Nonlinear Approximation
- An Idiot Abroad

Martin Lind

Department of Mathematics and Computer Science,
Karlstad University

KAAS Colloquium
Overview: objectives

Objectives of this talk

1. informally discuss some basic ideas from nonlinear approximation and their applications in computation;
2. vaguely describe the results of [1], with minimal use of black magic from theory of function spaces

Overview: objectives

Objectives of this talk

1. *informally* discuss some *basic* ideas from nonlinear approximation and their applications in computation;
Overview: objectives

Objectives of this talk

1. *informally* discuss some *basic* ideas from nonlinear approximation and their applications in computation;

2. vaguely describe the results of [1], with *minimal* use of black magic from theory of function spaces

Overview: approximation and computation

Approximation Theory - resolve a complicated target function by a sequence of functions of small complexity (approximants).

Computation - in a sense the same goal.

What assumptions?

Approximation: some direct knowledge of the target function, typically values of simple functionals acting on it (e.g. point evaluations).

Computation: here knowledge of the target function is usually indirect, e.g. it satisfies a PDE.

Still, the subjects are closely connected.
Overview: approximation and computation

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)
Overview: approximation and computation

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)

Computation - in a sense the same goal
Overview: approximation and computation

Approximation Theory - resolve a complicated target function by a sequence of functions of small complexity (approximants)

Computation - in a sense the same goal

What assumptions?
Overview: approximation and computation

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)

Computation - in a sense the same goal

What assumptions?

Approximation: some direct knowledge of the target function, typically values of simple functionals acting on it (e.g. point evaluations)
Overview: approximation and computation

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)

Computation - in a sense the same goal

What assumptions?

Approximation: some direct knowledge of the target function, typically values of simple functionals acting on it (e.g. point evaluations)

Computation: here knowledge of the target function is usually indirect, e.g. it satisfies a PDE.
Overview: approximation and computation

Approximation Theory - resolve a complicated *target function* by a sequence of functions of small complexity (*approximants*)

Computation - in a sense the same goal

What assumptions?

Approximation: some direct knowledge of the target function, typically values of simple functionals acting on it (e.g. point evaluations)

Computation: here knowledge of the target function is usually indirect, e.g. it satisfies a PDE.

Still, the subjects are closely connected.
Notation

$\Omega \subseteq \mathbb{R}^d$ domain, $p \in (0, \infty]$.

$L^p(\Omega)$ - space of functions such that

$$\|f\|_p := \left(\int_{\Omega} |f(x)|^p \, dx \right)^{1/p} < \infty$$

or

$$\|f\|_\infty = \text{ess sup}_{x \in \Omega} |f(x)| < \infty.$$

$H^1_0(\Omega)$ - space of functions f such that $f = 0$ on $\partial \Omega$ and

$$\|f\|_{H^1_0(\Omega)} := \|f\|_2 + \|\nabla f\|_2 < \infty$$
Linear approximation

\((X, \| \cdot \|_X)\) - normed vector space (typically a space of functions)
Linear approximation

\((X, \| \cdot \|_X)\) - normed vector space (typically a space of functions)

Sequence \(\mathcal{F} = \{X_j\}\) of finite-dimensional subspaces

\[X_0 \subset X_1 \subset \ldots \subset X_n \subset \ldots \subset X \]

(approximation scheme)
Linear approximation

\((X, \| \cdot \|_X)\) - normed vector space (typically a space of functions)

Sequence \(\mathcal{F} = \{X_j\}\) of finite-dimensional subspaces

\[
X_0 \subset X_1 \subset \ldots \subset X_n \subset \ldots \subset X
\]

(approximation scheme)

Error of best approximation of \(f \in X\)

\[
E_n(f)_X = E_n(f, \mathcal{F})_X = \inf_{g \in X_n} \|f - g\|_X
\]

Note \(E_n(f)_X\) decreasing sequence of real numbers
Example: Weierstrass’ theorem

Example: $X = C(0, 1)$ with norm $\| \cdot \|_X = \| \cdot \|_{\infty}$

$$X_n = \mathcal{P}_n = \{ \text{polynomials of degree } \leq n \}$$

and

$$E_n(f)_{\infty} = \inf_{p \in \mathcal{P}_n} \| f - p \|_{\infty}$$
Example: Weierstrass’ theorem

Example: \(X = C(0, 1) \) with norm \(\| \cdot \|_X = \| \cdot \|_\infty \)

\[X_n = \mathcal{P}_n = \{ \text{polynomials of degree} \leq n \} \]

and

\[E_n(f)_\infty = \inf_{p \in \mathcal{P}_n} \| f - p \|_\infty \]

Weierstrass’ theorem:

\[\lim_{n \to \infty} E_n(f)_\infty = 0 \]
One main question

\[E_n(f)_X \] encodes quality of approximation - central object.
One main question

$E_n(f)_X$ encodes quality of approximation - central object.

On the other hand, constructive characteristics are not so easy to understand.
One main question

$E_n(f)_X$ encodes quality of approximation - central object.

On the other hand, constructive characteristics are not so easy to understand

Fundamental problem
One main question

$E_n(f)_X$ encodes quality of approximation - central object.

On the other hand, constructive characteristics are not so easy to understand

Fundamental problem

Given
- approximation scheme (several examples below);
- norm $\| \cdot \|_X$ to measure error of best approximation (e.g. $X = L^p$).
One main question

\(E_n(f)_X \) encodes quality of approximation - central object.

On the other hand, constructive characteristics are not so easy to understand

Fundamental problem

Given

- approximation scheme (several examples below);
- norm \(\| \cdot \|_X \) to measure error of best approximation (e.g. \(X = L^p \)).

Question

relationship between

intrinsic properties of \(f \) \(\iff \) behaviour of \(E_n(f)_X \)?
One main question

Main focus of our research in this area

Interested in results of the following type

\[\frac{E_n(f)}{X} = O\left(n^{-\gamma}\right) \] (direct result/Jackson estimate)

\[\frac{E_n(f)}{X} = O\left(n^{-\gamma}\right) \] (inverse result/Bernstein estimate)

Ideally, direct and inverse results should match (i.e. \(\square = \square \)); not always the case.
One main question

Main focus of our research in this area

Interested in results of the following type

given $f \in \square$, one has $E_n(f)_X = O(n^{-\gamma})$ (direct result/Jackson estimate)

given $E_n(f)_X = O(n^{-\gamma})$, one has $f \in \square$ (inverse result/Bernstein estimate)

Ideally, direct and inverse results should match (i.e. $\square = \square$); not always
One main question

Main focus of our research in this area

Interested in results of the following type

\[\text{given } f \in \square, \text{ one has } E_n(f)_X = O(n^{-\gamma}) \text{ (direct result/Jackson estimate)} \]

\[\text{given } E_n(f)_X = O(n^{-\gamma}), \text{ one has } f \in \square \text{ (inverse result/Bernstein estimate)} \]
One main question

Main focus of our research in this area

Interested in results of the following type

given $f \in \square$, one has $E_n(f)_X = \mathcal{O}(n^{-\gamma})$ (direct result/Jackson estimate)

given $E_n(f)_X = \mathcal{O}(n^{-\gamma})$, one has $f \in \square$ (inverse result/Bernstein estimate)

Ideally, direct and inverse results should match (i.e. $\square = \square$); not always the case
Nonlinear approximation: set-up

Sequence $\mathcal{F} = \{X_j\}$ of sets/manifolds (not vector spaces) such that:

$X_0 \subset X_1 \subset \ldots \subset X_n \subset \ldots$

$aX_j = X_j (\forall a \in \mathbb{R})$ and

$X_{n+1} + X_n = \{x + y : x, y \in X_n\} \subset X_{cn}$ some fixed $c \in \mathbb{N}$ (bounded nonlinearity)

As before, $E_n(f)_{X} = E_n(f, \mathcal{F})_X = \inf_{g \in X_n} \|f - g\|_X$
Nonlinear approximation: set-up

Sequence $\mathcal{F} = \{X_j\}$ of sets/manifolds (not vector spaces) such that:

$$X_0 \subset X_1 \subset \ldots \subset X_n \subset \ldots \subset X,$$
Nonlinear approximation: set-up

Sequence \(\mathcal{F} = \{ X_j \} \) of sets/manifolds (not vector spaces) such that:

\[
X_0 \subset X_1 \subset \ldots \subset X_n \subset \ldots \subset X,
\]

\[
aX_j = X_j \quad (\forall a \in \mathbb{R}) \quad \text{and}
\]

\[
X_n + X_n = \{ x + y : x, y \in X_n \} \subset X_{cn}
\]

some fixed \(c \in \mathbb{N} \) (bounded nonlinearity)
Nonlinear approximation: set-up

Sequence $\mathcal{F} = \{X_j\}$ of sets/manifolds (not vector spaces) such that:

\[X_0 \subset X_1 \subset \ldots \subset X_n \subset \ldots \subset X, \]

\[aX_j = X_j \quad (\forall a \in \mathbb{R}) \quad \text{and} \]

\[X_n + X_n = \{x + y : x, y \in X_n\} \subset X_{cn} \]

some fixed $c \in \mathbb{N}$ (bounded nonlinearity)

As before,

\[E_n(f)_X = E_n(f, \mathcal{F})_X = \inf_{g \in X_n} \|f - g\|_x \]
Example: N-term approximation

\[\Psi = \{ \psi_k \} \text{ a sequence of functions (think of as basis)} \]
Example: N-term approximation

$\Psi = \{\psi_k\}$ a sequence of functions (think of as basis)

$$X_N = \left\{ g = \sum_{k \in \Lambda} c_k \psi_k : \#\Lambda \leq N \right\}$$
Example: N-term approximation

$\Psi = \{\psi_k\}$ a sequence of functions (think of as basis)

$$X_N = \left\{ g = \sum_{k \in \Lambda} c_k \psi_k : \# \Lambda \leq N \right\}$$

Scheme: approximate f with superpos. of at most N elements from Ψ
Example: N-term approximation

$\Psi = \{\psi_k\}$ a sequence of functions (think of as basis)

$$X_N = \left\{ g = \sum_{k \in \Lambda} c_k \psi_k : \#\Lambda \leq N \right\}$$

Scheme: approximate f with superpos. of at most N elements from Ψ

$$X_N \subset X_{N+1}, \quad X_N + X_N \subset X_{2N}$$
Example: N-term approximation

$\Psi = \{ \psi_k \}$ a sequence of functions (think of as basis)

$$X_N = \left\{ g = \sum_{k \in \Lambda} c_k \psi_k : \# \Lambda \leq N \right\}$$

Scheme: approximate f with superpos. of at most N elements from Ψ

$$X_N \subset X_{N+1}, \quad X_N + X_N \subset X_{2N}$$

Compression: approximate a signal having $\#(spectrum) = M$ by using $N \ll M$ frequencies.
Example: Free knot spline approximation

Set of points ("knots")

\[T = \{ 0 = x_0 < x_1 < \ldots < x_n = 1 \} \]
Example: Free knot spline approximation

Set of points ("knots")

\[\mathcal{T} = \{ 0 = x_0 < x_1 < \ldots < x_n = 1 \} \]

A \textit{k-th order spline on} \ \mathcal{T}

= function \(s \) such that \(s \) is a polynomial of degree \(\leq k \) on each \((x_j, x_{j+1}) \).
Example: Free knot spline approximation

Set of points ("knots")

\[\mathcal{T} = \{ 0 = x_0 < x_1 < ... < x_n = 1 \} \]

A \textbf{k-th order spline on } \mathcal{T}

= function \(s \) such that \(s \) is a polynomial of degree \(\leq k \) on each \((x_j, x_{j+1})\).

\[S_k(\mathcal{T}) = \text{space of all } k\text{-th order splines on } \mathcal{T} \]
Example: Free knot spline approximation

Set of points ("knots")

\[\mathcal{T} = \{0 = x_0 < x_1 < \ldots < x_n = 1\}\]

A \textbf{k-th order spline on } \mathcal{T}

= function \(s\) such that \(s\) is a polynomial of degree \(\leq k\) on each \((x_j, x_{j+1})\).

\(S_k(\mathcal{T}) = \text{space of all } k\text{-th order splines on } \mathcal{T}\)

\textbf{Example} \(k = 0, \quad \mathcal{T} = \{j/n : 0 \leq j \leq n\}\)
Example: Free knot spline approximation

Set of points (”knots”)

\[T = \{ 0 = x_0 < x_1 < ... < x_n = 1 \} \]

A \textit{k-th order spline on } \mathcal{T}
= function \(s \) such that \(s \) is a polynomial of degree \(\leq k \) on each \((x_j, x_{j+1})\).

\(S_k(\mathcal{T}) = \) space of all \(k \)-th order splines on \(\mathcal{T} \)

\textbf{Example} \(k = 0, \quad \mathcal{T} = \{ j/n : 0 \leq j \leq n \} \)
\(S_0(\mathcal{T}) = \) all step functions (uniform step \(1/n \))
Example: Free knot spline approximation

Spline manifolds

\[X_n = S(n, k) = \{ s : \exists T \text{ such that } s \in S_k(T) \text{ and } \#(T) \leq n + 1 \} \]
Example: Free knot spline approximation

Spline manifolds

\[X_n = S(n, k) = \{ s : \exists T \text{ such that } s \in S_k(T) \text{ and } \#(T) \leq n + 1 \} \]

\[X_n \subset X_{n+1}, \quad X_n + X_n \subset X_{2n} \]
Example: Free knot spline approximation

Spline manifolds

\[X_n = \mathcal{S}(n, k) = \{ s : \exists \mathcal{T} \text{ such that } s \in \mathcal{S}_k(\mathcal{T}) \text{ and } \#(\mathcal{T}) \leq n + 1 \} \]

\[X_n \subset X_{n+1}, \quad X_n + X_n \subset X_{2n} \]

What is the point?! Point is that partitions are allowed to adapt to target function ⇒ better approximating power
A comparison

Example: $f(x) = x^\alpha$, $0 < x < 1$, $0 < \alpha < 1$.

A comparison

Example: $f(x) = x^\alpha$, $0 < x < 1$, $0 < \alpha < 1$.

0th order spline approximation in $L^\infty(0, 1)$

(i.e. approximation with piecewise constants)
A comparison

Example: $f(x) = x^\alpha$, $0 < x < 1$, $0 < \alpha < 1$.

0th order spline approximation in $L^\infty(0, 1)$

(i.e. approximation with piecewise constants)

Linear approximation equidistant knots $x_i = i/n$ ($0 \leq i \leq n$)
A comparison

Example: \(f(x) = x^\alpha, \ 0 < x < 1, \ 0 < \alpha < 1. \)

0th order spline approximation in \(L^\infty(0, 1) \)
(i.e. approximation with piecewise constants)

Linear approximation equidistant knots \(x_i = i/n \) \((0 \leq i \leq n) \)

Case \(\alpha = 1/2, \ n = 10 \)
A comparison

Example: \(f(x) = x^\alpha, \ 0 < x < 1, \ 0 < \alpha < 1. \)

0th order spline approximation in \(L^\infty(0, 1) \)
(i.e. approximation with piecewise constants)

Linear approximation equidistant knots \(x_i = i/n \) \((0 \leq i \leq n) \)

Case \(\alpha = 1/2, \ n = 10 \)
A comparison

Example: $f(x) = x^\alpha$, $0 < x < 1$, $0 < \alpha < 1$.

0th order spline approximation in $L^\infty(0,1)$
(i.e. approximation with piecewise constants)

Linear approximation equidistant knots $x_i = i/n$ $(0 \leq i \leq n)$

Nonlinear approximation knots $t_i = (i/n)^{1/\alpha}$ $(0 \leq i \leq n)$

Case $\alpha = 1/2$, $n = 10$
A comparison

Example: \(f(x) = x^\alpha, \ 0 < x < 1, \ 0 < \alpha < 1. \)

0th order spline approximation in \(L^\infty(0, 1) \)
(i.e. approximation with piecewise constants)

Linear approximation equidistant knots \(x_i = i/n \) \((0 \leq i \leq n) \)

Nonlinear approximation knots \(t_i = (i/n)^{1/\alpha} \) \((0 \leq i \leq n) \)

Case \(\alpha = 1/2, \ n = 10 \)
A comparison

Example: $f(x) = x^\alpha$, $0 < x < 1$, $0 < \alpha < 1$.

0th order spline approximation in $L^\infty(0, 1)$
(i.e. approximation with piecewise constants)

Linear approximation equidistant knots $x_i = i/n$ ($0 \leq i \leq n$)

Nonlinear approximation knots $t_i = (i/n)^{1/\alpha}$ ($0 \leq i \leq n$)

Case $\alpha = 1/2$, $n = 10$
A comparison

Philosophy: place the knots where they are useful!
(≈ equidistribute error/local variation)
A comparison

Philosophy: place the knots where they are useful!
(≈ equidistribute error/local variation)

Error rates for approximation of \(f(x) = x^\alpha \) (0th order spline, \(L^\infty \)-norm):

\[
E_n^L(f)_{\infty} \asymp \frac{1}{n^\alpha} \quad \text{and} \quad E_n^{NL}(f)_{\infty} = \frac{1}{n}
\]

Nonlinear method has faster convergence!
A comparison

Philosophy: place the knots where they are useful! (≈ equidistribute error/local variation)

Error rates for approximation of $f(x) = x^\alpha$ (0th order spline, L^∞-norm):

$$E^L_n(f)_\infty \simeq \frac{1}{n^\alpha} \quad \text{and} \quad E^{NL}_n(f)_\infty = \frac{1}{n}$$

Nonlinear method has faster convergence!

Direct and inverse theorem (0th order spline, L^∞)

$$E^L_n(f)_\infty = O(1/n) \quad \iff \quad f' \text{ bounded}$$

$$E^{NL}_n(f)_\infty = O(1/n) \quad \iff \quad f \text{ bounded variation}$$
A comparison

Philosophy: place the knots where they are useful!
(≈ equidistribute error/local variation)

Error rates for approximation of \(f(x) = x^\alpha \) (0th order spline, \(L^\infty \)-norm):

\[
E_n^L(f)_{\infty} \approx \frac{1}{n^\alpha} \quad \text{and} \quad E_n^{NL}(f)_{\infty} = \frac{1}{n}
\]

Nonlinear method has faster convergence!

Direct and inverse theorem (0th order spline, \(L^\infty \))

\[
E_n^L(f)_{\infty} = O(1/n) \iff f' \text{ bounded}
\]
\[
E_n^{NL}(f)_{\infty} = O(1/n) \iff f \text{ bounded variation}
\]

General Optimal rate attained for wider class of functions.
Nonlinear approximation and computations

Extended example (applications)

Let $\Omega \subset \mathbb{R}^2$ and consider Dirichlet problem for Poisson's equation:

\[
\begin{align*}
-\Delta u &= f & \text{in } \Omega \\
 u &= 0 & \text{on } \partial \Omega
\end{align*}
\]

Weak formulation of (⋆):

\[
\int_\Omega \nabla u \cdot \nabla v \, dx = \int_\Omega fv \, dx \quad \forall v \in H^1_0(\Omega)
\]

Galerkin method:

Solve (⋆⋆) in a finite-dimensional subspace $V \subset H^1_0(\Omega)$

How to choose V?
Nonlinear approximation and computations

Extended example (applications)
Let $\Omega \subset \mathbb{R}^2$ and consider Dirichlet problem for Poisson’s equation:

\[\begin{aligned}
-\Delta u &= f \quad \text{in} \quad \Omega \\
 u &= 0 \quad \text{on} \quad \partial \Omega
\end{aligned} \]
Extended example (applications)
Let $\Omega \subset \mathbb{R}^2$ and consider Dirichlet problem for Poisson’s equation:

$$
\begin{cases}
-\Delta u = f & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
$$

Weak formulation of (\star)

$$
(\star \star) \quad \int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} fv dx \quad \text{all } v \in H^1_0(\Omega)
$$
Nonlinear approximation and computations

Extended example (applications)
Let $\Omega \subset \mathbb{R}^2$ and consider Dirichlet problem for Poisson’s equation:

\[
\begin{align*}
(\star) \quad \begin{cases}
-\Delta u &= f \quad \text{in} \quad \Omega \\
 u &= 0 \quad \text{on} \quad \partial \Omega
\end{cases}
\end{align*}
\]

Weak formulation of (\star)

\[
(\star \star) \quad \int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} fv dx \quad \text{all} \quad v \in H^1_0(\Omega)
\]

Galerkin method solve $(\star \star)$ in a finite-dimensional subspace $V \subset H^1_0(\Omega)$
Nonlinear approximation and computations

Extended example (applications)
Let $\Omega \subset \mathbb{R}^2$ and consider Dirichlet problem for Poisson’s equation:

\[
\begin{aligned}
-\Delta u &= f \quad \text{in} \quad \Omega \\
u &= 0 \quad \text{on} \quad \partial \Omega
\end{aligned}
\]

Weak formulation of (⋆)

\[
\begin{aligned}
\int_{\Omega} \nabla u \cdot \nabla v \, dx &= \int_{\Omega} fv \, dx \quad \text{all} \quad v \in H^1_0(\Omega)
\end{aligned}
\]

Galerkin method solve (⋆⋆) in a finite-dimensional subspace $V \subset H^1_0(\Omega)$

How to choose V?
Nonlinear approximation and computations

- $\mathcal{T} =$ triangulation of Ω, i.e. $\Omega \approx \bigcup_{\Delta \in \mathcal{T}} \Delta$
- $\mathcal{V} =$ vertices of triangles of \mathcal{T}
Nonlinear approximation and computations

- $\mathcal{T} =$ triangulation of Ω, i.e. $\Omega \approx \bigcup_{\Delta \in \mathcal{T}} \Delta$
- $\mathcal{V} =$ vertices of triangles of \mathcal{T}

Courant elements: for each $P \in \mathcal{V}$, define a continuous function φ_P by

1. $\varphi_P(P) = 1$;
2. $\varphi_P(Q) = 0$ for $Q \in \mathcal{V} \setminus \{P\}$;
3. the restriction of φ_P to each $\Delta \in \mathcal{T}$ is affine
Nonlinear approximation and computations

- $\mathcal{T} =$ triangulation of Ω, i.e. $\Omega \approx \bigcup_{\Delta \in \mathcal{T}} \Delta$
- $\mathcal{V} =$ vertices of triangles of \mathcal{T}

Courant elements: for each $P \in \mathcal{V}$, define a continuous function φ_P by

1. $\varphi_P(P) = 1$;
2. $\varphi_P(Q) = 0$ for $Q \in \mathcal{V} \setminus \{P\}$;
3. the restriction of φ_P to each $\Delta \in \mathcal{T}$ is affine

$$V := S^0_1(\mathcal{T}) = \text{span}\{\varphi_P : P \in \mathcal{V}\},$$

1st degree splines (restrictions to Δ’s have degree ≤ 1) with smoothness 0 (i.e. continuous).
Nonlinear approximation and computations

Why is this choice of \(V \) good?
Nonlinear approximation and computations

Why is this choice of V good?

Quasi-uniform triangulation $\mathcal{T} = \{\Delta\} : |\Delta| \approx |\Delta'|$.
Nonlinear approximation and computations

Why is this choice of V good?

Quasi-uniform triangulation $\mathcal{T} = \{\Delta\} : |\Delta| \approx |\Delta'|$.

$h = \max(\text{diam}\Delta)$, coarseness parameter
Nonlinear approximation and computations

Why is this choice of V good?

Quasi-uniform triangulation $\mathcal{T} = \{\Delta\} : |\Delta| \approx |\Delta'|$.

$h = \max(\text{diam}\Delta)$, coarseness parameter

$\mathcal{T} := \mathcal{T}_h$, Galerkin method gives approximate solution

\[u_h \in V_h := S^0_1(\mathcal{T}_h) \]
Nonlinear approximation and computations

Why is this choice of V good?

Quasi-uniform triangulation $\mathcal{T} = \{\Delta\} : |\Delta| \approx |\Delta'|$.

$h = \max(\text{diam}\Delta)$, coarseness parameter

$\mathcal{T} := \mathcal{T}_h$, Galerkin method gives approximate solution

$$u_h \in V_h := S_1^0(\mathcal{T}_h)$$

A priori estimate: u exact solution to (\star)

$$\|u - u_h\|_{H^1_0(\Omega)} \leq Ch\|u\|_{H^2(\Omega)} \leq Ch\|f\|_{L^2(\Omega)}$$

if $\partial\Omega$ smooth.
Nonlinear approximation and computations: AFEM

Adaptive FEM: quasi-uniform triangulations not always suitable.
Nonlinear approximation and computations: AFEM

Adaptive FEM: quasi-uniform triangulations not always suitable.
Nonlinear approximation and computations: AFEM

Adaptive FEM: quasi-uniform triangulations not always suitable.

Scheme Use a posteriori error estimator to refine triangulation at necessary places
Nonlinear approximation and computations: AFEM

Adaptive FEM: quasi-uniform triangulations not always suitable.

Scheme Use a posteriori error estimator to refine triangulation at necessary places

\[h = \max(\text{diam}\Delta) \] loses its value as measure of coarseness
Nonlinear approximation and computations: AFEM

Adaptive FEM: quasi-uniform triangulations not always suitable.

Scheme Use a posteriori error estimator to refine triangulation at necessary places

\[h = \max(\text{diam}\Delta) \] loses its value as measure of coarseness

Substitute: \(n = \text{number of triangles} \)
Nonlinear approximation and computations: AFEM

Adaptive schemes 'seems' reasonable, but rigorous derivation?

For any Galerkin solution u on n triangles:

$$E_n(u)_{H^1_0(\Omega)} \leq \|u - U\|_{H^1_0(\Omega)}$$

but $\|u - U\|_{H^1_0(\Omega)}$ may be much larger.

Theorem (Binev, Dahmen, DeVore '04)

Let u be the solution to (\star). If u can be approximated (nonlinearly) by 1st order continuous splines with rate $E_n(u)_{H^1_0(\Omega)} = O(n^{-\gamma})$ then there is an explicit adaptive algorithm that in $O(n)$ steps constructs a triangulation T_n with $\#T_n = O(n)$ and a Galerkin solution $u_n \in S_{0,1}(T_n)$ such that $\|u - u_n\|_{H^1_0(\Omega)} = O(n^{-\gamma})$.
Nonlinear approximation and computations: AFEM

Adaptive schemes 'seems' reasonable, but rigorous derivation?

For any Galerkin solution U (S_1^0-spline on n triangles)

$$E_n(u)_{H^1_0(\Omega)} \leq \|u - U\|_{H^1_0(\Omega)}$$

but $\|u - U\|_{H^1_0(\Omega)}$ may be much larger
Nonlinear approximation and computations: AFEM

Adaptive schemes 'seems' reasonable, but rigorous derivation?

For any Galerkin solution U (S_1^0-spline on n triangles)

$$E_n(u)_{H_0^1(\Omega)} \leq \| u - U \|_{H_0^1(\Omega)}$$

but $\| u - U \|_{H_0^1(\Omega)}$ may be much larger

Theorem (Binev, Dahmen, DeVore ’04)

Let u be the solution to (\star). If u can be approximated (nonlinearly) by 1st order continuous splines with rate

$$E_n(u)_{H_0^1(\Omega)} = \mathcal{O}(n^{-\gamma})$$
Nonlinear approximation and computations: AFEM

Adaptive schemes 'seems' reasonable, but rigorous derivation?

For any Galerkin solution U (S_1^0-spline on n triangles)

$$E_n(u)_{H^1_0(\Omega)} \leq \|u - U\|_{H^1_0(\Omega)}$$

but $\|u - U\|_{H^1_0(\Omega)}$ may be much larger

Theorem (Binev, Dahmen, DeVore ’04)

Let u be the solution to (\star). If u can be approximated (nonlinearly) by 1st order continuous splines with rate

$$E_n(u)_{H^1_0(\Omega)} = \mathcal{O}(n^{-\gamma})$$

then there is an explicit adaptive algorithm that in $\mathcal{O}(n)$ steps constructs a triangulation T_n with $\|T_n\| = \mathcal{O}(n)$ and a Galerkin solution $u_n \in S_1^0(T_n)$ s.t.

$$\|u - u_n\|_{H^1_0(\Omega)} = \mathcal{O}(n^{-\gamma})$$
Nonlinear approximation and computations: AFEM

Program: from approximation to computation
Nonlinear approximation and computations: AFEM

Program: from approximation to computation

1. Determine which functions have $E_n(u)_{H^1_0(\Omega)} = O(n^{-\gamma})$ (inverse theorem; how smooth must u be?)
Program: from approximation to computation

1. Determine which functions have $E_n(u)_{H^1_0(\Omega)} = O(n^{-\gamma})$
 (inverse theorem; how smooth must u be?)

2. Use regularity theory for PDE’s to ensure that the exact solution u has correct smoothness (play with f and Ω).
Program: from approximation to computation

1. Determine which functions have $E_n(u)_{H^1_0(\Omega)} = O(n^{-\gamma})$ (inverse theorem; how smooth must u be?)

2. Use regularity theory for PDE’s to ensure that the exact solution u has correct smoothness (play with f and Ω).

3. Previous theorem guarantees that Galerkin’s method effectively computes u.
Nonlinear approximation and computations: AFEM

Program: from approximation to computation

1. Determine which functions have $E_n(u)_{H^1_0(\Omega)} = O(n^{-\gamma})$ (inverse theorem; how smooth must u be?)

2. Use regularity theory for PDE’s to ensure that the exact solution u has correct smoothness (play with f and Ω).

3. Previous theorem guarantees that Galerkin’s method effectively computes u.

Moral of the story: nontrivial computational information obtained from rate of approximation.
Highly nonlinear spline approximation

Besov space $B_{\tau,\tau}^s$ ($0 < \tau, s < \infty$)
Highly nonlinear spline approximation

Besov space $B^s_{\tau,\tau}$ ($0 < \tau, s < \infty$)

Roughly: $f \in B^s_{\tau,\tau}$ means that f has partial derivatives up to order s in $L^\tau(\Omega)$.

Since s may be fractional, definition is not so simple.
Highly nonlinear spline approximation

Besov space $B^s_{\tau,\tau}$ ($0 < \tau, s < \infty$)

Roughly: $f \in B^s_{\tau,\tau}$ means that f has partial derivatives up to order s in $L^\tau(\Omega)$.

Since s may be fractional, definition is not so simple.

$B^s_{\tau,\tau}$ closely related to nonlinear approximation in $L^p(\Omega)$ ($\Omega \subset \mathbb{R}^d$) when

$$\frac{1}{\tau} = \frac{s}{d} + \frac{1}{p}$$

(Critical line; Sobolev embedding theorem $B^s_{\tau,\tau} \hookrightarrow L^p(\Omega)$.)
Highly nonlinear spline approximation

Besov space $B_{\tau,\tau}^s$ ($0 < \tau, s < \infty$)

Roughly: $f \in B_{\tau,\tau}^s$ means that f has partial derivatives up to order s in $L^\tau(\Omega)$.

Since s may be fractional, definition is not so simple.

$B_{\tau,\tau}^s$ closely related to nonlinear approximation in $L^p(\Omega)$ ($\Omega \subset \mathbb{R}^d$) when

$$\frac{1}{\tau} = \frac{s}{d} + \frac{1}{p}$$

(Critical line; Sobolev embedding theorem $B_{\tau,\tau}^s \hookrightarrow L^p(\Omega)$.)

Notation $S(n, 1, 0)$: set of continuous functions S on Ω such that there exists a 'triangulation' $\mathcal{T} = \{\Delta\}$ with

$$S|_\Delta \text{ is affine and } \#\mathcal{T} \leq n$$
Highly nonlinear spline approximation

For continuous piecewise linear spline approximation on 'triangles' and parameters satisfying

\[
\frac{1}{\tau} = \frac{s}{d} + \frac{1}{p}, \quad 0 < s \leq d(1 + 1/p)
\]
Highly nonlinear spline approximation

For continuous piecewise linear spline approximation on 'triangles' and parameters satisfying

\[
\frac{1}{\tau} = \frac{s}{d} + \frac{1}{p}, \quad 0 < s \leq d(1 + 1/p)
\]

Direct estimate For any \(f \) we have

\[
E_n(f)_p \leq cn^{-s/d} |f|_{B^s_{\tau,\tau}}
\]
Highly nonlinear spline approximation

For continuous piecewise linear spline approximation on 'triangles' and parameters satisfying

\[\frac{1}{\tau} = \frac{s}{d} + \frac{1}{p}, \quad 0 < s \leq d(1 + 1/p) \]

Direct estimate For any \(f \) we have

\[E_n(f)_p \leq cn^{-s/d} |f|_{B^s_{\tau,\tau}} \]

Inverse estimate Assume that \(S_1 \in S(n, 1, 0) \) and \(S_2 \in S(Kn, 1, 0) \), then

\[|S_2|_{B^s_{\tau,\tau}} \leq |S_1|_{B^s_{\tau,\tau}} + cn^{s/d} \|S_1 - S_2\|_p \]
Highly nonlinear spline approximation

For continuous piecewise linear spline approximation on 'triangles' and parameters satisfying
\[
\frac{1}{\tau} = \frac{s}{d} + \frac{1}{p}, \quad 0 < s \leq d(1 + 1/p)
\]

Direct estimate For any \(f \) we have
\[
E_n(f)_p \leq cn^{-s/d} |f|_{B^s_{\tau,\tau}}
\]

Inverse estimate Assume that \(S_1 \in S(n, 1, 0) \) and \(S_2 \in S(Kn, 1, 0) \), then
\[
|S_2|_{B^s_{\tau,\tau}} \leq |S_1|_{B^s_{\tau,\tau}} + cn^{s/d} \|S_1 - S_2\|_p
\]

\(S_1 \in B^s_{\tau,\tau} \) 'simple' function, \(S_2 \) 'complex' function;
If error \(\|S_2 - S_1\|_p = O(n^{-s/d}) \), then
\[
|S_2|_{B^s_{\tau,\tau}} \leq |S_1|_{B^s_{\tau,\tau}} + cn^{s/d} \times n^{-s/d} < \infty.
\]