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• Filter and Linear PDE model
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Smoothing and Linear PDE

• Let 𝑢(𝑥) be the grey scale of image with noise

• Let 𝑢0(𝑥) be the grey scale of original image

• 𝑢 𝑥 = 𝑢0 𝑥 + 𝜎(𝑥)

u
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Smoothing and Linear PDE

𝑢 𝑥 =
1

|𝐵|
𝑥+𝐵 𝑢(𝑦)

B is a ball of radius r at origin

𝑢 𝑥, 𝑦 ≈ 𝑢0 𝑥, 𝑦
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Smoothing and Linear PDE

1. Idea of Witkin:  Embed the original image 𝑢
in a family of derived images obtained by 
convolving the original image 𝑢0 with 𝐺𝑡 a 
Gaussian kernal of variance t

2. u 𝑥, t = c(t)  u0 𝑥 − 𝑦 exp −
𝑦2

4t2
d𝑦

3. Larger value of t corresponds to image at 
coarser resolution



Smoothing and Linear PDE

• Idea of Koenderink: 𝑢 𝑥, 𝑡 satisfies the

heat equation

ቊ
𝑢𝑡 𝑥, 𝑡 = ∆𝑢(𝑥, 𝑡)

𝑢 𝑥, 0 = 𝑢0 𝑥

• Linear PDE method is a low-pass filtering

• It can eliminate the noise

• But at weanwhile it also smooths the edges.
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Smoothing and Linear PDE

Physical consideration

1. Causality: any feature at a coarse level of resolution is 

required to possess a ”cause” at a finer level of resolution

2. Homogeneity and Isotropy: The blurring is reqired

to be space invariant

3. Fick’s law : Flux  𝐽 𝑥 = 𝐷 𝑥 𝛻𝑢, where D is called flux 

tensor

4. Invariance of ∆: uniformly diffusion 

in all directions
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Smoothing and Linear PDE
Physical consideration

1. Causality: any feature at a coarse level of resolution is 

required to possess a ”cause” at a finer level of resolution

2. Homogeneity and Isotropy: The blurring is reqired to

be space invariant

3. Fick’s law : Flux  𝐽 𝑥 = 𝐷 𝑥 𝛻𝑢, where D is called flux 

tensor

4. Invariance of ∆: uniformly diffusion in all directions

5. Gauge coordinates: ∆𝑢 = 𝑢ξξ + 𝑢𝜏𝜏

Where ξ ⊥ 𝛻𝑢, 𝜏 ǁ 𝛻𝑢
𝜏

ξ



Relation between smoothing and Linear PDE

𝑀𝑟 𝑢 =
1

|𝐵|
න
𝑥+𝐵

𝑢 𝑦

𝑀𝑛,𝑟 = 𝑀𝑟°𝑀𝑟°⋯ °𝑀𝑟

If 𝒏𝒓 = 𝒕 is fixed, then 𝑢𝑛 = 𝑀𝑛,𝑟 𝑢 → 𝑣 𝑡, 𝑥

as n → ∞, then 𝑣 𝑡, 𝑥 solves the heat equation

ቊ
𝑣𝑡 𝑡, 𝑥 = ∆𝑣(𝑡, 𝑥)

𝑣 0, 𝑥 = 𝑢 𝑥



Averaging and Nonlinear PDE

𝑇𝑢 𝑥 = su𝑝
𝐵

inf
𝑦∈𝐵

𝑢(𝑥 + 𝑦)

B is a ball of radius r at origin

Tu 𝑥 ≈ 𝑢0 𝑥
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Averaging and Nonlinear PDE

Image with noise

(left) and 

level set of image 
(right)

Averaging image

(left) and

Level set of
treated image 
(right)



Averaging and Nonlinear PDE

𝑇𝑟 𝑢 = su𝑝
𝐵

inf
𝑦∈𝐵

𝑢(𝑥 + 𝑦) , 𝑇𝑛,𝑟 = 𝑇𝑟°𝑇𝑟°⋯ °𝑇𝑟

If 𝒏𝒓 = 𝒕 is fixed, then 𝑢𝑛 = 𝑇𝑛,𝑟 𝑢 → 𝑣 𝑥, 𝑡

and 𝑣 𝑥, 𝑡 solves the nonlinear equation

൞
𝑣𝑡 𝑥, 𝑡 = 𝛻𝑣 (𝑑𝑖𝑣

𝛻𝑣

𝛻𝑣
)
1
3

𝑣 𝑥, 0 = 𝑢 𝑥



Anisotropic Nonlinear model
• Fick’s law:  Flux  𝐽 𝑥 = 𝐷 𝑥 𝛻𝑢, 

• Perona-Malik model: 𝐷 𝑥 = 𝑔 𝛻𝑢

• 𝑢𝑡 = 𝑑𝑖𝑣 𝑔 𝛻𝑢 𝛻𝑢

• Idea of Perona-Malik: Encourage smoothing
within the region in preference to smoothing
across the bounday

• Could be done: Put

D = 1   in interior

D = 0  on boundary



Anisotropic Nonlinear model
• Fick’s law:  Flux  𝐽 𝑥 = 𝐷 𝑥 𝛻𝑢, 

• Perona-Malik model: 𝑢𝑡= 𝑑𝑖𝑣 𝑔 𝛻𝑢 𝛻𝑢

• Two typical functions of g

• 𝑔 𝑠 = exp −
𝑠2

𝐾2

• 𝑔 𝑠 =
1

1+
𝑠2

𝐾2



Anisotropic nonlinear model
• Perona – Malik model

• 𝑢𝑡 = 𝑑𝑖𝑣 𝑔 𝛻𝑢 𝛻𝑢 = 𝑔 𝑢ξξ + 𝜑′𝑢𝜏𝜏

where φ(𝑠) = 𝑠𝑔 𝑠

• The first term is a diffusion along the edges

• The second term corresponds to local
inversion of heat equation

i.e. backward heat equation

thus enhance edges



Perona - Malik model

• Original image (left) 

• Edges detected by Perona- Malik 
method (above)

• Edges detected by Gaussian
smoothing (below)

P. Perona, J. Malik, IEEE Transaction PAMI, 12, 1990.



Perona-Malik model: Staircasing problem

• One problem in Perona-Malik model is the 
staircasing

• Another problem is the existence of multiple
local maximum for the associated energy
functional

𝐸 𝑢 = න𝐺 𝛻𝑢 + 𝜗(𝑢 − 𝑢0)
2

P Guidotti, Advanced studies 

in pure math, 201x



Variational formulation of segmentation

• Mumford -Shah model

𝐸 𝑢, 𝐾 = 𝛽 Ω(𝑢 − 𝑢0)
Ω∖𝐾+2 |𝛻𝑢|

𝟐 + 𝛼|K|

K is the set of edges and 𝑢0 is the given image

• The data term

• The regularity term of u

• The penalty term for 

the boundary

D. Mumford, J. Shah, CPAM , 1989



Variational formulation of segmentation

• Rudin-Osher-Fatemi total variation model

𝐸 𝑢 = 𝛽 Ω(𝑢 − 𝑢0)
Ω∖𝐾+2 |𝛻𝑢| + 𝛼|K|

• Chan-Vese binary model

E 𝑢 = Ω1
(𝑢 − 𝑐1)

Ω2+2
(𝑢 − 𝑐2)

2 + βΩ |𝛻𝑢|

𝑢0 =

𝑢0 = 𝑐2

𝑢0
=
𝑐1

L. Rudin, S. Osher, E. Fatemi, Physica D , 1992

T. Chan, L. Vese, 

IEEE, Transaction on  

Image Processing , 2002



Variational formulation of segmentation

• Rudin-Osher-Fatemi total variation model
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K. Fundana, Thesis, 2010



Segmentation with shape prior

• 𝜑 𝑥 is a reference shape prior

𝐸 𝑢 = 𝛽 𝑢) − 𝑢0)
+2 |𝛻𝑢| + 𝛼 𝑢) − 𝜑)2

• The associated evolution equation

𝑢𝑡= ∆1𝑢+𝛽(𝑢 − 𝑢0)+α(𝑢 − 𝜑)

K. Fundana, Thesis, 2010



Directional diffusion

• ∆1 𝑢 = 𝑑𝑖𝑣
𝛻𝑢

|𝛻𝑢|
describes the diffusion along

the tangential direction, (𝛻𝑢)⊥,  of level surface, 
i.e. along the edges

• ∆∞ 𝑢 = 𝐻𝑢
𝛻𝑢

𝛻𝑢
∙
𝛻𝑢

𝛻𝑢
, H is the Hessian of u

describes the diffusion along the normal 
direction, 𝛻𝑢, of level surface. 

• New idea: proper combination 

of ∆1, ∆∞ .

ξ

τ



Some relationships

Gauge coordinate ( ξ , τ )

𝑢ξξ= |𝛻𝑢|∆1𝑢, 𝑢𝜏𝜏 = ∆∞𝑢

Laplacian ∆ and infinity Laplacian ∆∞

∆𝑢 = |𝛻𝑢|∆1𝑢 + ∆∞𝑢

or 
|𝛻𝑢|∆1𝑢 = ∆𝑢 − ∆∞𝑢



Anisotropic evolution

• Weighted directional evolution 
𝑢𝑡 = 𝑠 𝑢ξξ+𝑞 𝑢𝜏𝜏

where s, q has the property

0 < 𝑞 ≪ 𝑠, 𝑖𝑓 |𝛻𝑢| ≫ 1

• Positivity of s, q ensures that the PDE is elliptic

• Condition 𝑞 ≪ 𝑠 provides us opportunity to   

have different evolution straitegies at different 

points based on geometric character of the 

level set



Anisotropic evolution

• PDE in Cartessian coordinates

𝑢𝑡 = 𝑠 𝛻𝑢 ∆1𝑢 + 𝑞∆∞𝑢

• If 𝑞 = 0, then the above equation is just mean

caurvature equation

• If  𝑞 = 𝑝 − 1 |𝛻𝑢|𝑝−2, 𝑠 = |𝛻𝑢|𝑝−2, then the 
above equation becomes p-Laplace equation. 
i.e.,              𝑢𝑡 = 𝑑𝑖𝑣 |𝛻𝑢|𝑝−2𝛻𝑢

• For proper s, q, we have (p, q)-equation
𝑢𝑡 = 𝑑𝑖𝑣 (𝛼|𝛻𝑢|𝑝−2+𝛽|𝛻𝑢|𝑞−2)𝛻𝑢



Anisotropic evolution

Three potential candidates

• 𝐿1 𝑢 = 𝛻𝑢 𝑞∆1 𝑢 + p − 1 𝛻𝑢 𝑝−2∆∞(𝑢)

• 𝐿2 𝑢 = 𝛻𝑢 𝑞 𝑥 (|𝛻𝑢|∆1 𝑢 + 𝑞 𝑥 ∆∞ 𝑢 )

• 𝐿3 𝑢 = 𝛻𝑢 𝑠 𝑥 (|𝛻𝑢|∆1 𝑢 + 𝑞 𝑥 ∆∞ 𝑢 )



Viscosity solution

• A simple equation 𝑢𝑡 − 𝐹 𝛻𝑢,𝐷2𝑢 = 0

F 𝑝, 𝑋 = 𝑇𝑟 𝑋 + q p − 1 ҧ𝑝 ∙ 𝑋 ҧ𝑝, ҧ𝑝 =
𝑝

|𝑝|

• Function 𝑞: 0,+∞ → (0, 1) is continuous

• For any symmetric matrix 𝑋, λ 𝑋 , Λ(𝑋) denote the smallest
and largest eigenvalues of X.



Viscosity solution

• A simple equation 𝑢𝑡 − 𝐹 𝛻𝑢, 𝐷2𝑢 = 0

F 𝑝, 𝑋 = 𝑇𝑟 𝑋 + q p − 1 ҧ𝑝 ∙ 𝑋 ҧ𝑝, ҧ𝑝 =
𝑝

|𝑝|

• Subsolution u: for every point 𝑡0, 𝑥0 , all test function ϕ such that
u – ϕ has local maximum at 𝑡0, 𝑥0 , then

ቊ
ϕ𝑡 − 𝐹 𝑝, 𝑋 ≤ 0, 𝑝 ≠ 0

ϕ𝑡 − 𝑇𝑟 𝑋 − 𝑞 0 − 1 Λ 𝑋 ≤ 0, 𝑝 = 0

• Supersolution u: for every point 𝑡0, 𝑥0 , all function ϕ s.t. u - ϕ

has local minimum at 𝑡0, 𝑥0 , then

ቊ
ϕ𝑡 − 𝐹 𝑝, 𝑋 ≥ 0, 𝑝 ≠ 0

ϕ𝑡 − 𝑇𝑟 𝑋 − 𝑞 0 − 1 λ 𝑋 ≥ 0, 𝑝 = 0

where 𝑝 = 𝛻φ 𝑡0, 𝑥0 , 𝑋 = 𝐷2φ 𝑡0, 𝑥0 .

• Viscosity solution u, if it’s both sub- and supersolution



Numerical algorithms

• Rewritting

𝑢𝑡 =𝑎𝑖𝑗(𝑢)𝜕𝑖𝑗𝑢, 𝑎𝑖𝑗 = 𝛿𝑖𝑗 + (𝑞( 𝑝 ) − 1)
𝑝𝑖𝑝𝑗
|𝑝|

• Regularization

𝑢𝑡 =𝑎𝑖𝑗
𝜀 𝑢 𝜕𝑖𝑗𝑢, 𝑎𝑖𝑗

𝜀 = 𝛿𝑖𝑗 + (𝑞( 𝑝 ) − 1)
𝑝𝑖𝑝𝑗

|𝑝|2 + 𝜀2

• Iteration scheme: Given 𝑢𝑘 at step k, then update 𝑢𝑘+1 at next
step k+1 by solving the equation

𝑢𝑡 =𝑎𝑖𝑗
𝜀 𝑢𝑘 𝜕𝑖𝑗𝑢, 𝑎𝑖𝑗

𝜀 = 𝛿𝑖𝑗 + (𝑞( 𝑝𝑘 ) − 1)
𝑝𝑘𝑖𝑝𝑘𝑗

|𝑝𝑘|
2 + 𝜀2

i.e., freezing the coefficients
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Quality measurements
• Structural similarity: SSIM

I, K are original resp noisy images, 𝜇𝐼 , 𝜇𝐾 are the meanvalues

𝜎𝐼 , 𝜎𝐾 are the variances, 𝜎𝐼𝐾 is the covariance

𝑺𝑺𝑰𝑴 =
(𝟐𝝁𝑰𝝁𝑲 + 𝒄𝟏)(𝟐𝝈𝑰𝑲 + 𝒄𝟐)

(𝝁𝑰
𝟐 + 𝝁𝑲

𝟐 + 𝒄𝟏)(𝝈𝑰
𝟐 + 𝝈𝑲

𝟐 + 𝒄𝟐)

where 𝑐1, 𝑐2 are two stabilization constants

• Peak signal-to-noise ratio: PSNR

I, K are original resp noise images of dimension 𝑚 × 𝑛, the   

mean squared errors 𝑀𝑆𝐸 =
1

𝑚𝑛
Σ(𝐼𝑖𝑗 − 𝐾𝑖𝑗)

2, 𝑀𝐴𝑋𝐼 is the 

maximum value of image I,

𝑃𝑆𝑁𝑅 = 20 log 𝑀𝐴𝑋𝐼 − 10 log 𝑀𝑆𝐸 .



Numerical results

PSNR=27.2, SSIM=0.83 PSNR=29.2, SSIM=0.87



Numerical results

PSNR=25.9, SSIM = 0.81 PSNR=24.0, SSIM = 0.74


