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Smoothing and Linear PDE

* Let u(x) be the grey scale of image with noise
* Let ug(x) be the grey scale of original image
e u(x) =up(x) + o(x)
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Smoothing and Linear PDE

i(x) = E g W)

B is a ball of radius r at origin

u(x, y) ~ U (x,y)




Smoothing and Linear PDE

100 = o [, 1)

B is a ball of radius r at origin




Smoothing and Linear PDE

1. Idea of Witkin: Embed the original image u
in a family of derived images obtained by
convolving the original image uy with G; a
Gaussian kernal of variance t

2. u(x,t) = c(t) [ ug(x — y) exp (— i’—;) dy

3. Larger value of t corresponds to image at
coarser resolution



Smoothing and Linear PDE

ldea of Koenderink: u(x, t) satisfies the

heat equation

(u, (x,t) = Au(x,t)

(u(x,0) = up(x)

Linear PDE method is a low-pass filtering

A

It can eliminate the noise

it also smooths the edges.

A 4




Smoothing and Linear PDE

Idea of Koenderink: u(x, t)
satisfies the heat equation
(u,(x,t) = Au(x, t)
u(x,0) = up(x)

Linear PDE method is a low-pass filtering

A

It can eliminate the noise

it also smooths the edges.

v W




Smoothing and Linear PDE

Physical consideration

1. Causality: any feature at a coarse level of resolution is
required to possess a “cause” at a finer level of resolution

2. Homogeneity and Isotropy: The blurring is regired
to be space invariant

3. Fick’s law : Flux J(x) = D(x)Vu, where D is called flux
tensor

4. Invariance of A: uniformly diffusion

in all directions
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Smoothing and Linear PDE

Physical consideration

1. Causality: any feature at a coarse level of resolution is
required to possess a “cause” at a finer level of resolution

2. Homogeneity and Isotropy: The blurring is reqired to
be space invariant

3. Fick’s law : Flux J(x) = D(x)Vu, where D is called flux
tensor

4. Invariance of A: uniformly diffusion in all directions

5. Gauge coordinates: Au = ugs + Uy 3

Where & L Vu, 7llVu ﬁ/v '



Relation between smoothing and Linear PDE

1
Mr(u) — ﬁ x+Bu(Y)

Mn,r = M,°M,.° -+ °M,,.

If nr = tis fixed, then u,, = M, -(u) - v(t, x)

asn — oo, then v(t, x) solves the heat equation

ve(t, x) = Av(t, x)
v(0,x) = u(x)



Averaging and Nonlinear PDE
Tu(x) = sup inf u(x + y)
B JYEB

B is a ball of radius r at origin

Tu(x) = uy(x)




Averaging and Nonlinear PDE
Tu(x) = sup 1nf u(x+7y)
B is a ball of radius I at origin

Tu(x) = uy(x)




PDE
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Averaging and Nonlinear PDE

T.(u) = sup inf u(x +vy),T,, = T,°T,.° --- °T,.
B JYEB ’

If nr = tis fixed, thenu, = T, . (u) - v(x,t)

and v(x, t) solves the nonlinear equation

ve(x, t) = IVvl(div(lg |>)3
v(x,0) = u(x)



Anisotropic Nonlinear model
Fick’s law: Flux J(x) = D(x)Vu,
Perona-Malik model: D(x) = g(|Vul)
u; = div(g(|Vul)Vu)

ldea of Perona-Malik: Encourage smoothing
WIthin the region in preference to smoothing
across the bounday

Could be done: Put
D=1 Ininterior

D =0 on boundary




Anisotropic Nonlinear model

Fick’s law: Flux J(x) = D(x)Vu,
Perona-Malik model: u,= div(g(|Vul|)Vu)

Two typical functions of g

SZ
s =en(-2)

g(s) = —

1+ﬁ




Anisotropic nonlinear model

Perona — Malik model

U = div(g(IVuI)Vu) — g Ugt + (p,urr
where @(s) = sg(s)
The first term is a diffusion along the edges

The second term corresponds to local

inversion of heat equation |
4 phi(s)

i.e. backward heat equation
thus enhance edges




Perona - Malik model

e Original image (left)

* Edges detected by Perona- Malik
method (above)

* Edges detected by Gaussian
smoothing (below)

P. Perona, J. Malik, IEEE Transaction PAMI, 12, 1990.
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Perona-Malik model: Staircasing problem

* One problem in Perona-Malik model is the
staircasing .
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* Another problem is the existence of multiple
local maximum for the associated energy
functional

E(u) = fG(IVuI) + 9(u — uy)*



Variational formulation of segmentation

e Mumford -Shah model
E(u,K) =B [,(u—up)*+ " IVul? + a|K|

K'is the set of edges and u, is the given image

* The data term
* The regularity term of U

 The penalty term for

(

the boundary

D. Mumford, J. Shah, CPAM , 1989




Variational formulation of segmentation

e Rudin-Osher-Fatemi total variation model

E(w) =B [,(u—up)*+ o | 7ul + alK]

L. Rudin, S. Osher, E. Fatemi, Physica D , 1992

* Chan-Vese binary model

E(u) = fﬂl(u — c1)2+fﬂz(u —c)* + B, IVul

T. Chan, L. Vese,
IEEE, Transaction on
Image Processing , 2002



Variational formulation of segmentation

e Rudin-Osher-Fatemi total variation model
E(u) =B [ (u—uy)+ o 17Ul + alK|

* Chan-Vese binary model . Fundana, Thesis, 2010
E(u) = fﬂl(u — c1)2+f92(u —)* + B, IVul

%




Segmentation with shape prior

* ¢(x) is a reference shape prior

Ew =B J(u—up)*+[ |Vul + a [(u—¢)*

* The associated evolution equation  « rundana s, 2010

ur= Aqu+f(u — up)+a(u — @)




Directional diffusion

e Ai(u) = div (I ul) describes the diffusion along

the tangential direction, (Vu)*, of level surface,
i.e. along the edges
ru

A (1) —HuI ol Tral”

describes the diffusion along the normal
direction, Vu, of level surface.

H is the Hessian of u

¢
* New idea: proper combination k

of A{, Ay



Some relationships

Gauge coordinate (¢, T)

uge= |Vu|A;u, U = AU

Laplacian A and infinity Laplacian A

Au = |[Vu|Aju + A u

or
IVu|lAqu = Au — A u



Anisotropic evolution

* Weighted directional evolution
U = S Ugg TG Ugg

where s,  has the property
0<qg<s, if [Vu| >1
* Positivity of S, g ensures that the PDE is elliptic

* Condition g < s provides us opportunity to
nave different evolution straitegies at different
ooints based on geometric character of the

evel set



Anisotropic evolution

PDE 1n Cartessian coordinates
u; = s|VulAju + gAu

If g = 0, then the above equation is just mean
caurvature equation

If g = (p—1)|Vu|P~%,s = |Vu|P~?, then the
above equation becomes p-Laplace equation.
i.e., uy = div{|Vu|P~%Vu}

For proper s, g, we have (p, ()-equation
u, = div{(a|Vu|P~%+|Vu|9=%)Vu}



Anisotropic evolution

Three potential candidates
* Li(w) = [Vul|94;(w) + (p — DIVulP~?Ag (w)
o Ly(u) = [Vu|?™ (|7u]d; (W) + g() A0 (W)

o Ly(w) = [VulS™(|7u|A; (W) + q(x) A ()



Viscosity solution
« Asimple equation u; — F(Vu,D?u) =0

F(p, X) = Tr(X) + (q(lph = Dp - Xp, p=--

* Function g:|0,4+o) — (0,1) is continuous

06 Weight function g(s) = 0.5e * 1%
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* For any symmetric matrix X, A(X), A(X) denote the smallest
and largest eigenvalues of X.



Viscosity solution
A simple equation u; — F(Vu, D?u) = 0

Fp,X) =Tr(X) + (q(lp) —Dp-Xp, p= %

Subsolution u: for every point (t,, x), all test function ¢ such that
U — ¢ has local maximum at (t,, x,), then

{cpt—F(p,X)SO, p+0
¢ —Tr(X) —(q(0) —DAX) <0, p=0

Supersolution u: for every point (¢, xg), all function @ s.t. u - @
has local minimum at (¢, xy), then

{(pt—F(p,X)ZO, p+0
@0 —Tr(X) —(q(0) —DAX) =0, p=0

where p = Vo(ty, x0), X = D?@(ty, ).

Viscosity solution u, if it’s both sub- and supersolution



Numerical algorithms

* Rewritting
pPiDj
U = z a;;(u)o;;u, a;j = 6;; + (q(Ipl) — 1) D)
* Regularization
PiDj
u =) a§@ayu,  af= "5+ (alph) - 1) N

* |teration scheme: Given uy, at step k, then update u;,,; at next
step k+1 by solving the equation

PkiPkj
U = 2 afj(uk)aiju; afj= 0;j + (q(lpe]) — 1) —

\/|Pk|2 + £°

i.e., freezing the coefficients



Numerical results
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Quality measurements

e Structural similarity: SSIM
|, K are original resp noisy images, u;, iy are the meanvalues

o, 0k are the variances, gy is the covariance
Cupg +c1)(201g + ¢2)

(uf + ug + cy) (07 + 0% + ¢32)
where ¢4, ¢, are two stabilization constants

SSIM =

* Peak signal-to-noise ratio: PSNR
|, K are original resp noise images of dimension m X n, the

mean squared errors MSE = iZ(Iij — ij)z, MAX; is the

mn
maximum value of image |,

PSNR = 20log(MAX;) — 10log(MSE).



Numerical results

T'V PSNR=27.2, SSIM=0.83 A(p(a:),q(;l’,)) PSNR=29.2, SSIM=0.87



Numerical results
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