (0, w_p)$

Theorem

$$\lambda_r = l_r^{*-1} \Rightarrow \;\; \text{Fick laws} \;, \quad \lambda_p = 0 \; \Rightarrow \; \text{Conservation of impulsion}.$$

Density fluxes :
$$oldsymbol{J}_i = \sum_{i=1}^{j=p} rac{oldsymbol{L}_{ij}}{T}
abla \Big(rac{-\mu_j}{T}\Big) + L_{iq}
abla \Big(rac{1}{T}\Big)$$

Properties of the BGK model

The Fick relaxation operator satisfies the fundamental properties :

$$\forall \mathbf{f}, f_i \geq 0, \forall \boldsymbol{\phi}, \sum_{i=1}^{i=p} \int_{\mathbb{R}^3} \mathcal{R}_i(\mathbf{f}) \, \phi_i d\mathbf{v} = 0 \Leftrightarrow \boldsymbol{\phi} \in \mathbb{K},$$

$$\forall \mathbf{f}, f_i \geq 0, \sum_{i=1}^{i=p} \int_{\mathbb{R}^3} \mathcal{R}_i(\mathbf{f}) \ln (f_i) \, d\mathbf{v} \leq 0,$$

$$\mathcal{R}(\mathbf{f}) = 0 \Leftrightarrow \exists p^i \mid \mathbf{u}, T \in \mathbf{f}, \forall i \in [1, p], f_i = M.$$

$$\mathcal{R}(\mathbf{f}) = 0 \Leftrightarrow \exists n^i, \mathbf{u}, T \text{ s.t. } \forall i \in [1, p], f_i = \mathcal{M}_i,$$

$$\mathcal{L} = \nu \left(\mathcal{P}_{\mathbb{K}} + \Lambda \circ \mathcal{P}_{\mathbb{C}} - I \right), \ \Lambda \left(\mathbf{w}_{r} \right) = \left(1 - \frac{\lambda_{r}}{\nu} \right) \mathbf{w}_{r}, \ r \in \{1, p - 1\}$$

is self adjoint and negative on \mathbb{K}^{\perp} and $\mathit{Ker}\mathcal{L} = \mathbb{K}$.

Computation of transport coefficients

$$\begin{array}{lcl} L_{ij}(\mathcal{R}) & = & L_{ij}(\text{Boltzmann or experimental}) \\ & = & \frac{1}{3} \left\langle \mathcal{L}^{-1} \left(\mathcal{I} - \mathcal{P}_{\mathbb{K}} \right) \left(\mathbf{C}_{i} \right), \left(\mathcal{I} - \mathcal{P}_{\mathbb{K}} \right) \left(\mathbf{C}_{j} \right) \right\rangle, \end{array}$$

$$\frac{1}{3} \left\langle \mathcal{L}^{-1}(\widetilde{\mathbf{B}}), (I - \mathcal{P}_{\mathbb{K}}) \left(\mathbf{C}_{i} \right) \right\rangle = L_{iq} = L_{qi} = \frac{5}{2} k_{B} T \sum_{j=1}^{p} L_{ij},$$

$$\frac{1}{10} \left\langle \mathcal{L}^{-1} \left(\mathbb{A} \right), \mathbb{A} \right\rangle = \frac{1}{10 \nu} \langle \mathbb{A}, \mathbb{A} \rangle = L_{\mathbf{u}\mathbf{u}} = \frac{n k_{B} T}{\nu}$$

 \Rightarrow correct viscosity if $v \ge \max_r \lambda_r$

$$\left\langle \mathcal{L}^{-1}(\widetilde{\boldsymbol{B}}), \left(\boldsymbol{\mathit{I}} - \boldsymbol{\mathcal{P}}_{\mathbb{K}}\right)(\boldsymbol{C}_{i}) \right\rangle = L_{qq} = -\frac{5k_{B}^{2}T^{3}}{2\rho} \sum_{i=1}^{p} \frac{n_{i}}{m_{i}} + (\frac{5k_{B}^{2}T}{2\rho})^{2} \sum_{i,j=1}^{p} L_{ij}$$

Physical context

Mixture with 4 reacting species: A_1 , A_2 , A_3 A_4

Binary reversible reaction $A_1 + A_2 \leftrightharpoons A_3 + A_4$

Collisional models

- [Rossani, Spiga, 99] : Discrete energy variable
- [Ern, Giovangigli, 99]: Discrete energy variable: several reactions
- [Desvilettes, Monaco, Salvarani, 05] : Continous energy variable

BGK models : Discrete energy variable

- [M.Groppi, G.Spiga, 04]: Generalisation of [Aoki, Andries, Perthame]
 No H theorem.
- ⇒ [M.Groppi, Rjasanov, G.Spiga, 09]

Chemical term

[Groppi, Rjasanov, Spiga, 09] $\mathcal{R}_{i}^{CE}(\mathbf{f}) = v_{i}^{C}(\tilde{\mathcal{M}}_{i} - f_{i}),$

with

$$\tilde{\mathcal{M}}_i = \tilde{n}^i \left(\frac{m_i}{2\pi k_B \tilde{T}} \right)^{\frac{3}{2}} \exp\left(-\frac{m_i}{2k_B \tilde{T}} (\mathbf{v} - \tilde{\mathbf{u}})^2 \right).$$

 \tilde{n}^i , $\tilde{\mathbf{u}}$ and \tilde{T} are computed to have the conservations

$$\int (\mathcal{R}_{i}^{CE}(\mathbf{f}) + \mathcal{R}_{j}^{CE}(\mathbf{f})) d\mathbf{v} = 0, \qquad (i,j) = (1,3), (1,4), (2,4),$$

$$\sum_{i=1}^{4} \int m_{i} \mathbf{v} \, \mathcal{R}_{i}^{CE}(\mathbf{f}) d\mathbf{v} = 0, \qquad \sum_{i=1}^{4} \int \left(\frac{1}{2} m_{i} v^{2} + E^{i}\right) \mathcal{R}_{i}^{CE}(\mathbf{f}) d\mathbf{v} = 0.$$

+ $\tilde{n}_1, \dots, \tilde{n}_4, \tilde{\mathbf{u}}, \tilde{T}$ coupled to mass action law

Results

The model $\mathcal{R}_{i}^{\textit{ME}}(\mathbf{f}) + \mathcal{R}_{i}^{\textit{CE}}(\mathbf{f})$ satisfies the properties

- Conservation laws
- Non-negativity of the solution, H theorem
- Correct equilibrium states

Slow reacting regime

$$\partial_t f_i^{\varepsilon} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_i^{\varepsilon} = \frac{1}{\varepsilon} \mathcal{R}_i^{\mathsf{ME}}(\mathbf{f}) + \mathcal{R}_i^{\mathsf{CE}}(\mathbf{f}).$$

Derivation of a reacting Navier-Stokes model

Conclusions and perspectives

Conclusion

- New way to derive BGK models
- Methodology based on the hydrodynamic limit (exact up to order 1)
- Based on the relaxation of some appropriate moments
- Resolution of an entropy minimization problem under moments constraints
- Application to complex gases (polyatomic, gas mixtures, ...)
- Fick relaxation model for slow reactive mixtures

Related results

Derivation of an ESBGK model for gas mixtures [Brull, 2015].

Perspectives

- Fit other laws : Pb of realisability (See Junk)
- Chapman-Enskog expansion to Navier Stokes for polyatomic gases For Euler, [Desvillettes, Monaco, Salvarani]
 For Navier-Stokes [Baranger, Bisi, Brull, Desvillettes], Diatomic case For discrete energy variable, [Giovangigli]
- Generalize BGK models to polyatomic setting (ESBGK, ...).
- Reacting gas mixture
- Numerical implementation

THANKS FOR YOUR ATTENTION!